Advertisement

Screening of Natural Antidiabetic Agents

  • Chukwuebuka EgbunaEmail author
  • Santwana Palai
  • Israel Ehizuelen Ebhohimen
  • Andrew G. Mtewa
  • Jonathan C. Ifemeje
  • Genevieve D. Tupas
  • Toskë L. Kryeziu
Chapter

Abstract

Diabetes mellitus (DM) is a metabolic disease characterized by a relative or absolute lack of insulin that leads to hyperglycaemia. Approximately two to five million cases of deaths result from diabetes each year. As of 2017, there are over 425 million sufferers of DM worldwide (representing over 8.3% of the adult population) and a projected increase to 629 million by the year 2045. Every year, millions of dollars are committed in the global health care and in research and development of effective antidiabetic medications. So far, tremendous progress has been made in the search for safer natural antidiabetic agents but more needs to be done because of the multifactorial nature of diabetes and its comorbidities. This chapter details the various methods involved in the screening of natural antidiabetic agents. It takes into account the various in silico tools, in vitro and animal models. The methods are presented in a clear and concise manner to aid easy adoption and replications.

Keywords

Diabetes mellitus Screening of antidiabetic agents α-glucosidase inhibitors Insulin Hyperglycaemia Drug discovery 

References

  1. Allen RE, Hughes TD, Ng JL, Ortiz RD, Ghantous MA, Bouhali O, Frogue P, Arredouani A. Mechanisms behind the immediate effects of Roux-en-Y gastric bypass surgery on type 2 diabetes. Theor Biol Med Model. 2013;10(45):1–19.Google Scholar
  2. American Diabetes Association. Diabetes Care. 2015; 38(Supplement 1): S8-S16. https://doi.org/10.2337/dc15-S005. Available: http://care.diabetesjournals.org/content/38/Supplement_1/S8 Retrieved: 9th August, 2018.
  3. Ansarullah BB, Dwivedi M, Laddha NC, Begum R, Hardikar AA, Ramachandran A. Antioxidant rich flavonoids from Oreocnide integrifolia enhance glucose uptake and insulin secretion and protects pancreatic β-cells from streptozotocin insult. BMC Complement Altern Med. 2011;11:126.  https://doi.org/10.1186/1472-6882-11-126.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Asano T, Ogihara T, Katagiri H, Sakoda H, Ono H, Fujishiro M, Anai M, Kurihara H, Uchijima Y. Glucose transporter and Na+ / glucose cotransporter as molecular targets of anti-diabetic drugs. Curr Med Chem. 2004;11(20):2717–24.PubMedCrossRefGoogle Scholar
  5. Basu A, Sohn YS, Alyan M, Nechushtai R, Domb AJ, Goldblum A. Discovering novel and diverse iron-chelators in silico. J Chem Inf Model. 2016;56:2476–85.PubMedCrossRefGoogle Scholar
  6. Bergman RN, Ader M. Atypical antipsychotics and glucose homeostasis. J Clin Psychiatry. 2005;66:504–14.PubMedCrossRefGoogle Scholar
  7. Brayer GD, Luo Y, Withers SG. The structure of human pancreatic α-amylase at 1.8 A resolution and comparisons with related enzymes. Protein Sci. 1995;4:1730–42.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Cavarape A, Feletto F, Mercuri F, Quagliaro L, Damante G, Ceriello A. High-fructose diet decreases catalase mRNA levels in rat tissues. J Endocrinol Investig. 2001;24(11):838–45.CrossRefGoogle Scholar
  9. Chaudhury A, Duvoor C, Dendi VSR, Kraleti S, Chada A, Ravilla R, et al. Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front Endocrinol. 2017;8(6):1–12.  https://doi.org/10.3389/fendo.2017.00006.CrossRefGoogle Scholar
  10. Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus-present and future perspectives. Nat Rev Endocrinol. 2011;8(4):228–36.PubMedCrossRefGoogle Scholar
  11. Choi SB, Park CH, Choi MK, Jun DW, Park S. Improvement of insulin resistance and insulin secreation by water extracts of Cordiceps militaris, phellinus linteus and paecilomyce tenuipes in 90% pancreatectomized rats. J Biotech Biochem. 2004;68:2257–64.CrossRefGoogle Scholar
  12. Deacon CF. Dipeptidyl peptidase-4 inhibitors in the treatment of type 2 diabetes: a comparative review. Diabetes Obes Metab. 2011;13:7–18.PubMedCrossRefGoogle Scholar
  13. Defronzo RA. Banting lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58:773–95.PubMedPubMedCentralCrossRefGoogle Scholar
  14. DePaula AL, Macedo AL, Mota BR, Schraibman V. Laparoscopic ileal interposition associated to a diverted sleeve gastrectomy is an effective operation for the treatment of type 2 diabetes mellitus patients with BMI 21–29. Surg Endosc. 2009;23:1313–20.PubMedCrossRefGoogle Scholar
  15. Dsouza D, Lakshmidev N. Models to study in vitro antidiabetic activity of plants: a review. Int J Pharm Bio Sci. 2015;6(3):732–41.Google Scholar
  16. Dunn JS, Sheehan HL, McLetchie NGB. Necrosis of islets of Langerhans produced experimentally. Lancet. 1943;241(6242):484–7.  https://doi.org/10.1016/S0140-6736(00)42072-6.CrossRefGoogle Scholar
  17. Eleazu CO, Eleazu KC, Chukwuma S, Essien UN. Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. J Diabetes Metab Disord. 2013;12:60e67.CrossRefGoogle Scholar
  18. Epand RM, Stafford AR, Tyers M, Nieboer E. Mechanism of action of diabetogenic zinc chelating agents. Model Syst Stud Mol Pharmacol. 1985;27(3):366–74.Google Scholar
  19. Etuk EU. Animals models for studying diabetes mellitus. Agric Biol J N Am. 2010;1:130–4.Google Scholar
  20. Gallagher AM, Flatt PR, Duffy G, Abdelwahab YHA. The effects of traditional antidiabetic plants on in vitro glucose diffusion. Nutr Res. 2003;23(3):413–24.CrossRefGoogle Scholar
  21. Ganda OP, Rossini AA, Like AA. Studies on streptozotocin diabetes. Diabetes. 1976;25:596–603.CrossRefGoogle Scholar
  22. Garcia-Sosa AT, Maran U, Hetenyi C. Molecular property filters describing pharmacokinetics and drug binding. Curr Med Chem. 2012;19:1646–62.PubMedCrossRefGoogle Scholar
  23. Gavin TP, Sloan RC, Lukosius EZ, et al. Duodenal-jejunal bypass surgery does not increase skeletal muscle insulin signal transduction or glucose disposal in Goto-Kakazaki type 2 diabetic rats. Obes Surg. 2011;21(2):231–7.  https://doi.org/10.1007/s11695-010-0304-y.CrossRefPubMedGoogle Scholar
  24. Gillespie EL, White CM, Kardas M, Lindberg M, Coleman CI. The impact of ACE inhibitors or angiotensin II type 1 receptor blockers on the development of new-onset type 2 diabetes. Diabetes Care. 2005;28(9):2261–5.PubMedCrossRefGoogle Scholar
  25. Glick M, Goldblum A. A novel energy-based stochastic method for positioning polar protons in protein structures from X-rays. Proteins. 2000;38:273–87.PubMedCrossRefGoogle Scholar
  26. Glick M, Rayan A, Goldblum A. A stochastic algorithm for global optimization and for best populations: a test case of side chains in proteins. Proc Natl Acad Sci. 2002;99:703–8.PubMedCrossRefGoogle Scholar
  27. Gondi M, Prasada RU. Ethanol extract of mango (Mangifera indica L.) peel inhibits α-amylase and α-glucosidase activities, and ameliorates diabetes related biochemical parameters in streptozotocin (STZ)-induced diabetic rats. J Food Sci Technol Mysore. 2015;52(12):7883–93.CrossRefGoogle Scholar
  28. Goto Y, Kakizaki M. The spontaneous diabetes rat: a model of non insulin dependent diabetes mellitus. Proc Jpn Acad. 1981;57:381–4.CrossRefGoogle Scholar
  29. Goyal SN, Reddy NM, Patil KR, Nakhate KT, Ojha S, Patil CR, Agrawal YO. Challenges and issues with streptozotocin-induced diabetes – a clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem Biol Interact. 2016;244:49–63.PubMedCrossRefGoogle Scholar
  30. Gustavsson C, Soga T, Wahlström E, Vesterlund M, Azimi A, et al. Sex-dependent hepatic transcripts and metabolites in the development of glucose intolerance and insulin resistance in zucker diabetic fatty rats. J Mol Endocrinol. 2011;47(2):129–43.PubMedCrossRefGoogle Scholar
  31. Hao M, Zhang S, Qiu J. Toward the prediction of FBPase inhibitory activity using chemoinformatic methods. Int J Mol Sci. 2012;13:7015–37.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Harbilas D, Martineau LC, Harris CS, Adeyiwolα-Spoor DCA, et al. Evaluation of the antidiabetic potential of selected medicinal plant extracts from the Canadian boreal forest used to treat symptoms of diabetes: part II. Can J Physiol Pharmacol. 2009;87:479–92.PubMedCrossRefGoogle Scholar
  33. Haskell BD, Flurkey K, Duffy TM, Sargent EE, Leiter EH. The diabetes- prone NZO/H1Lt strain. I. Immunophenotypic comparison to the related NZB/B1NJ and NZW/LacJ strains. Lab Investig. 2002;82:833–42.PubMedCrossRefGoogle Scholar
  34. Heikamp K, Bajorath J. Comparison of confirmed inactive and randomly selected compounds as negative training examples in support vector machine-based virtual screening. J Chem Inf Model. 2013;53:1595–601.PubMedCrossRefGoogle Scholar
  35. Holt AIG, Peveler RC. Association between antipsychotic drugs and diabetes. Diabetes Obes Metab. 2006;8:125–35.PubMedCrossRefGoogle Scholar
  36. Honda M, Hara Y. Inhibition of rat small intestinal sucrase and α-glucosidase activities by tea polyphenols. Biosci Biotechnol Biochem. 1993;57:123–4.PubMedCrossRefGoogle Scholar
  37. Huang S, Czech MP. The GLUT4 glucose transporter. Cell Metab. 2007;5(4):237–52.  https://doi.org/10.1016/j.cmet.2007.03.006.CrossRefPubMedGoogle Scholar
  38. Hussain F, Arif M, Sheikh MA. Prevalence of diabetic retinopathy in Faisalabad, Pakistan: a population based study. Turk J Med Sci. 2011;41(4):735–42.Google Scholar
  39. Ighodaro OM, Adeosun AM, Akinloye OE. Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina. 2017;53:365–74.PubMedCrossRefGoogle Scholar
  40. im Walde SS, Dohle C, Schott-Ohly P, Gleichmann H. Molecular target structures in alloxan-induced diabetes in mice. Life Sci. 2002;71:1681–94.PubMedCrossRefGoogle Scholar
  41. International Diabetes Federation. IDF diabetes atlas – 8th edition. Powerpoint presentation slide 3–4. 2017. Available: http://diabetesatlas.org/component/attachments/?task=download&id=271. Retrieved: 9th Aug 2018.
  42. JeBailey L, Wanono O, Niu W, Roessler J, Rudich A, Klip A. Ceramide- and oxidant-induced insulin resistance involve loss of insulin-dependent Rac-activation and actin remodeling in muscle cells. Diabetes. 2007;56(2):394–403.PubMedCrossRefGoogle Scholar
  43. Junod A, Lambert AE, Orci L, Pictet R, Gonet AE, et al. Studies of the diabetogenic action of streptozotocin. Proc Soc Exp Biol Med. 1967;126(1):201–5.PubMedCrossRefGoogle Scholar
  44. Kahn SE. The importance of the beta-cell in the pathogenesis of type 2 diabetes mellitus. Am J Med. 2000;108(6a Suppl):2S–8S.PubMedCrossRefGoogle Scholar
  45. Kameoka J, Tanaka T, Nojima Y, Schlossman SF, Morimoto C. Direct association of adenosine deaminase with a T cell activation antigen, CD26. Science. 1993;261(5120):466–9.PubMedCrossRefGoogle Scholar
  46. Karasawa H, Takaishi K, Kumagae Y. Obesity-induced diabetes in mouse strains treated with gold thioglucose: a novel animal model for studying β-cell dysfunction. Obesity (Silver Spring, Md). 2011;19(3):514–21.CrossRefGoogle Scholar
  47. Kennedy BP. Role of protein tyrosine phosphatase-1B in diabetes and obesity. Biomed Pharmacother. 1999;53(10):466–70.PubMedCrossRefGoogle Scholar
  48. Kerru N, Singh-Pillay A, Awolade P, Singh P. Current anti-diabetic agents and their molecular targets: a review. Eur J Med Chem. 2018;152:436–88.PubMedCrossRefGoogle Scholar
  49. Kim HR, Rho HW, Park BH, Park JW, Kim JS, Kim UH, et al. Role of Ca2+ in alloxan-induced pancreatic beta-cell damage. Biochim Biophys Acta. 1994;1227:87–91.PubMedCrossRefGoogle Scholar
  50. King AJ. The use of animal models in diabetes research. Br J Pharmacol. 2012;166:877–94.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Knouff C, Auwerx J. Peroxisome proliferator-activated receptor –Î3 calls for activation in moderation: lessons from genetics and pharmacology. Endocr Rev. 2004;25(6):899–918.PubMedCrossRefGoogle Scholar
  52. Ktorza A, Bernard C, Parent V, Penicaud L, Froguel P, et al. Are animal models of diabetes relevant to the study of the genetics of noninsulin-dependent diabetes in humans? Diabetes Metab. 1997;23(Suppl 2):38–46.PubMedGoogle Scholar
  53. Kwon YI, Vattem DV, Shetty K. Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pac J Clin Nutr. 2006;15:107–18.PubMedGoogle Scholar
  54. Lenzen S. The mechanisms of alloxan-and streptozotocin-induced diabetes. Diabetologia. 2008;51:216e226.CrossRefGoogle Scholar
  55. Lusci A, Pollastri G, Baldi P. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model. 2013;53:1563–75.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Malaisse WJ, Malaisse-Lagae F, Sener A, Pipeleers DG. Determinants of the selective toxicity of alloxan to the pancreatic β cell. Proc Natl Acad Sci U S A. 1982;79:927–30.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Malhotra A, Penpargkul S, Fein FS, Sonnenblick EH, Scheuer J. The effect of streptozotocin induced diabetes in rats on cardiac contractile proteins. Circ Res. 1981;49(6):1243–50.PubMedCrossRefGoogle Scholar
  58. Manikandan R, Anand AV, Kumar S, Pushpa. Phytochemical and in vitro antidiabetic activity of Psidium Guajava leaves. Pharm J. 2016;8(4):392–4.Google Scholar
  59. Masiello P. Animal models of type11 diabetes with reduced pancreatic β-cell mass. Int J Biochem Cell Biol. 2006;38:873–93.PubMedCrossRefGoogle Scholar
  60. Mathews CE, Leiter EH. Constitutive differences in antioxidant defense status distinguish alloxan-resistant and alloxan-susceptible mice. Free Radic Biol Med. 1999;27:449–55.PubMedCrossRefGoogle Scholar
  61. McIntosh CHS, Pederson RA. Non-insulin dependent animal models of diabetes mellitus. In: McNeil JH, editor. Experimental models of diabetes. Boca Raton: CRC Press LLC; 1999. p. 337–98.Google Scholar
  62. McNeil JH. Experimental models of diabetes. Boca Raton: CRC Press LLC; 1999.Google Scholar
  63. Mendez JD, Ramos HG. Animal models in diabetes research. Arch Med Res. 1994;25(4):367–75.PubMedGoogle Scholar
  64. Miralles F, Portha B. Early development of beta cells is impaired in the GK rat model of type 2 diabetes. Diabetes. 2001;50:S84–8.PubMedCrossRefGoogle Scholar
  65. Momose K, Nunomiya S, Nakata M, Yada T, Kikuchi M, et al. Immunohistochemical and electron-microscopic observation of β-cells in pancreatic islets of spontaneously diabetic Goto-Kakizaki rats. Med Mol Morphol. 2006;39(3):146–53.PubMedCrossRefGoogle Scholar
  66. Mordes JP, Guberski DL, Leif JH, Woda BA, Flanagan JF, et al. LEW.1WR1 rats develop autoimmune diabetes spontaneously and in response to environmental perturbation. Diabetes. 2005;54(9):2727–33.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.CrossRefPubMedGoogle Scholar
  68. Motyl K, McCabe LR. Streptozotocin, type I diabetes severity and bone. Biol Proced Online. 2009;11:296–315.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Nerup J, Mandrup-Poulsen T, Helqvist S, Andersen HU, Pociot F, Reimers JI, et al. On the pathogenesis of IDDM. Diabetologia. 1994;37(Suppl. 2):S82–9.PubMedCrossRefGoogle Scholar
  70. Newcomer JW. Second-generation (atypical) antipsychotics and metabolic effects: a comprehensive literature review. CNS Drugs. 2005;19(Suppl 1):1–93.PubMedGoogle Scholar
  71. Nuss JM, Wagman AS. Recent advances in therapeutic approaches to type2 diabetes. Annu Rep Med Chem. 2000;35:211–20.Google Scholar
  72. Ozturk Y, Altan VM, Yildizoğlu-Ari N. Effects of experimental diabetes and insulin on smooth muscle functions. Pharmacol Rev. 1999;48:69–112.Google Scholar
  73. Parekh PI, Petro AE, Tiller JM, Feinglos MN, Surwit RS. Reversal of diet-induced obesity and diabetes in C57BL/6J mice. Metabolism. 1998;47(9):1089–96.PubMedCrossRefGoogle Scholar
  74. Pechhold K, Patterson NB, Blum C, Fleischacker CL, Boehm BO, Harlan DM. Low dose streptozotocin-induced diabetes in rat insulin promoter-mCD80-transgenic mice is T cell autoantigen-specific and CD28 dependent. J Immunol. 2001;166:2531–9.PubMedCrossRefGoogle Scholar
  75. Rayan A, Noy E, Chema D, Levitzki A, Goldblum A. Stochastic algorithm for kinase homology model construction. Curr Med Chem. 2004;11:675–92.PubMedCrossRefGoogle Scholar
  76. Rayan A, Falah M, Raiyn J, Mawassi H, Raiyn N. Assessing drugs for their cardio-toxicity. Lett Drug Des Discov. 2010;7:409–14.CrossRefGoogle Scholar
  77. Rayan A, Falah M, Raiyn J, Da’adoosh B, Kadan S, Zaid H, Goldblum A. Indexing molecules for their hERG liability. Eur J Med Chem. 2013;65:304–14.PubMedCrossRefGoogle Scholar
  78. Reddi AS, Camerini-Davalos RA. Hereditary diabetes in the KK mouse: an overview. Adv Exp Med Biol. 1988;246:7–15.PubMedCrossRefGoogle Scholar
  79. Rees DA, Alcolado JC. Animal models of diabetes mellitus. Diabet Med. 2005;22:359–70.PubMedCrossRefGoogle Scholar
  80. Rodrigues R. A comprehensive review: the use of animal models in diabetes research. J Anal Pharm Res. 2016;3(5):1–5.Google Scholar
  81. Saidu Y, Muhammad SA, Abbas AY, Onu A, Tsado IM, Muhammad L. In vitro screening for protein tyrosine phosphatase 1B and dipeptidyl peptidase IV inhibitors from selected Nigerian medicinal plants. J Intercult Ethnopharmacol. 2017;6(2):154–7.  https://doi.org/10.5455/jice.20161219011346.CrossRefPubMedGoogle Scholar
  82. Sasaki S, et al. Intra peritoneally implanted artificial pancrease with trans karyotic beta-cells on micro carrier beads in a diffusion chamber improve hyperglycemia after 90%pancreatectomy in rats. In Vivo. 2000;14:535–41.PubMedGoogle Scholar
  83. Sattar NA, Hussain F, Iqbal T, Sheikh MA. Determination of in vitro antidiabetic effects of Zingiber officinale Roscoe. Braz J Pharm Sci. 2012;48(4):601–7.CrossRefGoogle Scholar
  84. Scheen AJ, De Hert M. Risque de diabète sucré sous antipsychotiques atypiques. Med Hyg (Geneve). 2004;62:1591–6.Google Scholar
  85. Scheen AJ, De Hert M. Abnormal glucose metabolism in patients treated with antipsychotics. Diabetes Metab. 2007;33:169–75.PubMedCrossRefGoogle Scholar
  86. Schuller A, Schneider G. Identification of hits and lead structure candidates with limited resources by adaptive optimization. J Chem Inf Model. 2008;48:1473–91.PubMedCrossRefGoogle Scholar
  87. Selim SA, Selim AO. Effect of streptozotocin-induced diabetes mellitus on the. Egypt J Histol. 2013;36:103–13.CrossRefGoogle Scholar
  88. Shafrir E. Diabetes in animals: contribution to the understanding of diabetes by study of its etiopathology in animal models. In: Porte D, Sherwin RS, Baron A, editors. Diabetes mellitus. New York: McGraw-Hill; 2003. p. 231–55.Google Scholar
  89. Shahaf N, Pappalardo M, Basile L, Guccione S, Rayan A. How to choose the suitable template for homology modelling of GPCRs: 5-HT7 receptor as a test case. Mol Inform. 2016;35:414–23.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Shori AB. Screening of antidiabetic and antioxidant activities of medicinal plants. J Integr Med. 2015;13(5):297–305.PubMedCrossRefGoogle Scholar
  91. Srinivasan K, Ramarao P. Animal models in type 2 diabetes research an overview. Indian J Med Res. 2007;125:451–72.PubMedGoogle Scholar
  92. Sylow L, Kleinert M, Pehmøller C, Prats C, Chiu TT, Klip A, Richter EA, Jensen TE. Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance. Cell Signal. 2014;26(2):323–31.PubMedCrossRefGoogle Scholar
  93. Szkudelski T. The mechanism of alloxan and streptozotocin action in β cells of the rat pancreas. Physiol Res. 2001;50:537–46.PubMedPubMedCentralGoogle Scholar
  94. Thatte U. Still in search of herbal medicine. Indian J Pharm. 2009;41:1–3.CrossRefGoogle Scholar
  95. Tripathi V, Verma J. Different models used to induce diabetes a comprehensive review. Int J Pharm Pharm Sci. 2014;6:29–32.Google Scholar
  96. Umezawa K, Kawakami M, Watanabe T. Molecular design and biological activities of protein tyrosine phosphatase inhibitors. Pharmacol Ther. 2003;99:15–24.PubMedCrossRefGoogle Scholar
  97. Varmaan V, Rani Y, Avupati V. In silico based virtual screening for bioactive PPAR-y agonists. Indo Am J Pharm Sci. 2016;3(10):1237–75.Google Scholar
  98. Vavra JJ, Deboer C, Dietz A, Hanka LJ, Sokolski WT. Streptozotocin, a new antibacterial antibiotic. Antibiot Annu. 1959;7:230–5.PubMedGoogle Scholar
  99. Vogel HG, Vogel WH. Drug discovery and evaluation; pharmacological assays. Heidelberg/Berlin: Springer; 1997.CrossRefGoogle Scholar
  100. Wang Q, Khayata Z, Kishib K, Ebinab Y, Klipa A. GLUT4 translocation by insulin in intact muscle cells: detection by a fast and quantitative assay. FEBS Lett. 1998;427(2):193–7.PubMedCrossRefGoogle Scholar
  101. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–53.PubMedPubMedCentralCrossRefGoogle Scholar
  102. WHO. Global Health Estimates (GHE), 2000–2015 estimates. Geneva: World Health Organization; 2017. Available: http://www.who.int/mediacentre/factsheets/fs312/en/. Accessed on 26 July 2018.Google Scholar
  103. Winzell MS, Ahrén B. The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes. 2004;53(Suppl 3):S215–9.PubMedCrossRefGoogle Scholar
  104. Wu KK, Huan Y. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol. 2008;5:47.. 41–45.47. 14PubMedGoogle Scholar
  105. Wu J, Yan L. Streptozotocin-induced type 1 diabetes in rodents as a model for studying.pdf>. Diabetes, Metab Syndr Obes Targets Ther Diabetes, Metab Syndr Obes: Targets Ther. 2015;8:181–8.Google Scholar
  106. Yang H, Fan S, Song D, Wang Z, Ma S, Li S, Li X, Xu M, Xu M, Wang X. Long-term streptozotocin-induced diabetes in rats leads to severe damage of brain blood vessels and neurons via enhanced oxidative stress. Mol Med Rep. 2013;7(2):431–40.PubMedCrossRefGoogle Scholar
  107. Zaid H, Talior-Volodarsky I, Antonescu C, Liu Z, Klip A. GAPDH binds GLUT4 reciprocally to hexokinase-II and regulates glucose transport activity. Biochem J. 2009;419(2):475–84.PubMedCrossRefGoogle Scholar
  108. Zatsepin M, Mattes A, Rupp S, Finkelmeier D, Basu A, Burger-Kentischer A, Goldblum A. Computational discovery and experimental confirmation of TLR9 receptor antagonist leads. J Chem Inf Model. 2016;56:1835–46.PubMedCrossRefGoogle Scholar
  109. Zeidan M, Rayan M, Zeidan N, Falah M, Rayan A. Indexing natural products for their potential anti-diabetic activity: filtering and mapping discriminative physicochemical properties. Molecules. 2017;22(9):1563.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Chukwuebuka Egbuna
    • 1
    Email author
  • Santwana Palai
    • 2
  • Israel Ehizuelen Ebhohimen
    • 3
  • Andrew G. Mtewa
    • 4
  • Jonathan C. Ifemeje
    • 5
  • Genevieve D. Tupas
    • 6
  • Toskë L. Kryeziu
    • 7
  1. 1.Department of BiochemistryChukwuemeka Odumegwu Ojukwu UniversityUliNigeria
  2. 2.Department of Veterinary Pharmacology and ToxicologyOrissa University of Agriculture and TechnologyBhubaneswarIndia
  3. 3.Department of Chemical Sciences (Biochemistry)Samuel Adegboyega UniversityOgwa, Edo StateNigeria
  4. 4.Department of Chemistry, Institute of TechnologyMalawi University of Science and TechnologyThyoloMalawi
  5. 5.Department of Biochemistry, Faculty of Natural SciencesChukwuemeka Odumegwu Ojukwu UniversityUliNigeria
  6. 6.College of Medicine, Department of PharmacologyDavao Medical School Foundation, Inc.Davao CityPhilippines
  7. 7.Department of Pharmacy, Faculty of MedicineUniversity of Prishtina “Hasan Prishtina”PrishtinaKosovo

Personalised recommendations