Advertisement

Compact HTS Diplexers Using Stub-Loaded Resonator

  • Haiwen LiuEmail author
  • Baoping Ren
  • Xuehui Guan
  • Pin Wen
  • Tao Zuo
Chapter

Abstract

In microwave communication systems, multi-band, planar, low insertion loss, and flexible passband frequencies are always important requirements for microwave component design.

References

  1. 1.
    Y. Horii, C. Caloz, T. Itoh, Super-compact multilayered left-handed transmission line and diplexer application. IEEE Microw. Theory Techn. 53(4), 1527–1534 (2005)CrossRefGoogle Scholar
  2. 2.
    T. Yang, P.-L. Chi, T. Itoh, High isolation and compact diplexer using the hybrid resonators. IEEE Microw. Wirel. Compon. Lett. 20(10), 551–553 (2010)CrossRefGoogle Scholar
  3. 3.
    S. Srisathit, S. Patisang, R. Phromloungsri, S. Bunnjaweht, S. Kosulvit, M. Chongcheawchamnan, High isolation and compact size microstrip hairpin diplexer. IEEE Microw. Wirel. Compon. Lett. 15(2), 101–103 (2005)CrossRefGoogle Scholar
  4. 4.
    X.H. Guan, F.Q. Yang, H.W. Liu, L. Zhu, Compact and high-isolation diplexer using dual-mode stub-loaded resonators. IEEE Microw. Wirel. Compon. Lett. 24(6), 385–387 (2014)CrossRefGoogle Scholar
  5. 5.
    M.-L. Chuang, M.-T. Wu, Microstrip diplexer design using common T-shaped resonator. IEEE Microw. Wirel. Compon. Lett. 21(11), 583–585 (2011)CrossRefGoogle Scholar
  6. 6.
    A.M. Abu-Hudrouss, A.B. Jayyousi, M.J. Lancaster, Triple-band HTS filter using dual spiral resonators with capacitive-loading. IEEE Trans. Appl. Supercond. 18(3), 1728–1732 (2008)CrossRefGoogle Scholar
  7. 7.
    R.I. Cameron, M. Yu, Design of manifold-coupled multiplexers. IEEE Microw. Mag. 8(5), 46–59 (2007)CrossRefGoogle Scholar
  8. 8.
    J.-S. Hong, M.J. Lancaster, R.B. Greed, D. Jedamzik, J.-C. Mage, H.J. Chaloupka, A high-temperature superconducting duplexer for cellular base-station applications. IEEE Trans. Microw. Theory Techn. 48(8), 1336–1343 (2000)CrossRefGoogle Scholar
  9. 9.
    Zheng et al., Design of compact superconducting diplexer with spiral short-circuited stubs. IEEE Trans. Appl. Supercond. 24(2), Art. no. 1500405 (2014)Google Scholar
  10. 10.
    Q. Zhang et al., A compact HTS duplexer for communication application. IEEE Trans. Appl. Supercond. 20(1), 2–7 (2010)CrossRefGoogle Scholar
  11. 11.
    C. Feng et al. Design and optimization of a compact superconducting quadruplexer at VHF-band with an accurate equivalent circuit model. IEEE Trans. Appl. Supercond. 26(6), Art. no. 1502206 (2013)Google Scholar
  12. 12.
    Y. Heng et al., Design and optimization of a superconducting contiguous diplexer comprising doubly terminated filters, IEEE Trans. Appl Supercond. 23(4), Art. no. 1501706 (2013)Google Scholar
  13. 13.
    X. Lu, X. Guo, B. Cao, B. Wei, X. Zhang, Wideband superconducting diplexer with stepped-impedance cross-structure. Electron. Lett. 50(18), 1324–1326 (2014)CrossRefGoogle Scholar
  14. 14.
    R.J. Cameron, General coupling matrix synthesis methods for Chebyshev filtering functions. IEEE Trans. Microw. Theory Tech. 47(4), 433–442 (1999)CrossRefGoogle Scholar

Copyright information

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Haiwen Liu
    • 1
    Email author
  • Baoping Ren
    • 2
  • Xuehui Guan
    • 3
  • Pin Wen
    • 4
  • Tao Zuo
    • 5
  1. 1.Xi’an Jiaotong UniversityXi’anChina
  2. 2.East China Jiaotong UniversityNanchangChina
  3. 3.East China Jiaotong UniversityNanchangChina
  4. 4.East China Jiaotong UniversityNanchangChina
  5. 5.China Electronics Technology Group CorporationHefeiChina

Personalised recommendations