Advertisement

Abiotic Stress Signaling in Wheat Crop

  • Sana Tounsi
  • Kaouthar Feki
  • Faiçal BriniEmail author
Chapter

Abstract

Plants have developed different mechanisms to overcome abiotic stresses. These responses induce change in gene expression, regulation of protein amount, alteration of cellular metabolism, and change in ions homeostasis. Cell signaling depends on the sucrose non-fermenting 1-related protein kinase (SnRK) family under environmental and hormonal stresses. Plant SnRKs are key sensors of cellular energy status. Phytohormones play key roles during germination, growth, development, and flowering and coordinate various signal transduction pathways in plants during environmental stresses. Here, we review recent advances in elucidating the signaling pathways for abiotic stresses. We will also focus on how plant SnRK may be related to mechanisms of gene expression, metabolism, physiology, growth, and development in wheat. Finally, the cross talk between signal transduction pathways involving phytohormone is highlighted with a focus on the response of wheat to abiotic stresses.

Keywords

Abiotic stress Phytohormones Protein kinase Stress signaling Wheat 

Abbreviations

ABA

Abscisic acid

AREB/ABF

ABA-responsive element-binding factor/ABRE-binding factor

CDPK

Calcium-dependent protein kinase

DREB/CBF

Drought-responsive element-binding factor/c-repeat-binding factor

HKT

High-affinity K+ transporter

HSFs

Heat shock factors

HSPs

Heat shock proteins

MAPK

Mitogen-activated protein kinase

MYBRS/MYCRS

MYB recognition site/MYC recognition site

NAC

nam/ataf/cuc

ROS

Reactive oxygen species

References

  1. Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274CrossRefGoogle Scholar
  2. Almeselmani M, Deshmukh PS, Sairam RK, Kushwaha SR, Singh TP (2006) Protective role of antioxidant enzymes under high temperature stress. Plant Sci 171:382–388CrossRefGoogle Scholar
  3. Alvarez S, Choudhury SR, Pandey S (2014) Comparative quantitative proteomics analysis of the ABA response of roots of drought-sensitive and drought-tolerant wheat varieties identifies proteomic signatures of drought adaptability. J Proteome Res 13:1688–1701PubMedCrossRefPubMedCentralGoogle Scholar
  4. Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28:169–183PubMedCrossRefPubMedCentralGoogle Scholar
  5. Ashraf M, Foolad MA (2007) Improving plant abiotic-stress resistance by exogenous application of osmoprotectants glycine betaine and proline. Environ Exp Bot 59:206–216CrossRefGoogle Scholar
  6. Baloglu MC, Inal B, Kavas M, Unver T (2014) Diverse expression pattern of wheat transcription factors against abiotic stresses in wheat species. Gene 550:117–122PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bartels S, Anderson JC, Gonzalez Besteiro MA, Carreri A, Hirt H, Buchala A, Metraux J-P, Peck SC, Ulm R (2009) MAP kinase phosphatase1 and protein tyrosine phosphatase1 are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis. Plant Cell 21(9):2884–2897. (Online)PubMedPubMedCentralCrossRefGoogle Scholar
  8. Beardsell MF, Cohen D (1975) Relationships between leaf water status, abscisic acid levels, and stomatal resistance in maize and sorghum. Plant Physiol 56:207–212PubMedPubMedCentralCrossRefGoogle Scholar
  9. Belin C, De Franco PO, Bourbousse C, Chaignepain S, Schmitter JM, Vavasseur A, Giraudat J, Barbier-Brygoo H, Thomine S (2006) Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol 141:1316–1327PubMedPubMedCentralCrossRefGoogle Scholar
  10. Berthomieu P, Conejero G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Véry AA, Sentenac H, Casse F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22:2004–2014PubMedPubMedCentralCrossRefGoogle Scholar
  11. Boudsocq M, Barbier-Brygoo H, Lauriere C (2004) Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. Biol Chem 279:41758–41766CrossRefGoogle Scholar
  12. Boudsocq M, Droillard MJ, Barbier-Brygoo H, Lauriere C (2007) Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol Biol 63:491–503PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bouzroud S, Gouiaa S, Hu N, Bernadac A, Mila I, Bendaou N, Smouni AA, Bouzayen M, Zouine M (2018) Auxin response factors (ARFs) are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum). PLoS One 13(2):e0193517.  https://doi.org/10.1371/journal.pone.0193517 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928PubMedPubMedCentralCrossRefGoogle Scholar
  15. Causier B, Lloyd J, Stevens L, Davies B (2012) TOPLESS co-repressor interactions and their evolutionary conservation in plants. Plant Signal Behav 7:325–328PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chauhan H, Khurana N, Tyagi AK, Khurana JP, Khurana P (2011) Identification and characterization of high temperature stress responsive genes in bread wheat (Triticum aestivum L.) and their regulation at various stages of development. Plant Mol Biol 75:35–51CrossRefGoogle Scholar
  17. Chen L, Han J, Deng X, Tan S, Li L, Li L, Zhou J, Peng H, Yang G, He G, Zhang W (2016) Expansion and stress responses of AP2/EREBP superfamily in Brachypodium Distachyon. Sci Rep 6:21623.  https://doi.org/10.1038/srep21623 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448CrossRefGoogle Scholar
  19. Chipilski RR, Kocheva KV, Nenova VR, Georgiev GI (2012) Physiological responses of two wheat cultivars to soil drought. Z Naturforsch C 67:181–186PubMedCrossRefPubMedCentralGoogle Scholar
  20. Clarkson DT, Hanson JB (1980) The mineral nutrition of higher-plants. Annu Rev Plant Physiol 31:239–298CrossRefGoogle Scholar
  21. Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 413(2):217–226PubMedCrossRefPubMedCentralGoogle Scholar
  22. Cushman J, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124PubMedCrossRefPubMedCentralGoogle Scholar
  23. Deikman J, Petracek M, Heard JE (2012) Drought tolerance through biotechnology: improving translation from the laboratory to farmers’ fields. Curr Opin Biotechnol 23:243–250PubMedCrossRefPubMedCentralGoogle Scholar
  24. Di DW, Zhang C, Luo P, An CW, Guo GQ (2015) The biosynthesis of auxin: how many paths truly lead to IAA? Plant Growth Regul 78:275–285CrossRefGoogle Scholar
  25. Djemal R, Khoudi H (2015) Isolation and molecular characterization of a novel WIN1/SHN1 ethylene-responsive transcription factor TdSHN1 from durum wheat (Triticum turgidum. L. subsp. durum). Protoplasma 252:1461–1473PubMedCrossRefPubMedCentralGoogle Scholar
  26. Djemal R, Khoudi H (2016) TdSHN1, a WIN1/SHN1-type transcription factor, imparts multiple abiotic stress tolerance in transgenic tobacco. Environ Exp Bot 131:89–100CrossRefGoogle Scholar
  27. Dubois M, Van den Broeck L, Inzé D (2018) The pivotal role of ethylene in plant growth. Trends Plant Sci 23:311–323PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet ED, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encoded transcription activators that function in drought, high salt and cold- responsive gene expression. Plant J 33:751–763PubMedCrossRefPubMedCentralGoogle Scholar
  29. Eversole K, Feuillet C, Mayer KFX, Rogers J (2014) Slicing the wheat genome. Science 345:285–285PubMedCrossRefPubMedCentralGoogle Scholar
  30. Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen YT, Wu C, Tabassum MA, Chun MX, Afzal M, Jan A, Jan MT, Huang JL (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22:4907–4921CrossRefGoogle Scholar
  31. Feki K, Quintero FJ, Pardo JM, Masmoudi K (2011) Regulation of durum wheat Na+/H+ exchanger TdSOS1 by phosphorylation. Plant Mol Biol 76:545–556PubMedCrossRefPubMedCentralGoogle Scholar
  32. Feki K, Quintero FJ, Khoudi H, Leidi EO, Masmoudi K, Pardo JM, Brini F (2014) A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis. Plant Cell Rep 33:277–288PubMedCrossRefPubMedCentralGoogle Scholar
  33. Feki K, Tounsi S, Masmoudi K, Brini F (2016) The durum wheat plasma membrane Na+/H+ antiporter SOS1 is involved in oxidative stress response. Protoplasma 254:1725–1734PubMedCrossRefPubMedCentralGoogle Scholar
  34. Feng JX, Liu D, Pan Y, Gong W, Ma LG, Luo JC, Deng XW, Zhu YX (2005) An annotation update via cDNA sequence analysis and comprehensive profiling of developmental, hormonal or environmental responsiveness of the Arabidopsis AP2/EREBP transcription factor gene family. Plant Mol Biol 59:853–868PubMedCrossRefPubMedCentralGoogle Scholar
  35. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963PubMedCrossRefPubMedCentralGoogle Scholar
  36. Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442PubMedCrossRefPubMedCentralGoogle Scholar
  37. Garthwaite AJ, von Bothmer R, Colmer TD (2005) Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl into the shoots. J Exp Bot 56:2365–2378PubMedCrossRefPubMedCentralGoogle Scholar
  38. Gorham J, Wyn Jones RG, Bristol A (1990) Partial characterization of the trait for enhanced K+-Na+ discrimination in the D genome of wheat. Planta 180:590–597PubMedCrossRefPubMedCentralGoogle Scholar
  39. Guo Y, Halfter U, Ishitani M, Zhu JK (2001) Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell 13:1383–1400PubMedPubMedCentralCrossRefGoogle Scholar
  40. Guo Y, Xiong L, Song CP, Gong D, Halfter U, Zhu JK (2002) A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell 3:233–244PubMedCrossRefPubMedCentralGoogle Scholar
  41. Guo Y, Qiu QS, Quintero FJ, Pardo JM, Ohta M, Zhang C, Schumaker KS, Zhu JK (2004) Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell 16:435–449PubMedPubMedCentralCrossRefGoogle Scholar
  42. Guoth A, Tari I, Galle A, Csiszar J, Pecsvaradi A, Cseuz L, Erdei L (2009) Comparison of the drought stress responses of tolerant and sensitive wheat cultivars during grain filling: changes in flag leaf photosynthetic activity, ABA levels, and grain yield. J Plant Growth Regul 28:167–176CrossRefGoogle Scholar
  43. Halford NG (2006) Regulation of carbon and amino acid metabolism: roles of sucrose nonfermenting-1-related protein kinase-1 and general control nonderepressible-2-related protein kinase. Adv Bot Res 43:93–142CrossRefGoogle Scholar
  44. Halford NG, Hey S, Jhurreea D, Laurie S, McKibbin RS, Paul M, Zhang Y (2003) Metabolic signalling and carbon partitioning: role of Snf1-related (SnRK1) protein kinase. J Exp Bot 54(382):467–475PubMedCrossRefPubMedCentralGoogle Scholar
  45. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499PubMedCrossRefPubMedCentralGoogle Scholar
  46. Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ 33:552–565PubMedCrossRefGoogle Scholar
  47. Henson IE (1984) Effects of atmospheric humidity on abscisic acid accumulation and water status in leaves of rice (Oryza sativa L.). Ann Bot 54:569–582CrossRefGoogle Scholar
  48. Hey SJ, Byrne E, Halford NG (2010) The interface between metabolic and stress signaling. Ann Bot 105:197–203PubMedCrossRefPubMedCentralGoogle Scholar
  49. Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052CrossRefGoogle Scholar
  50. Hongchun X, Huijun G, Yongdun X, Linshu Z, Jiayu G, Shirong Z, Junhui L, Luxiang L (2017) RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant. Sci Rep 7:2731.  https://doi.org/10.1038/s41598-017-03024-0 CrossRefGoogle Scholar
  51. Horie T, Costa A, Kim TH, Han MJ, Horie R, Leung HY, Miyao A, Hirochika H, An G, Schroeder JI (2007) Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J 26:3003–3014PubMedPubMedCentralCrossRefGoogle Scholar
  52. Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci 14:660–668PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, Harmon AC (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680PubMedPubMedCentralCrossRefGoogle Scholar
  54. Huseynova IM (2012) Photosynthetic characteristics and enzymatic antioxidant capacity of leaves from wheat cultivars exposed to drought. Biochim Biophys Acta Bioenerg 1817:1516–1523CrossRefGoogle Scholar
  55. Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245PubMedCrossRefPubMedCentralGoogle Scholar
  56. Ichimura K, Tena G, Henry Y, Zhang S, Hirt H et al (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308CrossRefGoogle Scholar
  57. Iqbal M, Raja NI, Yasmeen F, Hussain M, Ejaz M, Shah MA (2017) Impacts of heat stress on wheat: a critical review. Adv Crop Sci Technol 5:1–9CrossRefGoogle Scholar
  58. Ishitani M, Liu J, Halfter U, Kim CS, Wei M, Zhu JK (2000) SOS3 function in plant salt tolerance requires myristoylation and calcium binding. Plant Cell 12:1667–1677PubMedPubMedCentralCrossRefGoogle Scholar
  59. Jabnoune M, Espéout S, Mieulet D, Fizames C, Verdeil JL, Conéjéro G, Rodriguez-Navarro A, Sentenac H, Guiderdoni E, Abdelly C, Véry AA (2009) Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiol 150:1955–1971PubMedPubMedCentralCrossRefGoogle Scholar
  60. Jaillon O, Aury JM, Noel B et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467PubMedPubMedCentralCrossRefGoogle Scholar
  61. Jain M, Khurana JP (2009) Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J 276:3148–3162PubMedCrossRefPubMedCentralGoogle Scholar
  62. James RA, Blake C, Zwart AB, Hare RA, Rathjen AJ, Munns R (2012) Impact of ancestral wheat sodium exclusion genes Nax1 and Nax2 on grain yield of durum wheat on saline soils. Funct Plant Biol 39:609–618CrossRefGoogle Scholar
  63. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291PubMedCrossRefPubMedCentralGoogle Scholar
  64. Katou S, Kuroda K, Seo S, Yanagawa Y, Tsuge T, Yamazaki M et al (2007) A calmodulin-binding mitogen-activated protein kinase phosphatase is induced by wounding and regulates the activities of stress related mitogen-activated protein kinases in rice. Plant Cell Physiol 48:332–344PubMedCrossRefPubMedCentralGoogle Scholar
  65. Klay I, Pirrello J, Riahi L, Bernadac A, Cherif A, Bouzayen M, Bouzid S (2014) Ethylene response factor Sl-ERF.B.3 is responsive to abiotic stresses and mediates salt and cold stress response regulation in tomato. Sci World J 2014:167681.  https://doi.org/10.1155/2014/167681 CrossRefGoogle Scholar
  66. Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T (2004) Differential activation of the rice sucrose nonfermenting1-related protein kinase 2 family by hyperosmotic stress and abscisic acid. Plant Cell 16:1163–1177PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kosová K, Vítámvás P, Prášil IT, Renaut J (2011) Plant proteome changes under abiotic stress contribution of proteomics studies to understanding plant stress response. J Proteome 74:1301–1322CrossRefGoogle Scholar
  68. Kosová K, Vítámvás P, Urban MO, Klíma M, Roy A, Prášil IT (2015) Biological networks underlying abiotic stress tolerance in temperate crops—a proteomic perspective. Int J Mol Sci 16:20913–20942PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kronzucker HJ, Britto DT (2011) Sodium transport in plants: a critical review. New Phytol 189:54–81PubMedCrossRefPubMedCentralGoogle Scholar
  71. Kulik A, Wawer I, Krzywinska E, Bucholc M, Dobrowolska G (2011) SnRK2 protein kinases key regulators of plant response to abiotic stresses. OMICS 15:859–872PubMedPubMedCentralCrossRefGoogle Scholar
  72. Li SB, Xie ZZ, Hu CG, Zhang JZ (2016) A review of auxin response factors (ARFs) in plants. Front Plant Sci 7:47.  https://doi.org/10.3389/fpls.2016.00047 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci U S A 97:3730–3734PubMedPubMedCentralCrossRefGoogle Scholar
  74. Loutfy N, El-Tayeb MA, Hassanen AM, Moustafa MF, Sakuma Y, Inouhe M (2012) Changes in the water status and osmotic solute contents in response to drought and salicylic acid treatments in four different cultivars of wheat (Triticum aestivum). J Plant Res 125:173–184PubMedCrossRefPubMedCentralGoogle Scholar
  75. Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068PubMedPubMedCentralGoogle Scholar
  76. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158PubMedCrossRefPubMedCentralGoogle Scholar
  77. Mao XG, Zhang HY, Qian XY, Li A, Zhao GY, Jing RL (2012) TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot 63:2933–2946PubMedPubMedCentralCrossRefGoogle Scholar
  78. Mäser P, Eckelman B, Vaidyanathan R, Horie T, Fairbairn DJ, Kubo M, Yamagami M, Yamaguchi K, Nishimura M, Uozumi N, Robertson W, Sussman MR, Schroeder JI (2002) Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Lett 531:157–161PubMedCrossRefPubMedCentralGoogle Scholar
  79. Mayer KFX, Waugh R, Langridge P, Close TJ, Wise RP, Graner A, Matsumoto T, Sato K, Schulman A, Muehlbauer GJ, Sato K, Close TJ, Wise RP, Stein N (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716PubMedCrossRefPubMedCentralGoogle Scholar
  80. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410PubMedCrossRefPubMedCentralGoogle Scholar
  81. Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochem Biophys Acta 1819:86–96PubMedPubMedCentralGoogle Scholar
  82. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663PubMedCrossRefPubMedCentralGoogle Scholar
  83. Munns R, James RA (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253:201–218CrossRefGoogle Scholar
  84. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681CrossRefGoogle Scholar
  85. Murakami HK, Pain D, Blobel G (1988) 70-kDa heat shock-related protein is one of at least two distinct cytosolic factors stimulating protein import into mitochondria. J Cell Biol 107:2051–2057PubMedCrossRefPubMedCentralGoogle Scholar
  86. Mwadzingeni L, Shimelis H, Dube E, Laing MD, Tsil TJ (2016) Breeding wheat for drought tolerance: progress and technologies. J Integr Agric 15:935–943CrossRefGoogle Scholar
  87. Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432PubMedPubMedCentralCrossRefGoogle Scholar
  88. Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:97–103PubMedCrossRefPubMedCentralGoogle Scholar
  89. Ng LM, Melcher K, The BT, Xu HE (2014) Abscisic acid perception and signaling: structural mechanisms and applications. Acta Pharmacol Sin 35:567–584PubMedPubMedCentralCrossRefGoogle Scholar
  90. Nieves-Cordones M, Al Shiblawi FR, Sentenac H (2016) Roles and transport of sodium and potassium in plants. Metal Ions Life Sci 16:291–324CrossRefGoogle Scholar
  91. Obata T, Kitamoto HK, Nakamura A, Fukuda A, Tanaka Y (2007) Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiol 144:1978–1985PubMedPubMedCentralCrossRefGoogle Scholar
  92. Ohta M, Guo Y, Halfter U, Zhu JK (2003) A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc Natl Acad Sci U S A 100:11771–11776PubMedPubMedCentralCrossRefGoogle Scholar
  93. Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10:239–247PubMedCrossRefPubMedCentralGoogle Scholar
  94. Oomen RJFJ, Benito B, Sentenac H, Rodríguez-Navarro A, Talón M, Véry AA, Domingo C (2012) HKT2;2/1, a K+-permeable transporter identified in a salt-tolerant rice cultivar through surveys of natural genetic polymorphism. Plant J 71:750–762PubMedCrossRefPubMedCentralGoogle Scholar
  95. Pardo JM, Cubero B, Leidi EO, Quintero FJ (2006) Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J Exp Bot 57:1181–1199PubMedCrossRefPubMedCentralGoogle Scholar
  96. Park SY, Fung P, Nishimura N, Jensen DR, Hiroaki F, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits PP2Cs via the PYR/PYL family of ABA binding START proteins. Science 324:1068–1071PubMedPubMedCentralGoogle Scholar
  97. Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295CrossRefGoogle Scholar
  98. Pelham HRB (1985) Activation of heat-shock genes in eukaryotes. Trends Genet 1:31–35CrossRefGoogle Scholar
  99. Pirrello J, Prasad BCN, Zhang W, Chen K, Mila I, Zouine M, Latché A, Pech JC, Ohme-Takagi M, Regad F, Bouzayen M (2012) Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene. BMC Plant Biol 12:190.  https://doi.org/10.1186/1471-2229-12-190 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Platten JD, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ, Fairbairn DJ, Horie T, Leigh RA, Lin HX, Luan S, Maser P, Pantoja O, Rodrıguez-Navarro A, Schachtman AA, Schroeder JI, Sentenac H, Uozumi N, Very AA, Zhu JK, Dennis ES, Tester M (2006) Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci 11:372–374PubMedCrossRefPubMedCentralGoogle Scholar
  101. Plett JM, Wilkins O, Campbell MM, Ralph SG, Regan S (2010) Endogenous overexpression of Populus MYB186 increases trichome density, improves insect pest resistance, and impacts plant growth. Plant J 64(3):419–432PubMedCrossRefPubMedCentralGoogle Scholar
  102. Qin D, Wu H, Peng H, Yao Y, Ni Z, Li Z, Zhou C, Sun Q (2008) Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using wheat genome array. BMC Genomics 9:432.  https://doi.org/10.1186/1471-2164-9-432 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Qing L, Shijuan Y, Yang T, Zhang S, Chen Y-Q, Liu B (2017) Small RNAs in regulating temperature stress response in plants. J Integr Plant Biol 59:774–791CrossRefGoogle Scholar
  104. Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci U S A 99:8436–8441PubMedPubMedCentralCrossRefGoogle Scholar
  105. Quintero FJ, Blatt MR, Pardo JM (2000) Functional conservation between yeast and plant endosomal Na+/H+ antiporters. FEBS Lett 471:224–228PubMedCrossRefPubMedCentralGoogle Scholar
  106. Quintero FJ, Martinez-Atienza J, Villalta I, Jiang X, Kim WY, Ali Z, Fujii H, Mendoza I, Yun DJ, Zhu JK, Pardo JM (2011) Activation of the plasma membrane Na+/H+ antiporter salt-overly-sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc Natl Acad Sci U S A 108:2611–2616PubMedPubMedCentralCrossRefGoogle Scholar
  107. Rampinoa P, Mita G, Pataleoa S, De Pascali M, Di Fonzoc N, Perrottaa C (2009) Acquisition of thermotolerance and HSP gene expression in durum wheat (Triticum durum Desf.) cultivars. Environ Exp Bot 66:257–264CrossRefGoogle Scholar
  108. Randall LL, Hardy SJS (1986) Correlation of competence for export with lack of tertiary structure of the mature species: a study in vivo of maltose-binding protein in E. coli. Cell 46:921–928PubMedCrossRefPubMedCentralGoogle Scholar
  109. Razzaque S, Elias SM, Biswas S, Haque T, Seraj ZI (2013) Cloning of the plasma membrane sodium/hydrogen antiporter SOS1 for its over expression in rice. Plant Tissue Cult Biotechnol 23:263–273CrossRefGoogle Scholar
  110. Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1160CrossRefGoogle Scholar
  111. Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37:613–620CrossRefGoogle Scholar
  112. Rinalducci S, Egidi MG, Karimzadeh G, Jazii FR, Zolla L (2011) Proteomic analysis of a spring wheat cultivar in response to prolonged cold stress. Electrophoresis 32:1807–1818PubMedCrossRefPubMedCentralGoogle Scholar
  113. Rubio F, Gassmann W, Schroeder JI (1995) Sodium driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663PubMedCrossRefPubMedCentralGoogle Scholar
  114. Rus A, Lee BH, Munoz-Mayor A, Sharkhu A, Miura K, Zhu JK, Bressan RA, Hasegawa PM (2004) AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol 136:2500–2511PubMedPubMedCentralCrossRefGoogle Scholar
  115. Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571.  https://doi.org/10.3389/fpls.2016.00571 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Saidi MN, Mergby D, Brini F (2017) Identification and expression analysis of the NAC transcription factor family in durum wheat (Triticum turgidum L. ssp. durum). Plant Physiol Biochem 112:117–128PubMedCrossRefPubMedCentralGoogle Scholar
  117. Sakuma YL, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009PubMedCrossRefPubMedCentralGoogle Scholar
  118. Sanchez-Barrena MJ, Fujii H, Angulo I, Martinez-Ripoll M, Zhu JK, Albert A (2007) The structure of the c-terminal domain of the protein kinase AtSOS2 bound to the calcium sensor AtSOS3. Mol Cell 26:427–435PubMedPubMedCentralCrossRefGoogle Scholar
  119. Sarkar NK, Kim YK, Grover A (2009) Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics 10:393.  https://doi.org/10.1186/1471-2164-10-393 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Sassi A, Mieulet D, Khan I, Moreau B, Gaillard I, Sentenac H, Véry AA (2012) The rice monovalent cation transporter OsHKT2; 4: revisited ionic selectivity. Plant Physiol 160:498–510PubMedPubMedCentralCrossRefGoogle Scholar
  121. Sazegari S, Niazi A (2012) Isolation and molecular characterization of wheat (Triticum aestivum) dehydration responsive element binding factor (DREB) isoforms. Aust J Crop Sci 6:1037–1044Google Scholar
  122. Schachtman DP, Schröeder JI (1994) Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370:655–658PubMedCrossRefPubMedCentralGoogle Scholar
  123. Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002a) Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics 2:282–291PubMedCrossRefPubMedCentralGoogle Scholar
  124. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002b) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292CrossRefGoogle Scholar
  125. Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112:1209–1221PubMedPubMedCentralCrossRefGoogle Scholar
  126. Sharma MK, Kumar R, Solanke AU, Sharma R, Tyagi AK, Sharma AK (2010) Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Mol Gen Genomics 284:455–475CrossRefGoogle Scholar
  127. Shen YG, Zhang WK, He SJ, Zhang JS, Liu QS, Chen Y (2003) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet 106:923–930PubMedCrossRefPubMedCentralGoogle Scholar
  128. Shi HZ, Ishitani M, Kim CS, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci U S A 97:6896–6901PubMedPubMedCentralCrossRefGoogle Scholar
  129. Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and Type-A ARR genes in Arabidopsis. Plant Cell 24:2578–2595PubMedPubMedCentralCrossRefGoogle Scholar
  130. Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223PubMedCrossRefPubMedCentralGoogle Scholar
  131. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227CrossRefGoogle Scholar
  132. Sreenivasulu N, Harshavardhan VT, Govind G, Seiler C, Kohli A (2012) Contrapuntal role of ABA: does it mediate stress tolerance or plant growth retardation under long-term drought stress. Gene 506(2):265–273PubMedCrossRefPubMedCentralGoogle Scholar
  133. Stewart CR, Voetberg G (1985) Relationships between stress-induced ABA and proline accumulations and ABA-induced proline accumulation in excised barley leaves. Plant Physiol 79:24–27PubMedPubMedCentralCrossRefGoogle Scholar
  134. Stratonovitch P, Semenov MA (2015) Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change. J Exp Bot 66:3599–3609PubMedPubMedCentralCrossRefGoogle Scholar
  135. Sunarpi, Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan W-Y, Leung H-Y, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na + unloading from xylem vessels to xylem parenchyma cells. Plant J 44(6):928–938PubMedCrossRefPubMedCentralGoogle Scholar
  136. Szemenyei H, Hannon M, Long JA (2008) TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319:1384–1386PubMedPubMedCentralCrossRefGoogle Scholar
  137. Terashima A, Takumi S (2009) Allopolyploidization reduces alternative splicing efficiency for transcripts of the wheat DREB2 homolog, WDREB2. Genome 52:100–105PubMedCrossRefPubMedCentralGoogle Scholar
  138. Tester M, Davenport RJ (2003) Na+ transport and Na+ tolerance in higher plants. Ann Bot 91:503–527PubMedPubMedCentralCrossRefGoogle Scholar
  139. Thameur A, Ferchichi A, López-Carbonell M (2011) Quantification of free and conjugated abscisic acid in five genotypes of barley (Hordeum vulgare L.) under water stress conditions. S Afr J Bot 77:222–228CrossRefGoogle Scholar
  140. Tounsi S, Feki K, Hmidi D, Masmoudi K, Brini F (2017) Salt stress reveals differential physiological, biochemical and molecular responses in T. monococcum and T. durum wheat genotypes. Physiol Mol Biol Plants 23:517–552PubMedPubMedCentralCrossRefGoogle Scholar
  141. Ulm R, Revenkova E, Sansebastiano DI, Bechtold GP, Paszkowski J (2001) Mitogen-activated protein kinase phosphatase is required for genotoxic stress relief in Arabidopsis. Genes Dev 15:699–709PubMedPubMedCentralCrossRefGoogle Scholar
  142. Ulm R, Ichimura K, Mizoguchi T, Peck SC, Zhu T, Wang X et al (2002) Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP kinase phosphatase 1. Eur Mol Biol Organ J 21:6483–6493CrossRefGoogle Scholar
  143. Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI (2000) The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol 122:1249–1259PubMedPubMedCentralCrossRefGoogle Scholar
  144. Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Biotechnol 17:113–122CrossRefGoogle Scholar
  145. Véry AA, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54:575–603PubMedCrossRefPubMedCentralGoogle Scholar
  146. Wang TB, Gassmann W, Rubio F, Schröeder JI, Glass ADM (1998) Rapid up-regulation of HKT1, a high-affinity potassium transporter gene, in roots of barley and wheat following withdrawal of potassium. Plant Physiol 118:651–659PubMedPubMedCentralCrossRefGoogle Scholar
  147. Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602PubMedCrossRefPubMedCentralGoogle Scholar
  148. Wania SH, Kumarb V, Shriramc V, Sahd SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176CrossRefGoogle Scholar
  149. Wolters H, Jurgens G (2009) Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet 10:305–317PubMedCrossRefPubMedCentralGoogle Scholar
  150. Xu H, Jiang X, Zhan K, Cheng X, Chen X, Pardo JM, Cui D (2008) Functional characterization of a wheat plasma membrane Na/H antiporter in yeast. Arch Biochem Biophys 473:8–15PubMedCrossRefPubMedCentralGoogle Scholar
  151. Yamakawa Y, Saigusa M, Okada M, Kobayashi K (2004) Nutrient uptake by rice and soil solution composition under atmospheric CO2 enrichment. Plant Soil 259(1):367–372CrossRefGoogle Scholar
  152. Yang S, Vanderbeld B, Wan J, Huang Y (2010) Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant 3:469–490PubMedCrossRefPubMedCentralGoogle Scholar
  153. Yang X, Tian Z, Sun L, Chen B, Tubiello FN, Xu Y (2017) The impacts of increased heat stress events on wheat yield under climate change in China. Clim Chang 140:605–620CrossRefGoogle Scholar
  154. Yao X, Horie T, Xue S, Leung H-Y, Katsuhara M, Brodsky DE, Wu Y, Schroeder JI (2010) Differential sodium and potassium transport selectivities of the rice OsHKT2;1 and OsHKT2;2 transporters in plant cells. Plant Physiol 152:341–355PubMedPubMedCentralCrossRefGoogle Scholar
  155. Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Schinozaki K (2006) The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates ABA and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem 281:5310–5318PubMedCrossRefPubMedCentralGoogle Scholar
  156. Zaidi I, Ebel C, Touzri M, Herzog E, Evrard JL, Schmit AC, Masmoudi K, Hanin M (2010) TMKP1 is a novel wheat stress responsive MAP kinase phosphatase localized in the nucleus. Plant Mol Biol 73:325–338PubMedCrossRefPubMedCentralGoogle Scholar
  157. Zhang HY, Mao XG, Wang CS, Jing RL (2010) Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS ONE 5:16041.  https://doi.org/10.1371/journal.pone.0016041 CrossRefGoogle Scholar
  158. Zhang HY, Mao XG, Jing RL, Xie HM (2011) Characterization of a common wheat (Triticum aestivum L.) TaSnRK2.7 gene involved in abiotic stress responses. J Exp Bot 62:975–988PubMedCrossRefPubMedCentralGoogle Scholar
  159. Zhang L, Zhao G, Xia C, Jia J, Xu L, Kong X (2012) A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis. J Exp Bot 63:5873–5885PubMedCrossRefPubMedCentralGoogle Scholar
  160. Zhang HY, Li WY, Mao XG, Jing RL, Jia HF (2016) Differential activation of the wheat SnRK2 family by abiotic stresses. Front Plant Sci 7:420.  https://doi.org/10.3389/fpls.2016.00420 CrossRefPubMedPubMedCentralGoogle Scholar
  161. Zhang H, Jing R, Mao X (2017) Functional characterization of TaSnRK2.8 promoter in response to abiotic stresses by deletion analysis in transgenic Arabidopsis. Front Plant Sci 8:1198.  https://doi.org/10.3389/fpls.2017.01198 CrossRefPubMedPubMedCentralGoogle Scholar
  162. Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64PubMedPubMedCentralCrossRefGoogle Scholar
  163. Zhao B, Ge L, Liang R, Li W, Ruan K, Lin H, Jin Y (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol:10–29Google Scholar
  164. Zhou X, Naguro I, Ichijo H, Watanabe K (2016) Mitogen-activated protein kinases as key players in osmotic stress signaling. Biochim Biophys Acta 1860:2037–2052PubMedCrossRefPubMedCentralGoogle Scholar
  165. Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948PubMedPubMedCentralCrossRefGoogle Scholar
  166. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71PubMedCrossRefPubMedCentralGoogle Scholar
  167. Zhu JK (2002) S D S S T P. Annu Rev Plant Biol 53(1):247–273Google Scholar
  168. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445PubMedCrossRefPubMedCentralGoogle Scholar
  169. Zhuang J, Cai B, Peng RH, Zhu B, Jin XF, Xue Y, Gao F, Fu XY, Tian YS, Zhao W, Qiao YS, Zhang Z, Xiong AS, Yao QH (2008) Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa. Biochem Biophys Res Commun 371:468–474PubMedCrossRefPubMedCentralGoogle Scholar
  170. Zouine M, Fu Y, Chateigner-Boutin A-L, Mila I, Frasse P, Wang H, Audran C, Roustan JP, Bouzayen M (2014) Characterization of the tomato ARF gene family uncovers a multi-levels post-transcriptional regulation including alternative splicing. PLoS One 9:e84203.  https://doi.org/10.1371/journal.pone.0084203 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)University of SfaxSfaxTunisia
  2. 2.Laboratory of Legumes, Centre of Biotechnology Bordj CedriaUniversity of Carthage-TunisHammam LifTunisia

Personalised recommendations