Advertisement

PET Imaging

Chapter

Abstract

Positron emission tomography (PET) is a main molecular imaging modality, which is used for quantitative imaging of biological processes at cellular and molecular levels in humans. This chapter provides a brief introduction about imaging principles of PET, PET/CT, and PET/MRI. Meanwhile some common radionuclides for PET imaging are also discussed, especially in PET imaging for inflammation.

Keywords

Hybrid imaging PET 18F-FDG Translocator protein Inflammation imaging 

References

  1. 1.
    Ibrahim N, Kusmirek J, Struck AF, et al. The sensitivity and specificity of F-DOPA PET in a movement disorder clinic. Am J Nucl Med Mol Imaging. 2016;6(1):102–9.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Zhu Y, Du R, Zhu Y, et al. PET mapping of neurofunctional changes in a post-traumatic stress disorder model. J Nucl Med. 2016;57(9):1474–7.CrossRefGoogle Scholar
  3. 3.
    Li CY, Klohr S, Sadick H, et al. Effect of time-of-flight technique on the diagnostic performance of 18F-FDG PET/CT for assessment of lymph node metastases in head and neck squamous cell carcinoma. J Nucl Med Technol. 2014;42(3):181–7.CrossRefGoogle Scholar
  4. 4.
    Surti S, Karp JS. Application of a generalized scan statistic model to evaluate TOF PET images. IEEE Trans Nucl Sci. 2011;58(1):99–104.CrossRefGoogle Scholar
  5. 5.
    Sacconi B, Raad RA, Lee J, et al. Concurrent functional and metabolic assessment of brain tumors using hybrid PET/MR imaging. J Neuro-Oncol. 2016;127(2):287–93.CrossRefGoogle Scholar
  6. 6.
    Nabavizadeh SA, Nasrallah I, Dubroff J. Emerging PET/MRI applications in neuroradiology and neuroscience. Clin Transl Imaging. 2017;5(2):121–33.CrossRefGoogle Scholar
  7. 7.
    Marner L, Henriksen OM, Lundemann M, et al. Clinical PET/MRI in neurooncology: opportunities and challenges from a single-institution perspective. Clin Transl Imaging. 2017;5(2):135–49.CrossRefGoogle Scholar
  8. 8.
    Kang K, Lim I, Roh JK. Positron emission tomographic findings in a tuberculous brain abscess. Ann Nucl Med. 2007;21(5):303–6.CrossRefGoogle Scholar
  9. 9.
    D’Souza MM, Sharma R, Jaimini A, et al. Metabolic assessment of intracranial tuberculomas using 11C-methionine and 18F-FDG PET/CT. Nucl Med Commun. 2012;33(4):408–14.CrossRefGoogle Scholar
  10. 10.
    Tripathi M, Yadav S, Kumar V, et al. HIV encephalitis with subcortical tau deposition: imaging pathology in vivo using F-18 THK 5117. Eur J Nucl Med Mol Imaging. 2016;43(13):2456–7.CrossRefGoogle Scholar
  11. 11.
    Rangan K, Ravina M, Yadav N, et al. 18F-FDG PET/CT of tuberculosis meningitis and carotid pseudoaneurysm. Clin Nucl Med. 2017;42(6):e304–5.CrossRefGoogle Scholar
  12. 12.
    Newey CR, Sarwal A, Hantus S. [(18)F]-Fluoro-Deoxy-Glucose Positron Emission Tomography Scan Should Be Obtained Early in Cases of Autoimmune Encephalitis. Autoimmune Dis. 2016;2016:9450452.CrossRefGoogle Scholar
  13. 13.
    Benavides J, Fage D, Carter C, et al. Peripheral type benzodiazepine binding sites are a sensitive indirect index of neuronal damage.Brain Res. 1987; 421(1-2):167–72.CrossRefGoogle Scholar
  14. 14.
    Benavides J, Capdeville C, Dauphin F, et al. The quantification of brain lesions with an omega 3 site ligand: a critical analysis of animal models of cerebral ischaemia and neurodegeneration. Brain Res. 1990;522(2):275–89.Google Scholar
  15. 15.
    Papadopoulos V, Baraldi M, Guilarte TR, et al. Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci. 2006;27(8):402–9.CrossRefGoogle Scholar
  16. 16.
    Doble A, Malgouris C, Daniel M, et al. Labelling of peripheral-type benzodiazepine binding sites in human brain with [3H]PK 11195: anatomical and subcellular distribution. Brain Res Bull. 1987; 18(1):49–61. CrossRefGoogle Scholar
  17. 17.
    Schoemaker H, Morelli M, Deshmukh P, et al. [3H]Ro5-4864 benzodiazepine binding in the kainate lesioned striatum and Huntington’s diseased basal ganglia. Brain Res. 1982;248(2):396-401.CrossRefGoogle Scholar
  18. 18.
    Stephenson DT, Schober DA, Smalstig EB, et al. Peripheral benzodiazepine receptors are colocalized with activated microglia following transient global forebrain ischemia in the rat. J Neurosci. 1995;15(7 Pt 2):5263–74.CrossRefGoogle Scholar
  19. 19.
    Vowinckel E, Reutens D, Becher B, et al. PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neurosci Res. 1997;50(2):345–53.CrossRefGoogle Scholar
  20. 20.
    Cosenza-Nashat M, Zhao ML, Suh HS, et al. Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol. 2009;35(3):306–28.CrossRefGoogle Scholar
  21. 21.
    Maeda J, Higuchi M, Inaji M, et al. Phase-dependent roles of reactive microglia and astrocytes in nervous system injury as delineated by imaging of peripheral benzodiazepine receptor. Brain Res. 2007;1157:100–11.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jie Lu
    • 1
  1. 1.Department of Radiology and Nuclear MedicineXuanwu Hospital, Capital Medical UniversityBeijingChina

Personalised recommendations