Advertisement

Molecular and Biotechnological Tools in Developing Abiotic Stress Tolerance in Wheat

  • Neerja Srivastava
Chapter

Abstract

Agricultural systems are affected by various abiotic stresses which pose restrictions to the yield and quality of wheat crop. A single crop can be challenged simultaneously by many abiotic stresses. A major target of plant breeding programs globally is the improvement of tolerance to abiotic stresses. The complex nature of abiotic stress tolerance traits and the difficulty in dissecting them into manageable genetic components amenable to molecular breeding are the major challenges. Advances in molecular biology and genomics have had a large impact on the speed of identification and characterization of genes and genetic regions associated with quantitative and qualitative traits in crop breeding programs. To reconstruct the whole cascade of cellular events leading to rapid responses and adaptation to the various abiotic stimuli, researchers have to integrate the various omics approaches. To increase knowledge on the effects of gene expression and to understand whole plant phenotype under stress, a very focused approach combining molecular, physiological, and metabolic aspects of plant stress tolerance is required. The selection of the appropriate promoter or transcription factor to be used for transformation can be done by better understanding of the underlying physiological processes in response to different abiotic stresses. Additionally, genetic and genomic analysis can be utilized to identify DNA molecular markers associated with stress resistance that can facilitate breeding strategies for crop improvement in wheat. In the case of abiotic stress tolerance, this approach is particularly useful when target characters are controlled by several genes. To map different QTLs contributing to a given agronomical trait and to identify linked molecular markers, the omics approaches could be combined with the potential which will open the possibility to transfer simultaneously several QTLs and to pyramid QTLs for several agronomical traits in one improved cultivar.

Keywords

Abiotic stress Triticum aestivum QTL MAS 

References

  1. Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755PubMedPubMedCentralCrossRefGoogle Scholar
  2. Able JA, Langridge P, Milligan AS (2007) Capturing diversity in the cereals: many options but little promiscuity. Trends Plant Sci 12:71–79PubMedCrossRefGoogle Scholar
  3. Ahloowalia BS, Maluszynski M (2001) Induced mutations – a new paradigm in plant breeding. Euphytica 118:167–173CrossRefGoogle Scholar
  4. Ahmad R, Shaikh AS (2003) Common weeds of wheat and their control. Pak J Water Res 7:73Google Scholar
  5. Ahsan N, Renaut J, Komatsu S (2009) Recent developments in the application of proteomics to the analysis of plant responses to heavy metal. Proteomics 9:2602–2621.  https://doi.org/10.1002/pmic.200800935 CrossRefPubMedGoogle Scholar
  6. Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857.  https://doi.org/10.1105/tpc.9.6.841 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Akpinar BA, Lucas S, Budak H (2017) A large-scale chromosome-specific SNP discovery guideline. Funct Integr Genomics 7:97–105CrossRefGoogle Scholar
  8. Ali Z, Khan AS, Azhar FM, Khan IA, Khan AA (2012) The response of genetically distinct bread wheat genotypes to salinity stress. Plant Breed 131:707–715CrossRefGoogle Scholar
  9. Amin AY, Diab AA (2013) QTL mapping of wheat (Triticum aestivum l.) in response to salt stress. Int J Biotechnol Res 3:47–60Google Scholar
  10. Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot (Lond) 89:925–940CrossRefGoogle Scholar
  11. Arbona V, Argamasilla R, Gómez-Cadenas A (2010) Common and divergent physiological, hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water and salt stress. J Plant Physiol 167:1342–1350PubMedCrossRefGoogle Scholar
  12. Arbona V, Manzi M, Ollas CD, Gonez-Cadenao A (2013) Metabolites as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci 14:4885–4911.  https://doi.org/10.3390/ijms14034885 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Ashraf M, Foolad MR (2013) Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Plant Breed 132:10–20CrossRefGoogle Scholar
  14. Bahieldin A, Mahfouz HT, Eissa HF, Saleh OM, Ramadan AM, Ahmed IA, Madkour MA (2005) Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiol Plant 123:421–427CrossRefGoogle Scholar
  15. Bahrman N, Negroni L, Jaminon O, Le Gouis J (2004) Wheat leaf proteome analysis using sequence data of proteins separated by two-dimensional electrophoresis. Proteomics 4:2672–2684PubMedCrossRefGoogle Scholar
  16. Bakhsh A, Hussain T (2015) Engineering crop plants against abiotic stress: current achievements and prospects. Emir J Food Agric 27:24–39.  https://doi.org/10.9755/ejfa.v27i1.17980 CrossRefGoogle Scholar
  17. Bakhsh A, Rao AQ, Shahid AA, Husnain T, Riazuddin S (2009) Insect resistance andrisk assessment studies in advance lines of Bt cotton harboring Cry1Ac and Cry2A genes. Am Eurasian J Agric Environ Sci 6:1–11Google Scholar
  18. Barbier-Brygoo H, Gaymard F, Rolland N, Joyard J (2001) Strategies to identify transport systems in plants. Trends Plant Sci 6:577–585PubMedCrossRefGoogle Scholar
  19. Barker AV, Pilbeam DJ (2007) Hand book of plant nutrition. Taylor and Francis, Boca RatonGoogle Scholar
  20. Bartels D, Souer E (2004) Molecular responses of higher plants to dehydration. In: Hirt H, Shinozaki H (eds) Plant responses to abiotic stress. Springer, Berlin, pp 9–38Google Scholar
  21. Baulcombe DC (1999) Fast forward genetics based on virus induced gene silencing. Curr Opin Plant Biol 2:109–113PubMedCrossRefGoogle Scholar
  22. Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bhalla PL, Ottenhof HH, Singh MB (2006) Wheat transformation— an update of recent progress. Euphytica 149:353–366CrossRefGoogle Scholar
  24. Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424CrossRefGoogle Scholar
  25. Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273.  https://doi.org/10.3389/fpls.2013.00273 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot (Lond) 91:179–194CrossRefGoogle Scholar
  27. Blumenthal CS, Batey IL, Bekes F, Wrigley CW, Barlow EWR (1991) Seasonal changes in wheat grain quality associated with high temperature during grain filling. Aust J Agric Res 42: 21–30.Google Scholar
  28. Borsani O, Valpuesta V, Botella MA (2003) Developing salt tolerant plants in a new century: a molecular biology approach. Plant Cell Tissue Organ Cult 73:101–115CrossRefGoogle Scholar
  29. Boscaiu M, Lull C, Lidon A, Bautista I, Donat P, Mayoral O, Vicente O (2008) Plant responses to abiotic stress in their natural habitats. Bull UASVM Hortic 65:1843–5254Google Scholar
  30. Briat JF, Curie C, Gaymard F (2007) Iron utilization and metabolism in plants. Curr Opin Plant Biol 10:276–282.  https://doi.org/10.1016/j.pbi.2007.04.003 CrossRefPubMedGoogle Scholar
  31. Brini F, Hanin M, Lumbreras V, Irar S, Pages M, Masmoudi K (2007) Functional characterization of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durumwheat (Triticum durum Desf) varieties with marked differences in salt and drought tolerance. Plant Sci 172:20–28CrossRefGoogle Scholar
  32. Bryan GJ, Stephenson P, Collins A, Kirby J, Smith JB, Gale MD (1999) Low levels of DNA sequence variationamong adapted genotypes of hexaploid wheat. Theor Appl Genet 99:192–198CrossRefGoogle Scholar
  33. Budak H, Shearman RC, Parmaksiz I, Gaussoin RE, Riordan TP, Dweikat I (2004) Molecular characterization of buffalograss germplasm using sequence-related amplified polymorphism markers. Theor Appl Genet 108:328–334PubMedCrossRefGoogle Scholar
  34. Budak H, Shearman RC, Gulsen O, Dweikat I (2005) Understanding ploidy complex and geographic origin of the Buchloe dactyloides genome using cytoplasmic and nuclear marker systems. Theor Appl Genet 111:1545–1552PubMedCrossRefGoogle Scholar
  35. Cai H, Tian S, Liu C, Dong H (2011) Identification of a MYB3R gene involved in drought, salt and cold stress in wheat (Triticum aestivum L.). Gene 485(2):146–152PubMedCrossRefGoogle Scholar
  36. Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshal DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40:143–150PubMedCrossRefGoogle Scholar
  37. Castillo A, Budak H, Varshney RK, Dorado G, Graner A, Hernandez P (2008) Transferability and polymorphism of barley EST-SSR markers used for phylogenetic analysis in Hordeum chilense. BMC Plant Biol 8:97.  https://doi.org/10.1186/1471-2229-8-97 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Cattivelli L, Baldi P, Crosatti C, Fonzo ND, Faccioli P, Grossi M, Mastrangelo AM, Pecchioni N, Stanca AM (2002) Chromosome regions and stress-related sequences involved in resistance toabiotic stress in Triticeae. Plant Mol Biol 48:649–665CrossRefGoogle Scholar
  39. Cellier F, Conejero G, Breitler JC, Casse F (1998) Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive sunflower lines (Helianthus annuus L.): accumulation of dehydrin transcripts correlates with tolerance. Plant Physiol 116:319–328PubMedPubMedCentralCrossRefGoogle Scholar
  40. Chatterjee S, Srivastava S, Khalid A, Singh N, Sangwan RS, Sidhu OP, Roy R, Khetrapal CL, Tuli R (2010) Comprehensive metabolic fingerprinting of Withania somnifera leaf and root extracts. Phytochemistry 71:1085–1094PubMedCrossRefGoogle Scholar
  41. Chen SY, Xia GM, Chen HM (2000) Studies on NaCl tolerant among somatic hybrid lines of wheat and Agropyronelongatum with their parents. Acta Botan Boreali-Occiden Sin 20:327–332Google Scholar
  42. Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta 1819:120–128PubMedCrossRefGoogle Scholar
  43. Chen X, Wang Y, Lv B, Li J, Luo L, Lu S, Fl M (2014) The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant Cell Physiol 55:604–619.  https://doi.org/10.1093/pcp/pct204 CrossRefPubMedGoogle Scholar
  44. Chong-qing W, Tao W, Ping M, Zi-chao L, Ling Y (2013) Quantitative trait loci for mercury tolerance in rice seedlings. Rice Sci 20:238–242.  https://doi.org/10.1016/S1672-6308(13)60124-9 CrossRefGoogle Scholar
  45. Close TJ, Choi DW, Venegas M, Salvi S, Tuberosa R, Ryabushkina N, Turuspekov Y, Nevo E (2000) Allelic variation in wild and cultivated barley at the Dhn4 locus, which encodes a major drought-induced and seed protein, DHN 4. In: 8th International Barley genetics symposium, Adelaide, SA, AustraliaGoogle Scholar
  46. Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wise RP (2004) A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol 134:960–968PubMedPubMedCentralCrossRefGoogle Scholar
  47. Colmer TD, Munns R, Flowers TJ (2005) Improving salt tolerance of wheat and barley: future prospects. Aust J Exp Agric 45:1425–1443CrossRefGoogle Scholar
  48. Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078PubMedCrossRefGoogle Scholar
  49. Cooper LD, Marquez-Cedillo L, Singh J, Sturbaum AK, Zhang S, Edwards V, Bregitzer P (2004) Mapping Ds insertions in barley using a sequence-based approach. Mol Gen Genomics 272:181–193CrossRefGoogle Scholar
  50. Dai SH, Zheng P, Marmey P, Zhang SP, Tian WZ, Chen SY, Beachy RN, Fauquet C (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breed 7:25–33CrossRefGoogle Scholar
  51. DalCorso G, Manara A, Furini A (2013a) An overview of heavy metal challenge in plants: from roots to shoots. Metallomics 5:1117–1132.  https://doi.org/10.1039/c3mt00038a CrossRefPubMedGoogle Scholar
  52. Dalcorso G, Fasani E, Furini A (2013b) Recent advances in the analysis of metal hyperaccumulation and hypertolerance in plants using proteomics. Front Plant Sci 4:280.  https://doi.org/10.3389/fpls.2013.00280 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Daryanto S, Wang L, Jacinthe PA (2016) Global synthesis of drought effects on maize and wheat production. PLoS One 11:e0156362.  https://doi.org/10.1371/journal.pone.0156362 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transport in durum wheat. Plant Physiol 137:807–818PubMedPubMedCentralCrossRefGoogle Scholar
  55. De Boeck HJ, Bassin S, Verlinden M, Zeiter M, Hiltbrunner E (2015) Simulated heat waves affected alpine grassland only in combination with drought. New Phytol 209:531–541.  https://doi.org/10.1111/nph.13601 CrossRefPubMedGoogle Scholar
  56. Delessert C, Kazan K, Wilson I, Van Der Stracten D, Manners J, Dennis E, Dolferus R (2005) The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J 43:745–757.  https://doi.org/10.1111/j.1365-313X.2005.02488.x CrossRefPubMedGoogle Scholar
  57. Délye C, Zhang X-Q, Michel S, Matéjicek A, Powles SB (2005) Molecular bases for sensitivity to acetyl-coenzyme A carboxylase inhibitors in black-grass. Plant Physiol 137:794–806 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Devaiah BN, Karthikeyan AS, Raghothama KG (2007) WRKY75 transcription factor is a modulator of phosphate acquisition and root development in arabidopsis. Plant Physiol 143:1789–1801PubMedPubMedCentralCrossRefGoogle Scholar
  59. Devos KM, Gale MD (2000) Genome relationships: the grass model in current research. Plant Cell 12:637–646PubMedPubMedCentralCrossRefGoogle Scholar
  60. Dita MA, Rispai N, Prats E, Rubiales D, Singh KB (2006) Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica 147:1–24CrossRefGoogle Scholar
  61. Djoukeng JD, Arbona V, Argamasilla R, Gomez-Cadenas A (2008) Flavonoid profiling in leaves of citrus genotypes under different environmental situations. J Agric Food Chem 56:11087–11097PubMedCrossRefGoogle Scholar
  62. Draper J, Davey MR, Freeman JP, Cocking EC, Cox BJ (1982) Ti plasmid homologous sequences present in tissues from Agrobacterium plasmid transformed petunia protoplasts. Plant Cell Physiol 23:451–458CrossRefGoogle Scholar
  63. Dreesen FE, De Boeck HJ, Janssens IA, Nijs I (2012) Summer heat and drought extremes trigger unexpected changes in productivity of a temperate annual/biannual plant community. Environ Exp Bot 79:21–30.  https://doi.org/10.1016/j.envexpbot.2012.01.005 CrossRefGoogle Scholar
  64. Dubcovsky J (2004) Marker-assisted selection in public breeding programs: the wheat experience. Crop Sci 44:1895–1898CrossRefGoogle Scholar
  65. Dubcovsky J, Maria GS, Epstein E, Luo MC, Dvorak J (1996) Mapping of the K+/Na+ discriminationlocus Kna1 in wheat. Theor Appl Genet 92:448–454CrossRefGoogle Scholar
  66. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581PubMedCrossRefGoogle Scholar
  67. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Plant J 33(4):751–763Google Scholar
  68. Eapen S, D’souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metal. Biotechnol Adv 23:97–114.  https://doi.org/10.1016/j.biotechadv.2004.10.001 CrossRefPubMedGoogle Scholar
  69. Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S (2006) Transcript accumulation and alternative splicing of a DREB2 homolog are differentially regulated by cold and drought stresses in common wheat. Genes Genet Syst 81:77–91PubMedCrossRefGoogle Scholar
  70. Elbaz B, Shoshani-Knaani N, David-Assael O, Mizrachy-Dagri T, Mizrahi K, Saul H, Shaul O (2006) High expression in leaves of the zinc hyperaccumulator Arabidopsis halleri of AhMHX, a homolog of an Arabidopsis thaliana vacuolar metal/protonexchanger. Plant Cell Environ 29:1179–1190.  https://doi.org/10.1111/j.1365-3040.2006.01500.x CrossRefPubMedGoogle Scholar
  71. Encinas-villarejo S, Maldonado AM, Amil-ruiz F, Santos BD, Romero F, Pliegoalfaro F, Oz-blanco JM, Caballero JL (2009) Evidence for a positive regulatory role of strawberry (Fragaria ananassa) Fa WRKY1 and Arabidopsis AtWRKY75 proteins in resistance. J Exp Bot 60(11):3043–3065PubMedCrossRefGoogle Scholar
  72. Epstein E (1999) Silicon. Annu Rev Plant Physiol 50:641–664.  https://doi.org/10.1146/annurev.arplant.50.1.641 CrossRefGoogle Scholar
  73. Epule ET, Peng C, Lepage L, Chen Z (2013) The causes, effects and challenges of Sahelian droughts: a critical review. Reg Environ Chang 14:145–156.  https://doi.org/10.1007/s10113-013-0473-z CrossRefGoogle Scholar
  74. Ernst WHO (2006) Evolution of metal tolerance in higher plants. Snow Landsc Res 80:251–274Google Scholar
  75. Ernst H, Olsen A, Larsen S, Leggio L (2004) Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep 5:297–303.  https://doi.org/10.1038/sj.embor.7400093 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Ernst WHO, Krauss GJ, Verkleij JAC, Wesenberg D (2008) Interaction of heavy metal with the sulphur metabolism in angiosperms from an ecological point of view. Plant Cell Environ 31:123–143.  https://doi.org/10.1111/j.1365-3040.2007.01746.x CrossRefPubMedGoogle Scholar
  77. Ezaki B, Katsuhara M, Kawamura M, Matsumoto H (2001) Different mechanisms of four aluminum (Al)-resistant transgenes for Al toxicity in Arabidopsis. Plant Physiol 127:918–927PubMedPubMedCentralCrossRefGoogle Scholar
  78. Farias JG, Antes FLG, Nunes PAA, Nunes ST, Schaich G, Rossato LV, Nicoloso FT (2013) Effects of excess copper in vineyard soils on the mineral nutrition of potato genotypes. Food Energy Secur 2:49–69.  https://doi.org/10.1002/fes3.16 CrossRefGoogle Scholar
  79. Fedoroff NV, Battisti DS, Beachy RN, Cooper PJ, Fischhoff DA, Hodges CN, Reynolds MP (2010) Radically rethinking agriculture for the 21st century. Science 327:833–834PubMedPubMedCentralCrossRefGoogle Scholar
  80. Fidalgo F, Azenha M, Silva AF, de Sousa A, Santiago A, Ferraz P, Teixeira J (2013) Copper-induced stress in Solanum nigrum L. and antioxidant defense system responses. Food Energy Secur 2:70–80.  https://doi.org/10.1002/fes3.20 CrossRefGoogle Scholar
  81. Filiz E, Ozdemir BS, Budak F, Vogel JP, Tuna M, Budak H (2009) Molecular, morphological, and cytological analysis of diverse Brachypodium distachyon inbred lines. Genome 52:876–890CrossRefGoogle Scholar
  82. Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319CrossRefGoogle Scholar
  83. Fraley RT, Roger SG, Horsch RB, Sanders PS, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffman NL, Woo S (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci U S A 80:4803–4807PubMedPubMedCentralCrossRefGoogle Scholar
  84. Fromm M, Taylor LP, Walbot V (1985) Expression of genes transferred into monocotand dicot plant cells by electroporation. Proc Natl Acad Sci U S A 82:5824–5828PubMedPubMedCentralCrossRefGoogle Scholar
  85. Galiba G, Vagujfalvi A, Li C, Solte A, Dubcovsky J (2009) Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Sci 176:12–19CrossRefGoogle Scholar
  86. Ganeshan S, Vitamvas P, Fowler DB, Chibbar RN (2008) Quantitative expression analysis of selected COR genes reveals their differential expression in leaf and crown tissues of wheat (Triticum aestivum L.) during an extended low temperature acclimation regimen. J Exp Bot 59:2393–2402PubMedPubMedCentralCrossRefGoogle Scholar
  87. Gao X, Yang D, Cao D, Ao M, Sui X, Wang Q, Kimatu JN, Wang L (2010) In vitro micropropagation of Freesia hybrida and the assessment of genetic and epigenetic stability in regenerated plantlets. J Plant Growth Regul 29:257–267CrossRefGoogle Scholar
  88. Garthwaite AJ, von Bothmer R, Colmer TD (2003) Diversity in root aeration traits associated with waterlogging tolerance in the genus Hordeum. Funct Plant Biol 30:875–889CrossRefGoogle Scholar
  89. Garzón T, Gunsé B, Moreno AR, Tomos AD, Barceló J, Poschenrieder C (2011) Aluminium-induced alteration of ion homeostasis in root tip vacuoles of two maize varieties differing in Al tolerance. Plant Sci 180:709–715.  https://doi.org/10.1016/j.plantsci.2011.01.022 CrossRefPubMedGoogle Scholar
  90. Genc Y, Oldach K, Verbyla AP, Lott G, Hassan M, Tester M, McDonald GK (2010) Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor Appl Genet 121:877–894CrossRefGoogle Scholar
  91. Genc Y, Taylor J, Rongala J, Oldach K (2014) A major locus for chloride accumulation on chromosome 5A in bread wheat. PLoS One 9:e98845.  https://doi.org/10.1371/journal.pone.0098845 CrossRefPubMedPubMedCentralGoogle Scholar
  92. George S, Parida A, Swaminathan MS (2012) Wheat and rice crops: “Omics” approaches for abiotic stress tolerance. In: Tuteja N, Gill SS, Tiburcio AF, Tuteja R (eds) Improving crop resistance to abiotic stress. Wiley, New York.  https://doi.org/10.1002/978352763293 CrossRefGoogle Scholar
  93. Gill SS, Hasanuzzaman M, Nahar K, Macovei A, Tuteja N (2013) Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiol Biochem 63:254–261.  https://doi.org/10.1016/j.plaphy.2012.12.001 CrossRefPubMedGoogle Scholar
  94. Gilliham M, Tester M (2005) The regulation of anion loading to the maize root xylem. Plant Physiol 137:819–828 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Gilliham M, Able JA, Roy SJ (2017) Translating knowledge about abiotic stress tolerance to breeding programmes. Plant J 90:898–917PubMedCrossRefGoogle Scholar
  96. Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O’Brien JV, Chambers SA, Adams WR Jr, Willetts NG, Riche TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618PubMedPubMedCentralCrossRefGoogle Scholar
  97. Goyal E, Amit SK, Singh RS, Mahato AK, Chand S (2016) Transcriptome profiling of the salt-stress response in Triticum aestivum cv. Kharchia Local. Sci Rep 6:1–14CrossRefGoogle Scholar
  98. Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv Agron 70:77–142CrossRefGoogle Scholar
  99. Gray SB, Dermody O, Klein SP, Locke AM, McGrath JM, Paul RE, Ainsworth EA (2016) Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat Plants 2:16132.  https://doi.org/10.1038/nplants.2016.132 CrossRefPubMedGoogle Scholar
  100. Grosselindemann E, Robertson M, Wilmer JA, Chandeler PM (1998) Genetic variation in pea (Pisum) dehydrins: sequence elements responsible for length differences between dehydrin alleles and between dehydrin loci in Pisum sativum L. Theor Appl Genet 104:473–481Google Scholar
  101. Guo Y, Gan S (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46:601–612.  https://doi.org/10.1111/j.1365-313X.2006.02723.x CrossRefPubMedGoogle Scholar
  102. Guo WL, Wu R, Zhang YF, Liu XM, Wang HY, Gong L, Zhang ZH, Liu B (2007) Tissue culture-induced locus-specific alteration in DNA methylation and its correlation with genetic variation in Codonopsis lanceolata Benth. et Hook. f. Plant Cell Rep 26:1297–1307PubMedCrossRefGoogle Scholar
  103. Gupta P, Langridge P, Mir R (2010) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26:145–161CrossRefGoogle Scholar
  104. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730.  https://doi.org/10.1128/MCB.19.3.1720 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Hayat S, Khalique G, Irfan M, Wani AS, Tripathi BN, Ahmad A (2012) Physiological changes induced by chromium stress in plants: an overview. Protoplasma 249:599–611.  https://doi.org/10.1007/s00709-011-0331-0 CrossRefPubMedGoogle Scholar
  106. Hazen SP, Hawley RM, Davis GL, Henrissat B, Walton JD (2005) Quantitative trait loci and comparative genomics of cereal cell wall composition. Plant Physiol 132:263–271CrossRefGoogle Scholar
  107. He X, Mu R, Cao W, Zhang Z, Zhang J, Chen S (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916.  https://doi.org/10.1111/j.1365-313X.2005.02575.x CrossRefPubMedPubMedCentralGoogle Scholar
  108. He J, Zhao X, Laroche A, Lu Z-X, Liu H, Li Z (2014) Genotyping by sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5:484PubMedPubMedCentralCrossRefGoogle Scholar
  109. Hegeman AD (2010) Plant metabolomics-meeting the analytical challenges of comprehensive metabolite analysis. Brief Funct Genomic Proteomic 9:139–148CrossRefGoogle Scholar
  110. Hendelman A, Stav R, Zemach H, Arazi T (2013) The tomato NAC transcription factor SINAM2 is involved in flower-boundary morphogenesis. J Exp Bot 64:5497–5507.  https://doi.org/10.1093/jxb/ert324 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti plasmid. Nature 303:179–180CrossRefGoogle Scholar
  112. Horie T, Karahara I, Katsuhara M (2012) Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants. Rice 5:1–18CrossRefGoogle Scholar
  113. Hossain Z, Komatsu S (2013) Contribution of proteomic studies towards understanding plant heavy metal stress response. Front Plant Sci 3:310.  https://doi.org/10.3389/fpls.2012.00310 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Hossain Z, Nouri MZ, Komatsu S (2012) Plant cell organelle proteomics in response to abiotic stress. J Proteome Res 11:37–48.  https://doi.org/10.1021/pr200863r CrossRefPubMedGoogle Scholar
  115. Huang C, Barker SJ, Langridge P, Smith FW, Graham RD (2000) Zinc deficiency up-regulates expression of high-affinity phosphate transporter genes in both phosphate-sufficient and-deficient barley roots. Plant Physiol 124:415–422PubMedPubMedCentralCrossRefGoogle Scholar
  116. Huang SB, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES, Munns R (2006) A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durumwheat. Plant Physiol 142:1718–1727PubMedPubMedCentralCrossRefGoogle Scholar
  117. Hussain B (2015) Modernization in plant breeding approaches for improving biotic stress resistance in crop plants. Turk J Agric For 39:515–530CrossRefGoogle Scholar
  118. Hussain B, Khan AS, Ali Z (2015) Genetic variation in wheat germplasm for salinity tolerance at seedling stage: improved statistical inference. Turkish J Agric For 39:182–192CrossRefGoogle Scholar
  119. Hussain B, Lucas SJ, Ozturk L, Budak H (2017) Mapping QTLs conferring salt tolerance and micronutrient concentrations at seedling stage in wheat. Sci Rep 7:15662.  https://doi.org/10.1038/s41598-017-15726-6 CrossRefPubMedPubMedCentralGoogle Scholar
  120. IPCC (2014) Summary for policymakers, in climate change 2014: impacts, adaptation, and vulnerability. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE et al (eds) Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, pp 1–32Google Scholar
  121. Iqbal M, Raja NI, Yasmeen F, Hussain M, Ejaz M, Shah MA (2017) Impacts of heat stress on wheat: a critical review. Adv Crop Sci Tech 5:251.  https://doi.org/10.4172/2329-8863.1000251 CrossRefGoogle Scholar
  122. Ishikawa G, Yonemaru J, Saito M, Nakamura T (2007) PCR-based landmark unique gene (PLUG) markers effectively assign homoeologous wheat genes to A, B and D genomes. BMC Genomics 8:135PubMedPubMedCentralCrossRefGoogle Scholar
  123. Ishikawa G, Nakamura T, Ashida T, Saito M, Nasuda S, Endo TR, Wu J, Matsumoto T (2009) Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers. Theor Appl Genet 118:499–514PubMedCrossRefPubMedCentralGoogle Scholar
  124. Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:1–7CrossRefGoogle Scholar
  125. Jakoby M, Weisshaar B, Dröge-laser W, Vicente-carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111PubMedCrossRefGoogle Scholar
  126. Janicka-Russak M, Kabała K, Burzyński M, Kłobus G (2008) Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus roots. J Exp Bot 59:3721–3728.  https://doi.org/10.1093/jxb/ern219 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182.  https://doi.org/10.1093/bmb/ldg032 CrossRefPubMedGoogle Scholar
  128. Jefferies SP, Pallotta MA, Paull JG, Karakousis A, Kretschmer JM, Manning S, Chalmers KJ (2000) Mapping and validation of chromosome regions conferring boron toxicity tolerance in wheat (Triticum aestivum). Theor Appl Genet 101:767–777CrossRefGoogle Scholar
  129. Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Do Choi Y, Kim JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197PubMedPubMedCentralCrossRefGoogle Scholar
  130. Jiang Y, Deyholos MK (2009) Functional characterization of Arabidopsis NaCl inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 69(1–2):91–105PubMedCrossRefGoogle Scholar
  131. Jin H, Martin C (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol 41:577–585PubMedCrossRefPubMedCentralGoogle Scholar
  132. Johnson RR, Wagner RL, Verhey SD, Walker-simmons MK (2002) The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiol 130:837–846PubMedPubMedCentralCrossRefGoogle Scholar
  133. Jones HD (2005) Wheat transformation: current technology and applications to grain development and composition. J Cereal Sci 41:137–147CrossRefGoogle Scholar
  134. Joshi RK, Nayak S (2010) Gene pyramiding-A broad spectrum technique for developing durable stress resistance in crops. Biotechnol Mol Biol Rev 5:51–60. Available online at http://www.academicjournals.org/BMBRISSN 1538-2273 © 2010 Academic JournalsGoogle Scholar
  135. Kato H, Motomura T, Komeda Y, Saito T, Kato A (2010) Over expression of the NAC transcription factor family gene ANAC036 results in a dwarf phenotype in Arabidopsis thaliana. J Plant Physiol 167:571–577.  https://doi.org/10.1016/j.jplph.2009.11.004 CrossRefPubMedGoogle Scholar
  136. Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metal. Biotechnol Adv 28:61–69.  https://doi.org/10.1016/j.biotechadv.2009.09.002 CrossRefPubMedGoogle Scholar
  137. Keyser BR (2010) The wheat bZIP factor, TaABF1, mediates ABA-induced gene expression in bombarded barley aleurone layers. Honors theses paper 593. http://digitalcommons.colby.edu/honorstheses/593
  138. Khan GA, Bakhsh A, Husnain T, Riazuddin S (2011) Introduction of Cry1Ab gene in Gossypium hirsutumenhances resistance against lepidopteran pests. Span J Agric Res 9:296–330CrossRefGoogle Scholar
  139. Khanna HK, Daggard GE (2006) Targeted expression of redesigned and codon optimised synthetic gene leads to recrystallisation inhibition and reduced electrolyte leakage in spring wheat at sub-zero temperatures. Plant Cell Rep 25:1336–1346PubMedCrossRefGoogle Scholar
  140. Khurana P, Chauhan H, Khurana N (2012) Wheat: functional genomics of abiotic stress tolerance. In: Tuteja N, Gill SS, Tiburcio AF, Tuteja R (eds) Improving crop resistance to abiotic stress. Print ISBN: 9783527328406, Online ISBN: 9783527632930.  https://doi.org/10.1002/9783527632930. Copyright © 2012 Wiley-VCH Verlag GmbH & Co. KGaAGoogle Scholar
  141. Kim Y, Kim S, Park J, Park H, Lim M, Chua N (2006) A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. Plant Cell 18:3132–3144.  https://doi.org/10.1105/tpc.106.043018 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Kim HS, Park BO, Yoo JH, Jung MS, Lee SM, Han HJ, Lee SY (2007) Identification of a calmodulin-binding NAC protein as a transcriptional repressor in Arabidopsis. J Biol Chem 282(50):36292–36302xPubMedCrossRefGoogle Scholar
  143. Kobayashi F, Takumi S, Nakamura C (2004a) Regulation of cold-responsive Cor/Lea genes and their transcription factors by the major freezing tolerance locus Fr-1 in wheat. Rec Res Dev Plant Sci 2:249–266Google Scholar
  144. Kobayashi F, Takumi S, Nakata M, Ohno R, Nakamura T, Nakamura C (2004b) Comparative study of the expression profiles of the Cor/Lea gene family in two wheat cultivars with contrasting levels of freezing tolerance. Physiol Plant 120:585–594PubMedCrossRefGoogle Scholar
  145. Kobayashi F, Takumi S, Egawa C, Ishibashi M, Nakamura C (2006) Expression patterns of low temperature responsive genes in a dominant ABA-less-sensitive mutant line of common wheat. Physiol Plant 127:612–623CrossRefGoogle Scholar
  146. Kobayashi F, Ishibashi M, Takumi S (2008a) Transcriptional activation of Cor/Lea genes and increase in abiotic stress tolerance through expression of a wheat DREB2 homolog in transgenic tobacco. Transgenic Res.  https://doi.org/10.1007/s11248-007-9158-z PubMedCrossRefGoogle Scholar
  147. Kobayashi F, Maeta E, Terashima A, Kawaura K, Ogihara Y, Takumi S (2008b) Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat. J Exp Bot 59:891–905.  https://doi.org/10.1093/jxb/ern014 CrossRefPubMedPubMedCentralGoogle Scholar
  148. Kobayashi F, Takumi S, Nakamura C (2008c) Increased freezing tolerance in an ABA-hypersensitive mutant of common wheat. J Plant Physiol 165:224–232PubMedCrossRefGoogle Scholar
  149. Kosová K, Vítámvás P, Prášil IT, Renaut J (2011) Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response. J Proteome 74(8):1301–1322PubMedCrossRefGoogle Scholar
  150. Lamaoui M, Jemo M, Datla R, Faouzi B (2018) Heat and drought stresses in crops and approaches for their mitigation. Front Chem 6:26Google Scholar
  151. Langridge P (2006) Functional genomics of abiotic stress tolerance in cereals. Brief Funct Genomic Proteomic 4(4):343–354PubMedCrossRefGoogle Scholar
  152. Laurie S, Feeney KA, Maathuis FJM, Heard PJ, Brown SJ, Leigh RA (2002) A role for HKT1 in sodium uptake by wheat roots. Plant J 32:139–149PubMedCrossRefGoogle Scholar
  153. Law RD, Crafts BSJ, Salvucci ME (2001) Heat stress induces the synthesis of a new form of ribulose-1,5-bisphosphate carboxylase/oxygenase activase in cotton leaves. Planta 214:117–125PubMedCrossRefGoogle Scholar
  154. Leader DJ (2005) Transcriptional analysis and functional genomics in wheat. J Cereal Sci 41:149–163CrossRefGoogle Scholar
  155. Lee TG, Jang CS, Kim JY, Kim DS, Park JH, Kim DY, Seo YW (2007) A Myb transcription factor (TaMyb1) from wheat roots is expressed during hypoxia: roles in response to the oxygen concentration in root environment and abiotic stresses. Physiol Plant 129:375–385CrossRefGoogle Scholar
  156. Leonforte A, Sudheesh S, Cogan NO, Salisbury PA, Nicolas ME, Materne M, Kaur S (2013) SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.). BMC Plant Biol 13:161.  https://doi.org/10.1186/1471-2229-13-161 CrossRefPubMedPubMedCentralGoogle Scholar
  157. Li J, Li X, Guo L, Lu F, Feng X, He K, Wei L, Chen Z, Qu LJ, Gu H (2006a) A subgroup of MYB transcription factor genes undergoes highly conserved alternative splicing in Arabidopsis and rice. J Exp Bot 57:1263–1273PubMedCrossRefGoogle Scholar
  158. Li N, Zhao YJ, Zhang SH (2006b) Research on barley HVA1 gene and Lea protein with plant drought tolerance. Biotechnol Bull 4:25–29Google Scholar
  159. Li H, Sun J, Xu Y, Jiang H, Wu X, Li C (2007a) The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis. Plant Mol Biol 65:655–665PubMedCrossRefGoogle Scholar
  160. Li X, Yu X, Wang N, Feng Q, Dong Z, Liu L, Shen J, Liu B (2007b) Genetic and epigenetic instabilities induced by tissue culture in wild barley (Hordeum brevisubulatum (Trin.) Link). Plant Cell Tissue Organ Cult 90:153–168CrossRefGoogle Scholar
  161. Libault M, Wan J, Czechowski T, Udvardi M, Stacey G (2007) Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor. Mol Plant-Microb Interact 20:900–911CrossRefGoogle Scholar
  162. Lippok B, Birkenbihl RP, Rivory G, Brümmer J, Schmelzer E, Logemann E, Somssich IE (2007) Expression of AtWRKY33 encoding a pathogenor PAMPResponsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements. Mol Plant-Microb Interact 20:420–429CrossRefGoogle Scholar
  163. Liu X, Shi J, Zhang XY, Ma YS, Jia JZ (2001) Screening salt tolerance germplasms and tagging the tolerance gene(s) using microsatellite (SSR) markers in wheat. Acta Bot Sin 43:948–954Google Scholar
  164. Liu X, Wu H, Ji C, Wei L, Zhao J, Yu J (2013) An integrated proteomic and metabolomic study on the chronic effects of mercury in Suaeda salsa under an environmentally relevant salinity. PLoS One 8:e64041.  https://doi.org/10.1371/journal.pone.0064041 CrossRefPubMedPubMedCentralGoogle Scholar
  165. Lopez CG, Banowetz GM, Peterson CJ, Kronstad WE (2003) Dehydrin expression and drought tolerance in seven wheat cultivars. Crop Sci 43:577–582CrossRefGoogle Scholar
  166. Lorieux M (2012) MapDisto: fast and efficient computation of genetic linkage maps. Mol Breed 30:1231–1235CrossRefGoogle Scholar
  167. Loveys BR, Scheurwater I, Pons TL, Fitter AH, Atkin OK (2002) Growth temperature influences the underlying components of relative growth rate: an investigation using inherently fast- and slow-growing plant species. Plant Cell Environ 25:975–987.  https://doi.org/10.1046/j.1365-3040.2002.00879.x CrossRefGoogle Scholar
  168. Lucas SJ, Šimková H, Šafář J, Jurman I, Cattonaro F, Vautrin S, Budak H (2012) Functional features of a single chromosome arm in wheat (1AL) determined from its structure. Funct Integ Genomics 12:173–182CrossRefGoogle Scholar
  169. Lucas SJ, Salantur A, Yazar S, Budak H (2017) High-throughput SNP genotyping of modern and wild emmer wheat for yield and root morphology using a combined association and linkage analysis. Funct Integ Genomics 17:667–685.  https://doi.org/10.1007/s10142017-0563-y CrossRefGoogle Scholar
  170. Luomala EM, Laitinen K, Sutinen S, Kellomaki S, Vapaavuori E (2005) Stomatal density, anatomy and nutrient concentrations of Scots pine needles are affected by elevated CO2 and temperature. Plant Cell Environ 28:733–749.  https://doi.org/10.1111/j.1365-3040.2005.01319.x CrossRefGoogle Scholar
  171. Mackintosh CA, Lewis J, Radmer LE, Shin S, Heinen SJ, Smith LA, Wyckoff MN, Dill-Macky R, Evans CK, Kravchenko S, Baldridge GD, Zeyen RJ, Muehlbauer GJ (2007) Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight. Plant Cell Rep 26:479–488PubMedPubMedCentralCrossRefGoogle Scholar
  172. Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HT, Marmiroli N (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48:667–681PubMedCrossRefGoogle Scholar
  173. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158PubMedPubMedCentralCrossRefGoogle Scholar
  174. Mahmoud RS, Narisawa K (2013) A new fungal endophyte, Scolecobasidium humicola, promotes tomato growth under organic nitrogen conditions. PLoS One 8:e78746.  https://doi.org/10.1371/journal.pone.0078746 CrossRefPubMedPubMedCentralGoogle Scholar
  175. Mao X, Zhang H, Qian X, Li A, Zhao G, Jing R (2012) TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot 63:2933–2946.  https://doi.org/10.1093/jxb/err462 CrossRefPubMedPubMedCentralGoogle Scholar
  176. Mao X, Chen S, Li A, Zhai C, Jing R (2014) Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis. PLoS One 9:e84359.  https://doi.org/10.1371/journal.pone.0084359 CrossRefPubMedPubMedCentralGoogle Scholar
  177. Marschner H (1995) Mineral nutrition of higher plants. Academic, BostonGoogle Scholar
  178. Masclaux C, Quillere I, Gallais A, Hirel B (2001) The challenge of remobilisation in plant nitrogen economy. A survey of physio-agronomic and molecular approaches. Ann Appl Biol 138:69–81CrossRefGoogle Scholar
  179. Masoudi B, Mardi M, Hervan EM (2015) QTL mapping of salt tolerance traits with different effects at the seedling stage of bread wheat. Plant Mol Biol Report 33:1790–1803CrossRefGoogle Scholar
  180. McLaughlin MJ, Parker DR, Clark JM (1999) Metal and micronutrients-food safety issues. Field Crop Res 60:143–163.  https://doi.org/10.1016/S0378-4290(98)00137-3 CrossRefGoogle Scholar
  181. Miller AK, Galiba G, Dubcovsky J (2006) A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-Am2 in Triticum monococcum. Mol Gen Genomics 275:193–203CrossRefGoogle Scholar
  182. Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metal. Biotechnol Adv 29:645–653.  https://doi.org/10.1016/j.biotechadv.2011.04.006 CrossRefPubMedGoogle Scholar
  183. Mitra J (2001) Genetics and genetic improvement of drought resistance in crop plants. Curr Sci 80:758–763Google Scholar
  184. Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19:270–280PubMedPubMedCentralCrossRefGoogle Scholar
  185. Mochida K, Yamazaki Y, Ogihara Y (2004) Discrimination of homologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags. Mol Gen Genomics 270:371–377CrossRefGoogle Scholar
  186. Morrel PL, Lundy KE, Clegg MT (2003) Distinct geographic patterns of genetic diversity is maintained in wild barley (Hordeum vulgare ssp. spontaneum) despite migration. Proc Natl Acad Sci U S A 100:10812–10817CrossRefGoogle Scholar
  187. Mott IW, Wang RRC (2007) Comparative transcriptome analysis of salt-tolerant wheat germplasm lines using wheat genome arrays. Plant Sci 173:327–339CrossRefGoogle Scholar
  188. Munns R (2005) Genes and salt tolerance: bring them together. New Phytol 143:655–663Google Scholar
  189. Munns R, Rebetzke GJ, Husain S, James RA, Hare RA (2003) Genetic control of sodium exclusion in durum wheat. Aust J Agric Res 54(7):627–635CrossRefGoogle Scholar
  190. Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043PubMedPubMedCentralCrossRefGoogle Scholar
  191. Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Plett D (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360.  https://doi.org/10.1038/nbt.2120 CrossRefGoogle Scholar
  192. Nakashima K, Yamaguchi-Shinozaki K (2006) Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol Plant 126:62–71CrossRefGoogle Scholar
  193. Nakashima K, Tran LSP, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630PubMedCrossRefGoogle Scholar
  194. Nakashima K, Ito Y, Yamaguchi-shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95PubMedPubMedCentralCrossRefGoogle Scholar
  195. Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochem Biophys Acta 1819:97–103.  https://doi.org/10.1016/j.bbagrm.2011.10.005 CrossRefPubMedGoogle Scholar
  196. Natali L, Giordani T, Cavallini A (2003) Sequence variability of a dehydrin gene within Helianthus annuus. Theor Appl Genet 106:811–818PubMedCrossRefGoogle Scholar
  197. NDong C, Danyluk J, Wilson KE, Pocock T, Huner NPA, Sarhan F (2002) Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses. Plant Physiol 129:1368–1381PubMedPubMedCentralCrossRefGoogle Scholar
  198. Negrao S, Almadanim MC, Pires IS, Abreu IA, Maroco J, Courtois B, Gregorio GB, McNally KL, Oliveira MM (2013) New allelic variants found in key rice salt-tolerance genes: an association study. Plant Biotechnol J 11:87–100PubMedCrossRefGoogle Scholar
  199. Nevo E, Korol AB, Bailes A, Fahima T (2002) Evolution of wild emmer and wheat improvement. Springer, Berlin, pp 11–17CrossRefGoogle Scholar
  200. Niinemets Ü (2015) Uncovering the hidden facets of drought stress: secondary metabolites make the difference. Tree Physiol 36:129–132.  https://doi.org/10.1093/treephys/tpv128 CrossRefPubMedGoogle Scholar
  201. Oceanic Atmospheric Administration website (2015) Available online at: https://www.ncdc.noaa.gov/billions/events/US/1980-2017
  202. Ohno R, Takumi S, Nakamura C (2003) Kinetics of transcript and protein accumulation of a low-molecular-weight wheat LEA D-11 dehydrin in response to low temperature. J Plant Physiol 160:193–200PubMedCrossRefGoogle Scholar
  203. Olsen AN, Ernst H, Leggio L, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87.  https://doi.org/10.1016/j.tplants.2004.12.010 CrossRefPubMedGoogle Scholar
  204. Oyiga BC, Sharma RC, Shen J, Baum M, Ogbonnaya FC, Leon J, Ballvora A (2016) Identification and characterization of salt tolerance of wheat germplasm using a multivariable screening approach. J Agron Crop Sci 202:472–485CrossRefGoogle Scholar
  205. Pallotta MA, Graham RD, Langridge P, Sparrow DHB, Barker SJ (2000) RFLP mapping of manganese efficiency in barley. Theor Appl Genet 101:1100–1108CrossRefGoogle Scholar
  206. Park J, Kim Y, Kim S, Jung J, Woo J, Park C (2011) Integration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis. Plant Physiol 156:537–549.  https://doi.org/10.1104/pp.111.177071 CrossRefPubMedPubMedCentralGoogle Scholar
  207. Patnaik D, Khurana P (2001) Wheat biotechnology: a mini review. Electron J Biotechnol 492:74–102Google Scholar
  208. Patnaik D, Khurana P (2003) Genetic transformation of Indian bread (T. aestivum) and pasta (T. durum) wheat by particle bombardment of mature embryo-derived calli. BMC Plant Biol 3:5.  https://doi.org/10.1186/1471-2229-3-5 CrossRefPubMedPubMedCentralGoogle Scholar
  209. Peleg Z, Cakmak I, Ozturk L, Yazici A, Jun Y, Budak H, Saranga Y (2009) Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theor Appl Genet 119:353–369PubMedCrossRefGoogle Scholar
  210. Perez DE, Hoyer JS, Johnson AI, Moody ZR, Lopez J, Kaplinsky NJ (2009) BOBBER1 is a noncanonical Arabidopsis small heat shock protein required for both development and thermotolerance. Plant Physiol 151:241–252PubMedPubMedCentralCrossRefGoogle Scholar
  211. Pérez-Clemente RM, Vives V, Zandalinas SI, López-Climent MF, Muñoz V, Gómez-Cadenas A (2013) Biotechnological approaches to study plant responses to stress. Biomed Res Int 2013:ID 654120.  https://doi.org/10.1155/2013/654120 CrossRefGoogle Scholar
  212. Pfeiffer WH, Trethowan RM, Ginkel M, Ortiz-Monasterio I, Rajaram S (2005) Breeding for Abiotic Stress. Tolerance in Wheat. Abiotic stresses: plant resistance through breeding and molecular approaches (No. CIS-4737. CIMMYT.) pp 401–489Google Scholar
  213. Poorter H, Niinemets U, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588.  https://doi.org/10.1111/j.1469-8137.2009.02830.x CrossRefPubMedGoogle Scholar
  214. Prasad AS (2012) Discovery of human zinc deficiency: 50 years later. J Trace Elem Med Biol 26:66–69.  https://doi.org/10.1016/j.jtemb.2012.04.004 CrossRefPubMedGoogle Scholar
  215. Puranik S, Bahadur R, Srivastava P, Prasad M (2011) Molecular cloning and characterization of a membrane associated NAC family gene, SiNAC from foxtail millet [Setaria italica (L.) P. Beauv]. Mol Biotechnol 49:138–150.  https://doi.org/10.1007/s12033-011-9385-7 CrossRefPubMedGoogle Scholar
  216. Purohit M, Srivastava S, Srivastava PS (1998) Stress tolerant plants through tissue culture. In: Srivastava PS (ed) Plant tissue culture and molecular biology: application and prospects. Narosa Publishing House, New Delhi, pp 554–578Google Scholar
  217. Qiao WH, Zhao XY, Li W, Luo Y, Zhang XS (2007) Overexpression of AeNHX1, a root-specific vacuolar Na(+)/H(+) antiporter from Agropyron elongatum confers salt tolerance to Arabidopsis and festuca plants. Plant Cell Rep 26:1663–1672PubMedCrossRefGoogle Scholar
  218. Qin Y, Wang M, Tian Y, He W, Han L, Xia G (2012) Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis. Mol Biol Rep 39:7183–7192CrossRefPubMedPubMedCentralGoogle Scholar
  219. Quach TN, Tran LSP, Valliyodan B, Nguyen HT, Kumar R, Neelakandan AK, Nguyen HT (2014) Functional analysis of water stress-responsive soybean GmNAC003 and GmNAC004 transcription factors in lateral root development in Arabidopsis. PLoS One 9:e84886.  https://doi.org/10.1371/journal.pone.0084886 CrossRefPubMedPubMedCentralGoogle Scholar
  220. Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767PubMedPubMedCentralCrossRefGoogle Scholar
  221. Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693PubMedCrossRefGoogle Scholar
  222. Rahaie M, Xue GP, Naghavi MR, Alizadeh H, Schenk PM (2010) A MYB gene from wheat (Triticum aestivum L.) is up-regulated during salt and drought stresses and differentially regulated between salt-tolerant and sensitive genotypes. Plant Cell Rep 29:835–844CrossRefGoogle Scholar
  223. Rahaie M, Gomarian M, Alizadeh H, Malboobi MA, Naghavi MR (2011) The expression analysis of transcription factors under long term salt stress in tolerant and susceptible wheat genotypes using reverse northern blot technique. Iran J Crop Sci 13:580–595Google Scholar
  224. Rahaie M, Xue G-P, Schenk PM (2013) The role of transcription factors in wheat under different abiotic stresses, abiotic stress – plant responses and applications in agriculture, Vahdati K and Leslie, C. IntechOpen.  https://doi.org/10.5772/54795 Google Scholar
  225. Rai MK, Kalia RK, Singh R, Gangola MP, Dhawan AK (2011) Developing stress tolerant plants through in vitro selection—an overview of the recent progress. Environ Exp Bot 71:89–98CrossRefGoogle Scholar
  226. Rampino P, Pataleo S, Gerardi C, Mita G, Perrotta C (2006) Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ 29:2143–2152CrossRefGoogle Scholar
  227. Rao AQ, Bakhsh A, Shahzad K, Kiani S, Shahid AA, Husnain T, Riazuddin T (2009) The myth of plant transformation. Biotechnol Adv 27:753–763PubMedCrossRefGoogle Scholar
  228. Rebetzke GJ, Condon AG, Richards RA, Farquhar GD (2002) Selection for reduced carbon isotope discrimination increases aerial biomass and grain yield of rainfed bread wheat. Crop Sci 42:739–745CrossRefGoogle Scholar
  229. Redillas MCFR, Jeong JS, Kim YS, Jung H, Bang SW, Choi YD, Kim JK (2012) The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J 10:792–805PubMedCrossRefGoogle Scholar
  230. Ribaut JM, Jiang C, Hoisington D (2001) Simulation experiments on efficiencies of gene introgression by backcrossing. Crop Sci 42:557–565CrossRefGoogle Scholar
  231. Ricachenevsky FK, Menguer PK, Sperotto RA, Williams LE, Fett JP (2013) Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies. Front Plant Sci 4:144.  https://doi.org/10.3389/fpls.2013.00144 CrossRefPubMedPubMedCentralGoogle Scholar
  232. Rice MB (2005) MPSS site, http://mpss.udel.edu/rice/. University of Delaware. Accessed 25 Oct 2005
  233. Robinson D, Handley LL, Scrimgeour CM, Gordon DC, Forster BP, Ellis RP (2000) Using stable isotope natural abundances (delta 15 N and delta 13 C) to integrate the stress responses of wild barley ( Hordeum spontaneum C. Koch.) genotypes. J Exp Bot 51:41–50PubMedGoogle Scholar
  234. Saad ASI, Li X, Li HP, Huang T, Gao CS, Guo MW, Liao YC (2013) A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Sci 203:33–40PubMedCrossRefGoogle Scholar
  235. Saade S, Maurer A, Shahid M, Oakey H, Schmöckel SM, Negrão S, Tester M (2016) Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Sci Rep 6:32586.  https://doi.org/10.1038/srep32586 CrossRefPubMedPubMedCentralGoogle Scholar
  236. Saga H, Ogawa T, Kai K, Suzuki H, Ogata Y, Sakurai N, Ohta D (2012) Identification and characterization of ANAC042, a transcription factor family gene involved in the regulation of camalexin biosynthesis in Arabidopsis. Mol Plant-Microbe Interact 25:684–696PubMedCrossRefGoogle Scholar
  237. Saito A, Saito M, Ichikawa Y, Yoshiba M, Tadano T, Miwa E, Higuchi K (2010) Difference in the distribution and speciation of cellular nickel between nickel-tolerant and non-tolerant Nicotiana tabacum L. cv. BY-2 cells. Plant Cell Environ 33:174–187.  https://doi.org/10.1111/j.1365-3040.2009.02068 CrossRefPubMedGoogle Scholar
  238. Sakhanokho HF, Kelley RY (2009) Influence of salicylic acid on in vitro propagation and salt tolerance in Hibiscus acetosella and Hibiscus moscheutos (cv ‘Luna Red’). Afr J Biotechnol 8:1474–1481Google Scholar
  239. Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309PubMedPubMedCentralCrossRefGoogle Scholar
  240. Salam A, Hollington PA, Gorham J, Jones W, Gliddon C (1999) Physiological genetics of salt tolerance in wheat (Triticun aestivun L.): performance of wheat varieties,inbred lines and reciprocal F1 hybrids under saline conditions. J Agron Crop Sci 183:145–156CrossRefGoogle Scholar
  241. Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) A proteomic approach to analyzing drought-and salt-responsiveness in rice. Field Crop Res 76:199–219CrossRefGoogle Scholar
  242. Samac DA, Tesfaye M (2003) Plant improvement for tolerance to aluminium in acid soils—a review. Plant Cell Tissue Organ Cult 75:189–207CrossRefGoogle Scholar
  243. Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. Part Sci Technol 5:27–37CrossRefGoogle Scholar
  244. Sarkar NK, Kim YK, Grover A (2009) Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics 60:10–21Google Scholar
  245. Sato S, Soga T, Nishioka T (2004) Simultaneous determination of the main metabolites in rice leaves using capillary electrophoresis mass spectrometry and capillary electrophoresis diode array detection. Plant J 40:151–163PubMedCrossRefGoogle Scholar
  246. Seger C, Sturm S (2007) Analytical aspects of plant metabolite profiling platforms: current standings and future aims. J Proteome Res 6:480–497PubMedCrossRefGoogle Scholar
  247. Seki M, Narusaka M, Ishida J (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292CrossRefGoogle Scholar
  248. Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol 14:194–199 PubMedCrossRefGoogle Scholar
  249. Semane B, Dupae J, Cuypers A, Noben JP, Tuomainen M, Tervahauta A (2010) Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. J Plant Physiol 167:247–254.  https://doi.org/10.1016/j.jplph.2009.09.015 CrossRefPubMedGoogle Scholar
  250. Serrano R, Gaxiola R (1994) Microbial models and salt stress tolerance in plants. Crit Rev Plant Sci 13:121–138CrossRefGoogle Scholar
  251. Shah S, Pang C, Fan S, Song M, Arain S, Yu S (2013) Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutumL.) during leaf senescence and in response to stresses. Gene 531:220–234.  https://doi.org/10.1016/j.gene.2013.09.007 CrossRefPubMedGoogle Scholar
  252. Shahid M, Pinelli E, Dumat C (2012) Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater 219:1–12.  https://doi.org/10.1016/j.jhazmat.2012.01.060 CrossRefPubMedGoogle Scholar
  253. Shahinnia F, Le Roy J, Laborde B, Sznajder B, Kalambettu P, Mahjourimajd S, Fleury D (2016) Genetic association of stomatal traits and yield in wheat grown in low rainfall environments. BMC Plant Biol 16:150.  https://doi.org/10.1186/s12870-016-0838-9 CrossRefPubMedPubMedCentralGoogle Scholar
  254. Sharmin SA, Alam I, Kim KH, Kim YG, Kim PJ, Bahk JD, Lee BH (2012) Chromium-induced physiological and proteomic alterations in roots of Miscanthus sinensis. Plant Sci 187:113–126.  https://doi.org/10.1016/j.plantsci.2012.02.002 CrossRefPubMedGoogle Scholar
  255. Shimamoto K, Terada R, Izawa T, Fujimoto H (1989) Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338:274–276CrossRefGoogle Scholar
  256. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227CrossRefGoogle Scholar
  257. Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417 PubMedCrossRefGoogle Scholar
  258. Shulaev V (2006) Metabolomics technology and bioinformatics. Brief Bioinform 7:128–139PubMedCrossRefGoogle Scholar
  259. Singh AJ, Byerlee D (1990) Relative variability in wheat yields across countries and over time. J Agric Econ 41:21–32CrossRefGoogle Scholar
  260. Singh VP, Srivastava PK, Prasad SM (2012) Differential effect of UV-B radiation on growth, oxidative stress and ascorbate-glutathione cycle in two cyanobacteria under copper toxicity. Plant Physiol Biochem 61:61–70.  https://doi.org/10.1016/j.plaphy.2012.09.005 CrossRefPubMedGoogle Scholar
  261. Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143.  https://doi.org/10.3389/fpls.2015.01143 CrossRefPubMedPubMedCentralGoogle Scholar
  262. Sivaguru M, Fujiwara T, Šamaj J, Baluška F, Yang Z, Osawa H, Matsumoto H (2000) Aluminum-induced 1→ 3-β-d-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminum toxicity in plants. Plant Physiol 124:991–1006PubMedPubMedCentralCrossRefGoogle Scholar
  263. Sivamani E, Baheildin A, Wraith JM, Al-Niemi T, Dyer WE, Ho THD, Qu R (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9PubMedCrossRefGoogle Scholar
  264. Skinner JS, Szucs P, von Zitzewitz J, Marquez-Cedillo L, Filichkin T, Stockinger EJ, Hayes PM (2006) Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis. Theor Appl Genet 112:832–842PubMedCrossRefGoogle Scholar
  265. Skylas D, Van Dyk D, Wrigley CW (2005) Proteomics of wheat grain. J Cereal Sci 41:65–79CrossRefGoogle Scholar
  266. Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75.  https://doi.org/10.1038/nbt1043 CrossRefPubMedGoogle Scholar
  267. Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotechnol 9:214–219PubMedCrossRefGoogle Scholar
  268. Souer E, Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordial boundaries. Cell 85:159–170.  https://doi.org/10.1016/S0092-8674(00)81093-4 CrossRefPubMedGoogle Scholar
  269. Srivastava V, Anderson OD, Ow DW (1999) Single-copy transgenic wheat generated through the resolution of complex integration patterns. Appl Biol Sci 96:11117–11121Google Scholar
  270. Srivastava G, Kumar S, Dubey G, Mishra V, Prasad SM (2012) Nickel and ultraviolet-B stresses induce differential growth and photosynthetic responses in Pisum sativum L. seedlings. Biol Trace Elem Res 149:86–96.  https://doi.org/10.1007/s12011-012-9406-9 CrossRefPubMedGoogle Scholar
  271. Stocker TF, Qin D, Plattner GK, Alexander LV, Allen SK, Bindoff NL, et al (2013) “Technical summary” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. University Press, Cambridge, pp 33–115Google Scholar
  272. Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166:941–948CrossRefGoogle Scholar
  273. Suprasanna P, Mirajkar S, Patade VY, Jain SM (2014) Induced mutagenesis for improving plant abiotic stress tolerance. In: Tomlekova NB, Kozgar MI, Wani MR (eds) Mutagenesis: exploring genetic diversity of crops. Academic Publishers, Wageningen, pp 349–378Google Scholar
  274. Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Sinauer, SunderlandGoogle Scholar
  275. Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Nakashima K (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Gen Genomics 284:173–183CrossRefGoogle Scholar
  276. Takumi S, Koike A, Nakata M, Kume S, Ohno R, Nakamura C (2003) Cold-specific and light-stimulated expression of a wheat (Triticum aestivum L.) Cor gene Wcor15 encoding a chloroplast-targeted protein. J Exp Bot 54:2265–2274PubMedCrossRefGoogle Scholar
  277. Tang Y, Liu M, Gao S, Zhang Z, Zhao X, Zhao C, Chen X (2012) Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Physiol Plant 144:210–224PubMedCrossRefGoogle Scholar
  278. Tester M, Davenport RJ (2003) Na+ transport and Na+ tolerance in higher plants. Ann Bot (Lond) 91:503–527CrossRefGoogle Scholar
  279. Tester M, Bacic A (2005) Abiotic stress tolerance in grasses. From model plants to crop plants. Plant Physiol 137(3):791–793PubMedPubMedCentralCrossRefGoogle Scholar
  280. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50(1):571–599PubMedCrossRefGoogle Scholar
  281. Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108:20260–20264PubMedCrossRefGoogle Scholar
  282. Tisné S, Schmalenbach I, Reymond M, Dauzat M, Pervent M, Vile D, Granier C (2010) Keep on growing under drought: genetic and developmental bases of the response of rosette area using a recombinant inbred line population. Plantcell Environ 33:1875–1887Google Scholar
  283. Tiwari V, Mamrutha HM, Sareen S, Sheoran S, Tiwari R, Sharma P, Rane J (2017) Managing abiotic stresses in wheat. In: Minhas P, Rane J, Pasala R (eds) Abiotic stress management for resilient agriculture. Springer, Singapore, pp 313–337CrossRefGoogle Scholar
  284. Tran L, Nishiyama R, Yamaguchi-Shinozaki K, Shinozaki K (2010) Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops 1:32–39.  https://doi.org/10.4161/gmcr.1.1.10569 CrossRefPubMedGoogle Scholar
  285. Vogel JP, Tuna M, Budak H, Huo N, Gu YQ, Steinwand MA (2009) Development of SSR markers and analysis of diversity in Turkish populations of Brachypodium distachyon. BMC Plant Biol 9:88.  https://doi.org/10.1186/1471-2229-9-88 CrossRefPubMedPubMedCentralGoogle Scholar
  286. Voitsik A, Muench S, Deising H, Voll L (2013) Two recently duplicated maize NAC transcription factor paralogs are induced in response to colletotrichum graminicola infection. BMC Plant Biol 13:85.  https://doi.org/10.1186/1471-2229-13-85 CrossRefPubMedPubMedCentralGoogle Scholar
  287. Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223.  https://doi.org/10.1016/j.envexpbot.2007.05.011 CrossRefGoogle Scholar
  288. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14.  https://doi.org/10.1007/s00425-003-1105-5 CrossRefGoogle Scholar
  289. Wang XQ, Zhang GW, Wei JH, Wang HZ, Li RF (2007) Primary studies on physiological mechanisms of salt tolerance in Hordeum brevisubulatumunder salt stress. Acta Agric Bor Sin 22:17–21Google Scholar
  290. Wang J, Qi P, Wei Y, Liu D, Fedak G, Zheng Y (2010) Molecular characterization and functional analysis of elite genes in wheat and its related species. J Genet 89:539–554PubMedCrossRefGoogle Scholar
  291. Wang Y, Hu H, Zhu LY, Li XX (2012) Response to nickel in the proteome of the metal accumulator plant Brassica juncea. J Plant Interact 7:230–237.  https://doi.org/10.1080/17429145.2011.603060 CrossRefGoogle Scholar
  292. Wheaton E, Kulshreshtha S, Wittrock V, Koshida G (2008) Dry times: hard lessons from the Canadian drought of 2001 and 2002. Can Geogr 52:241–262.  https://doi.org/10.1111/j.1541-0064.2008.00211.x CrossRefGoogle Scholar
  293. Williams LE, Pittman JK (2010) Dissecting pathways involved in manganese homeostasis and stress in higher plants. In: Hell R, Mendal RR (eds) Cell biology of metals and nutrients. Springer, Berlin, pp 95–117CrossRefGoogle Scholar
  294. Winfield MO, Allen AM, Burridge AJ, Barker GL, Benbow HR, Wilkinson PA, Pirani A (2016) High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol J 14:1195–1206CrossRefGoogle Scholar
  295. Woo SH, Kimura M, Higa-Nishiyama A, Dohmae N, Hamamoto H, Jong SK, Yamaguchi I (2003) Proteome analysis of wheat lemma. Biosci Biotechnol Biochem 67:2486–2491PubMedCrossRefGoogle Scholar
  296. Wu H, Ni Z, Yao Y, Guo G, Sun Q (2008) Cloning and expression profiles of 15 genes encoding WRKY transcription factor in wheat (Triticum aestivum L.). Prog Nat Sci 18:697–705CrossRefGoogle Scholar
  297. Xia N, Zhang G, Liu XY, Deng L, Cai GL, Zhang Y, Kang ZS (2010a) Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Mol Biol Rep 37:3703–3712PubMedCrossRefPubMedCentralGoogle Scholar
  298. Xia N, Zhang G, Sun YF, Zhu L, Xu LS, Chen XM, Kang ZS (2010b) TaNAC8, a novel NAC transcription factor gene in wheat, responds to stripe rust pathogen infection and abiotic stresses. Physiol Mol Plant Pathol 74:394–402CrossRefGoogle Scholar
  299. Xiao BZ, Chen X, Xiang CB, Tang N, Zhang QF, Xiong LZ (2009) Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant 2:73–83PubMedCrossRefGoogle Scholar
  300. Xiaozhi L, Zhihe F, Zhanwu W, Rengang Z (2009) Heat shock proteins in wheat. Acta Agric Nucl Sin 27:51–54Google Scholar
  301. Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183PubMedPubMedCentralCrossRefGoogle Scholar
  302. Xu Y, Li S, Li L, Zhang X, Xu H, An D (2013) Mapping QTLs for salt tolerance with additive, epistatic and QTL× treatment interaction effects at seedling stage in wheat. Plant Breed 132:276–283CrossRefGoogle Scholar
  303. Xue ZY, Zhi DY, Xue GP, Zhang H, Zhao YX, Xia GM (2004) Enhanced salt tolerance of transgenic wheat (Tritivumaestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849–859CrossRefGoogle Scholar
  304. Xue GP, Bower NI, Mcintyre CL, Riding GA, Kazan K, Shorter R (2006) TaNAC69 from the NAC superfamily of transcription factors is up-regulated by abiotic stresses in wheat and recognizes two consensus DNA-binding sequences. Funct Plant Biol 33:43–57CrossRefGoogle Scholar
  305. Xue G, Way H, Richardson T, Drenth J, Joyce P, Mcintyre C (2011) Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol Plant 4:697–712.  https://doi.org/10.1093/mp/ssr013 CrossRefPubMedGoogle Scholar
  306. Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620PubMedCrossRefGoogle Scholar
  307. Yamaguchi M, Ohtani M, Mitsuda N, Kubo M, Ohme-Takagi M, Fukuda H, Demura T (2010) VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. Plant Cell 22:1249–1263PubMedPubMedCentralCrossRefGoogle Scholar
  308. Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene. Proc Natl Acad Sci U S A 100:6263–6268PubMedPubMedCentralCrossRefGoogle Scholar
  309. Yan LL, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644 PubMedPubMedCentralCrossRefGoogle Scholar
  310. Yang X, Feng Y, He Z, Stoffell PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18:339–353.  https://doi.org/10.1016/j.jtemb.2005.02.007 CrossRefPubMedGoogle Scholar
  311. Yang S, Seo P, Yoon H, Park C (2011) The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. Plant Cell 23:2155–2168.  https://doi.org/10.1105/tpc.111.084913 CrossRefPubMedPubMedCentralGoogle Scholar
  312. Yokotani N, Tsuchida-Mayama T, Ichikawa H, Mitsuda N, Ohme-Takagi M, Kaku H, Nishizawa Y (2014) OsNAC111, a blast disease–responsive transcription factor in rice, positively regulates the expression of defense-related genes. Mol Plant-Microbe Interact 27:1027–1034PubMedCrossRefGoogle Scholar
  313. Zainuddin B (2005) Trangene inheritance in transgenic wheat. J Matematika dan Sains 10:1–9Google Scholar
  314. Zair I, Chlyah A, Sabounji K, Tittahsen M, Chlyah H (2003) Salt tolerance improvement in some wheat cultivars after application of in vitro selection pressure. Plant Cell Tissue Organ Cult 73:237–244CrossRefGoogle Scholar
  315. Zambryski P, Joos H, Genetello C, Leemans J, Van Montagu M, Schell J (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J2:2143–2150CrossRefGoogle Scholar
  316. Zandalinas SI, Rivero RM, Martínez V, Gómez-Cadenas A, Arbona V (2016) Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant Biol 16:105.  https://doi.org/10.1186/s12870-016-0791-7 CrossRefPubMedPubMedCentralGoogle Scholar
  317. Zandalinas SI, Sales C, Beltrán J, Gómez-Cadenas A, Arbona V (2017) Activation of secondary metabolism in citrus plants is associatedto sensitivity to combined drought and high temperatures. Front Plant Sci 7:1954.  https://doi.org/10.3389/fpls.2016.01954 CrossRefPubMedPubMedCentralGoogle Scholar
  318. Zeinali G, Mirzaghaderi G, Badakhshan H (2013) Genome structure and salt stress response of some segregated lines from wheat and Tritipyrum crosses. Cytologia 78:367–377CrossRefGoogle Scholar
  319. Zhang X, Cai X (2011) Climate change impacts on global agricultural land availability. Environ Res Lett 6:1–8Google Scholar
  320. Zhang H, Sreenivasulu N, Weschke W, Stein N, Rudd S, Radchuk V, Langridge P (2004) Large-scale analysis of the barley transcriptome based on expressed sequence tags. Plant J 40:276–290PubMedCrossRefGoogle Scholar
  321. Zhang GF, Meng L, Mao PCH (2007) Study on the identification of the drought resistance of Elytrigia repensand E. intermedia at seedling stage. Acta Agric Bor Sin 22:54–59Google Scholar
  322. Zhang LC, Zhao GY, Jia JZ, Kong XY (2009) Cloning and analysis of salt stress-related gene TaMYB32 in wheat. Acta Agron Sin 35:1181–1187CrossRefGoogle Scholar
  323. Zhang L, Zhao G, Jia J, Liu X, Kong X (2012a) Molecular characterization of 60 isolated wheat MYB genes and analysis of their expression during abiotic stress. J Exp Bot 63:203–214PubMedCrossRefGoogle Scholar
  324. Zhang L, Zhao G, Xia C, Jia J, Liu X, Kong X (2012b) Overexpression of a wheat MYB transcription factor gene, TaMYB56-B, enhances tolerances to freezing and salt stresses in transgenic Arabidopsis. Gene 505:100–107PubMedCrossRefGoogle Scholar
  325. Zhang L, Zhang L, Xia C, Zhao G, Jia J, Kong X (2016) The novel wheat transcription factor TaNAC47 enhances multiple abiotic stress tolerances in transgenic plants. Front Plant Sci 6:1174.  https://doi.org/10.3389/fpls.2015.01174 CrossRefPubMedPubMedCentralGoogle Scholar
  326. Zhao Q, Gallego-Giraldo L, Wang H, Zeng Y, Ding SY, Chen F, Dixon RA (2010) An NAC transcription factor orchestrates multiple features of cell wall development in Medicago truncatula. Plant J 63:100–114PubMedGoogle Scholar
  327. Zhao L, Sun YL, Cui SX, Chen M, Yang HM, Liu HM, Huang F (2011) Cd-induced changes in leaf proteome of the hyperaccumulator plant Phytolacca americana. Chemosphere 85:56–66PubMedCrossRefGoogle Scholar
  328. Zhao Y, Sun J, Xu P, Zhang R, Li L (2014) Intron-mediated alternative splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B regulates cell wall thickening during fiber development in Populus species. Plant Physiol 164:765–776.  https://doi.org/10.1104/pp.113.231134 CrossRefPubMedPubMedCentralGoogle Scholar
  329. Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, Durand JL (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci 114:9326–9331PubMedCrossRefGoogle Scholar
  330. Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379:985–989.  https://doi.org/10.1016/j.bbrc.2008.12.163 CrossRefPubMedGoogle Scholar
  331. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273Google Scholar
  332. Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324.  https://doi.org/10.1016/j.cell.08.029 CrossRefPubMedPubMedCentralGoogle Scholar
  333. Zhu B, Choi DW, Fenton R, Close TJ (2000) Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol Gen Genet 246:145–153CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Neerja Srivastava
    • 1
  1. 1.Department of BiochemistryIBSBT, CSJM UniversityKanpurIndia

Personalised recommendations