Advertisement

Multidetector Computed Tomography

  • Yan Song
Chapter

Abstract

Computed tomography is one of the most commonly used imaging equipment for CNS diseases. In the last decades, the development of multidetector CT can effectively reduce the beam hardening artifact and metallic artifact. Novels of CT techniques would contribute to the achievements of neuroradiology.

Keywords

Computed tomography CT angiography CT perfusion imaging Dual-energy CT 

References

  1. 1.
    Sam K, Birbeck GL, Oostveen RJ, et al. Alternative oblique head CT scanning technique reduces bone artifact and improves interpretability of brainstem anatomy. Neurol Int. 2010;2(1):e14.CrossRefGoogle Scholar
  2. 2.
    Gunness VR, Hana A, Berthold C, et al. Posterior fossa mass in immunosuppressed patient. Bull Soc Sci Med Grand Duche Luxemb. 2014;3:25–30.Google Scholar
  3. 3.
    Hou D, Qu H, Zhang X, et al. Multi-slice computed tomography 5-minute delayed scan is superior to immediate scan after contrast media application in characterization of intracranial tuberculosis. Med Sci Monit. 2014;20:1556–62.CrossRefGoogle Scholar
  4. 4.
    Yahyavi-Firouz-Abadi N, Wynn BL, Rybicki FJ, et al. Steroid-responsive large vessel vasculitis: application of whole-brain 320-detector row dynamic volume CT angiography and perfusion. AJNR Am J Neuroradiol. 2009;30(30):1409–11.CrossRefGoogle Scholar
  5. 5.
    Siebert E, Bohner G, Dewey M, et al. 320-slice CT neuroimaging: initial clinical experience and image quality evaluation. Br J Radiol. 2009;82(979):561–70.CrossRefGoogle Scholar
  6. 6.
    Donahue J, Wintermark M. Perfusion CT and acute stroke imaging: foundations, applications, and literature review. J Neuroradiol. 2015;42(1):21–9.CrossRefGoogle Scholar
  7. 7.
    Yeung TPC, Bauman G, Yartsev S, et al. Dynamic perfusion CT in brain tumors. Eur J Radiol. 2015;84(12):2386–92.CrossRefGoogle Scholar
  8. 8.
    Kamble RB, Jayakumar PN, Shivashankar R. Role of dynamic CT perfusion study in evaluating various intracranial space-occupying lesions. Indian J Radiol Imaging. 2015;25(2):162–6.CrossRefGoogle Scholar
  9. 9.
    Kamble RB, Jp N, Shivashankar R. CT perfusion dynamics of intracranial tuberculomas. J Clin Diagn Res. 2015;9(5):TC01–5.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Hiwatashi A, Togao O, Yamashita K, et al. Evaluation of glioblastomas and lymphomas with whole-brain CT perfusion: comparison between a delay-invariant singular-value decomposition algorithm and a Patlak plot. J Neuroradiol. 2016;43(4):266–72.CrossRefGoogle Scholar
  11. 11.
    Lin XZ, Miao F, Li JY, et al. High-definition CT gemstone spectral imaging of the brain: initial results of selecting optimal monochromatic image for beam-hardening artifacts and image noise reduction. J Comput Assist Tomogr. 2011;35(2):294–7.CrossRefGoogle Scholar
  12. 12.
    Postma AA, Hofman PA, Stadler AA, et al. Dual-energy CT of the brain and intracranial vessels. AJR Am J Roentgenol. 2012;199(5 Suppl):26–33.CrossRefGoogle Scholar
  13. 13.
    Dolati P, Eichberg D, Wong JH, et al. The utility of dual-energy computed tomographic angiography for the evaluation of brain aneurysms after surgical clipping: a prospective study. World Neurosurg. 2015;84(5):1362–71.CrossRefGoogle Scholar
  14. 14.
    Machida H, Tanaka I, Fukui R, et al. Dual-energy spectral ct: various clinical vascular applications. Radiographics. 2016;36(4):1215–32.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yan Song
    • 1
  1. 1.Department of RadiologyBeijing HospitalBeijingChina

Personalised recommendations