Mitigating Climate Change Through Bioclimatic Applications and Cultivation Techniques in Agriculture (Andalusia, Spain)

  • E. CanoEmail author
  • A. Cano-Ortiz
  • C. M. Musarella
  • J. C. Piñar Fuentes
  • J. M. H. Ighbareyeh
  • F. Leyva Gea
  • S. del Río


Bioclimatology is applied to agricultural and forestry ordinations, as farmlands and woodlands have a bioclimatic optimum for their development. It is essential to consider the thermo-climate and ombro-climate of the bioclimatic belts in the ordination of the territory to guarantee the maximum yield with minimum environmental costs. These bioclimatic parameters (thermo-climatic and ombro-climatic index, It/Itc and Io) are of particular interest in agriculture as a way of mitigating climate change. The main objective is to establish the climate trends and propose a phyto-bioclimatic model to mitigate sudden climate change in agriculture. The spatial pattern of temperature trends in southern Spain (Andalusia) between 1975 and 2007 was determined by analysing time series data from 48 climate stations distributed homogeneously throughout the study area on a monthly, seasonal and annual basis. The regression slopes were calculated with Sen’s test, and the statistical significance of the trends was determined using the Mann-Kendall non-parametric test after pre-whitening the series with autocorrelation. The trends detected on the maps were spatially visualised by applying geo-statistical data interpolation techniques. The study found that positive trends have prevailed over negative trends in the last three decades, with increases of up to 4 °C in spring and summer clearly reflecting the highest percentages of stations with a significant positive trend (92% and 85%, respectively). The trends towards the greatest temperature increase were observed in May and June, with somewhat more moderate increases in April and July. Increases in the range of 0.15–0.4 °C/decade were found at the annual level with 87% of stations significant. The temperature increase reduces flowering and produces losses in agricultural yield as a consequence. It is demonstrated that the vegetation cover acts as a soil water reservoir and retains moisture during the summer months.


Bioclimatology Change Climatology Mitigation Plant association Trends 





Potential evapotranspiration


Ombrothermic index


Intergovernmental Panel on Climate Change


Summer ombrothermic indices


Thermo-climatic index




Period of vegetative activity


Soil water retention capacity


Mean temperature



We would like to thank Ms Pru Brooke Turner (MA Cantab./University of Cambridge) for the English translation of this book chapter.


  1. Almarza C, Luna C (2005) Homogeneidad y variabilidad de la precipitación y la temperatura en zonas climáticamente homogéneas de la Península Ibérica. Available:"Almarza%20y%20Luna.pdf
  2. Attorre F, Alfo M, de Sanctis M, Francesconi F, Bruno F (2007) Comparison of interpolation methods for mapping climatic and bioclimatic variables at regional scale. Int J Climatol 27(13):1825–1843. CrossRefGoogle Scholar
  3. Aznar JC, Gloaguen E, Tapsoba D, Hachem S, Caya D, Bégin Y(2012) Interpolation of monthly mean temperatures using cokriging in spherical coordinates. Int J Climatol 33:758–769, CrossRefGoogle Scholar
  4. Barranco ND, Fernández ER, Rallo L (1998) El cultivo del olivo. Ed. Mundi-Prensa, Junta Andalucía, pp 1–651Google Scholar
  5. Beranova R, Huth R (2007) Time variations of the relationships between the North Atlantic Oscillation and European winter temperature and precipitation. Stud Geophys Geod 51(4):575–590CrossRefGoogle Scholar
  6. Braun-Blanquet J (1979) Fitosociología. Ed. Blume, Madrid, pp 1–820Google Scholar
  7. Brunet M, Casado MJ, de Castro M, Galán P, López JA, Martín JM, Pastor A, Petisco E, Ramos P, Ribalaygua J, Rodríguez E, Sanz I, Torres L (2009) Generación de escenarios de cambio climático regionalizados para España. Agencia Estatal de Meteorología, Ministerio de Medio Ambiente, Madrid, p 158Google Scholar
  8. Brunet M, Asin J, Sigró J, Manuel Bañón M, García F, Aguilar E, Palenzuela JE, Peterson TC, Jones P (2010) The minimization of the screen bias from ancient Western Mediterranean air temperature records: an exploratory statistical analysis. Int J Climatol Published online in Wiley InterScience ( CrossRefGoogle Scholar
  9. Cano E, Cano-Ortiz A (2013) Bioclimatología y Bioindicadores del olivar: Bases fundamentales para un desarrollo sostenible in “Andalucía, El Olivar”. Ed. Asociación Grupo de Estudios Avanzados-Grupo Textura, p 83–97Google Scholar
  10. Cano E, García Fuentes A, Torres JA, Salazar C, Melendo M, Pinto Gomes CJ, Valle F (1997) Phytosociologie appliquée a la planification agricole. Colloques Phytosociologiques XXVII:1008–1022Google Scholar
  11. Cano E, Ruiz L, Cano-Ortiz A, Nieto J (2003a) Bases para el establecimiento de modelos de gestión agrícola y forestal. In: Memoriam al Prof. Dr. Isidoro Ruiz Martínez, pp 131–142Google Scholar
  12. Cano E, Cano-Ortiz A, Montilla RJ (2003b) Encuadre bioclimático de algunas variedades de Olea europaea L. en el sur de España. Boletín Inst Est Giennenses 184:31–36Google Scholar
  13. Cano E, Ruiz L, Melendo M, Nieto J, Cano-Ortix A (2004) Bases bioclimáticas para la planificación del olivar en el centro-sur de la Península Ibérica (España, Portugal). Actas IFOAN. Sociedad Española de Agricultura Ecológica. SEAE, p. 304–311Google Scholar
  14. Cano E, Musarella CM, Cano-Ortiz A, Piñar Fuentes JC, Spampinato G, Pinto Gomes CJ (2017) Morphometric analysis and bioclimatic distribution of Glebionis coronaria s.l. (Asteraceae) in the Mediterranean area. Phytokeys 81:103–126CrossRefGoogle Scholar
  15. Cano-Ortiz A (2007) Bioindicadores ecológicos y manejo de cubiertas vegetales como herramienta para la implantación de una agricultura sostenible. Tesis Doctoral. Universidad de Jaén, España, p 709Google Scholar
  16. Cano-Ortiz A (2016) Bioindicadores y cubiertas vegetales en el olivar in Nuevas Tendencias en Olivicultura. Serv. Publ. Univ. Jaen, p 69–115Google Scholar
  17. Cano-Ortiz A, Pinto Gomes CJ, Esteban F, Cano E (2009) Determination of the nutritional state of soils by means of the phytosociological method and different statistical techniques (Bayesian statistics and decision trees), (Spain). Acta Bot Gallica 156(4):607–624CrossRefGoogle Scholar
  18. Cano-Ortiz A, Del Río González S, Pinto Gomes CJ (2013) Impact of soil texture on plant communities of Raphanus raphanistrum L. Plant Sociol 50(2):39–46Google Scholar
  19. Cano-Ortiz A, Ighareyeh JMH, Cano E (2014) Bioclimatic applications and soil indicators for olive cultivation (South of the Iberian Peninsula). Glob Adv Res J Agric Sci 3(12):433–438Google Scholar
  20. Cao WJ, Hu JX, Yu XM (2009) A study on temperature interpolation. Methods based on GIS 17th International Conference on Geoinformatics George Mason Univ, Fairfax, p 1–5Google Scholar
  21. Capel JJ (1998) Ritmo anual de las temperaturas en España. Nimbus: Revista de meteorología, climatología y paisaje 1/2:17–36Google Scholar
  22. Capel JJ (2000) El clima de la Península Ibérica, p 281. Ed. Ariel, BarcelonaGoogle Scholar
  23. Castro-Diez Y, Esteban-Parra MJ, Staudt M, Gámiz Fortis S (2007) Temperature and precipitation changes in Andalusia in the Iberian Peninsula and Northern Hemisphere context. In: Sousa A, García-Barrón L, Jurado V (eds) Climate change in Andalusia: trends and environmental consequences. Consejería de Medio Ambiente, Junta de Andalucía, pp 55–77Google Scholar
  24. Collins FC, Bolstad PV (1996) A comparison of spatial interpolation techniques in temperature estimation. Proceedings of the Third International Environmental Modeling, National Center for Geographic Information Analysis (NCGIA) Santa Fe, New Mexico, 21–25 JanuaryGoogle Scholar
  25. Cruz R, Lage A (2006) Análisis de la evolución de la temperatura y precipitación en el periodo 1973–2004 en Galicia. In: Cuadrat JM, Saz MA, Vicente Serrano SM, Lanjeri S, de Luis M, González-Hidalgo JC (eds) Clima, Sociedad y Medio Ambiente, Asociación Española de Cimatología serie A, n 5. AEC, Zaragoza, pp 113–124Google Scholar
  26. Dadhich RK, Meena RS, Reager ML, Kansotia BC (2015) Response of bio-regulators to yield and quality of Indian mustard (Brassica juncea L. Czernj. and Cosson) under different irrigation environments. J Appl Nat Sci 7(1):52–57CrossRefGoogle Scholar
  27. Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS, Formanek P (2017) Enzymatic degradation of lignin in soil: a review. Sustain MDPI 9(7):1163., 1–18CrossRefGoogle Scholar
  28. Del Rio S, Herrero L, Penas A (2009) Recent climatic trends in Castilla and León (Spain) and its possible influence on the potential natural vegetation. Acta Bot Gallica 156(4):625–636CrossRefGoogle Scholar
  29. Del Rio S, Herrero L, Pinto Gomes C, Penas A (2011) Spatial analysis of mean temperature trends in Spain over the period 1961–2006. Glob Planet Chang 78(1–2):65–75Google Scholar
  30. Del Rio S, Cano-Ortiz A, Herrerom L, Penas A (2012) Recent trends in mean maximum and minimum air temperatures over Spain (1961–2006). Theor Appl Climatol 109(3–4):605–626. CrossRefGoogle Scholar
  31. Del Rio S, Álvarez-Esteban R, Cano E, Pinto Gomes CJ, Penas A (2018) Potential impacts of climate change on habitat suitability of Fagus sylvatica L. forests in Spain. Plant Biosyst – Int J Dealing Asp Plant Biol 152(6):1205–1213. CrossRefGoogle Scholar
  32. Esteban-Parra MJ, Rodrigo FS, Castro-Díez Y (1997) Estudio de las variaciones climáticas en Almería. In: Navarro A, García-Rosell L (coord.) Recursos naturales y medio ambiente del Sureste peninsular. Instituto de Estudios Almerienses, Almería, p 489–501Google Scholar
  33. Font Tullot I (2000) Climatología de España y Portugal. Universidad de Salamanca, Salamanca, pp 1–428Google Scholar
  34. García-Barrón L, Aguilar-Alba A, Morales J, Sousa A (2018) Intra-annual rainfall variability in the Spanish hydrographic basins. Int J Climatol 38(5):2215–2229CrossRefGoogle Scholar
  35. Géhu JM, Rivas-Martínez S (1982) Notions fondamentales de Phytosociologie. In Dierschcke H (ed) Berichte der Internationalen Symposium del IVV. Syntaxonomie: 5–33, RintelnGoogle Scholar
  36. Gilbert RO (1987) 6.5 Sen’s Nonparametric Estimator of Slope. In: Statistical methods for environmental pollution monitoring. Wiley, Hoboken, pp 217–219Google Scholar
  37. Guerrero García A (1991) Nueva Olivicultura. Ed. Mundi-Prensa, p 1–271Google Scholar
  38. Ileana B, Castro-Diez Y (2010) Tendencias atmosféricas en la Península Ibérica durante el periodo instrumental en el contexto de la variabilidad natural. In: Pérez Fiz F, Boscolo R (eds) Clima es España: Pasado, presente y futuro: Informe de Evaluación del cambio climático regional. Red Temática CLIVAR, España, pp 25–42Google Scholar
  39. IPCC (2001) In: Watson RT, The Core Writing Team (eds) Climate Change 2001. Synthesis Report. A contribution of Working Groups I, II, and III to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, p. 398Google Scholar
  40. IPCC (2007) Cambio climático 2007: Informe de síntesis. Contribución de los Grupos de trabajo I, II y III al Cuarto Informe de evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático [Equipo de redacción principal: Pachauri, R.K. y Reisinger, A. (directores de la publicación)]. IPCC, Ginebra, Suiza, p. 104Google Scholar
  41. Johnston K, Ver Hoef JM, Krivoruchko K, Lucas N (2001) Using ArcGis geostatistical analyst. ESRI, New York, pp 1–300Google Scholar
  42. Kumar S, Meena RS, Bohra JS (2018) Interactive effect of sowing dates and nutrient sources on dry matter accumulation of Indian mustard (Brassica juncea L.). J Oilseed Brassica 9(1):72–76Google Scholar
  43. Lopez-Moreno JL, Vicente-Serrano SM, Moran-Tejeda E, Lorenzo Lacruz J, Kenaway A, Beniston M (2011) Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: observed relationships and projections for the 21st century. Glob Planet Chang 77(1–2):62–76CrossRefGoogle Scholar
  44. Luna MY, Morata A, Almarza C, Martín ML (2006) The use of GIS to evaluate and map extreme maximum and minimum temperatures in Spain. Meteorol Appl 13(4):385–392CrossRefGoogle Scholar
  45. Martínez MD, Serra C, Burgueño A, Lana X (2010) Time trends of daily maximum and minimum temperatures in Catalonia (NE Spain) for the period 1975–2004. Int J Climatol 30:267–290CrossRefGoogle Scholar
  46. Martin-Vide J, Calbó J, Sánchez-Lorenzo A (2006) Tendencias recientes de la insolación en la España peninsular y baleares (1971–2000). Recent trends of sunshine duration in the peninsular Spain and Balearic islands (1971–2000). 5ª asamblea hispano-portuguesa de geodesia y geofísicaGoogle Scholar
  47. Meena RS, Yadav RS, Meena VS (2014) Response of groundnut (Arachis hypogaea L.) varieties to sowing dates and NP fertilizers under Western Dry Zone of India. Bangladesh J Bot 43(2):169–173CrossRefGoogle Scholar
  48. Meena RS, Dhakal Y, Bohra JS, Singh SP, Singh MK, Sanodiya P (2015) Influence of bioinorganic combinations on yield, quality and economics of Mungbean. American J Exp Agric 8(3):159–166CrossRefGoogle Scholar
  49. Meena RS, Meena PD, Yadav GS, Yadav SS (2017) Phosphate solubilizing microorganisms, principles and application of microphos technology. J Clean Prod 145:157–158CrossRefGoogle Scholar
  50. Montero Burgos JL, González Rebollar JL (1983) Diagramas Bioclimáticos. Minsterio de Agricultura, Pesca y Alimentación. ICONA, p 1–379Google Scholar
  51. Morales CG, Ortega MT, Labajo JL, Piorno A (2005) Recent trends and temporal behavior of thermal variables in the region of Castilla – León (Spain). Atmosfera 18(2):71–90Google Scholar
  52. Moran Tejeda E (2011) Impactos recientes de los cambios ambientales en los recursos hídricos superficiales de la cuenca del Duero. Pirineos Revista de Ecología de Montaña 167:107–142CrossRefGoogle Scholar
  53. Munoz-Diaz D, Rodrigo FS (2004) Spatio-temporal patterns of seasonal rainfall in Spain (1912–2000) using cluster and principal component analysis: comparison. Ann Geophys 22:1435–1448CrossRefGoogle Scholar
  54. Ordoñez P (2008) Análisis del estado del clima en Andalucía mediante índices climáticos atmosféricos. Congreso Nacional de Medio Ambiente, Cumbre del Desarrollo Sostenible, 1–5 Diciembre, Madrid. Assessment of potential effects and adaptations for climate change in Europe. In: Parry, M.L. (Ed.), Summary and conclusions. Jackson Environment Institute, University of East Aglia, Norwich, p. 320Google Scholar
  55. Pausas JG (2004) Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Clim Chang 63(3):337–350CrossRefGoogle Scholar
  56. Ram K, Meena RS (2014) Evaluation of pearl millet and mungbean intercropping systems in Arid Region of Rajasthan (India). Bangladesh J Bot 43(3):367–370CrossRefGoogle Scholar
  57. Rivas-Martínez S (1978) La vegetación de Hordeion leporini en España. Doc Phytosoc 9:377–392Google Scholar
  58. Rivas Martínez S (1987) Mapa de series de vegetación de España a escala 1:400.000. Ministerio de Agricultura. Pesca y Alimentación. ICONA, p 1–208Google Scholar
  59. Rivas Martínez S (1996) Clasificación Bioclimática de la Tierra. Folia Botánica Matritensis 16:1–32Google Scholar
  60. Rivas-Martínez S, Loidi Arregui J (1999) Bioclimatoloy of the Iberian Peninsula. Itinera Geobot 13:41–47Google Scholar
  61. Rivas-Martínez S, Fernández González F, Loidi J, Lousa M, Penas A (2001) Syntaxonomical checklist of vascular plant communities of Spain and Portugal to association level. Itinera Geobot 14:5–341Google Scholar
  62. Rivas-Martínez S, Díaz TE, Fernández-González F, Izco J, Loidi J, Lousa M, Penas A (2002) Vascular plant communities of Spain and Portugal. Itinera Geobot 15(1–2):5–922Google Scholar
  63. Robert MH, James RS (1984) A nonparametric trend test for seasonal data with serial dependence. Water Resour Res 20(6):727–732CrossRefGoogle Scholar
  64. Rodrigo FS, Trigo RM (2007) Trends in daily rainfall in the Iberian Peninsula from 1951 to 2002. Int J Climatol 27(4):513–529CrossRefGoogle Scholar
  65. Rodriguez-Fonseca B, Rodríguez-Puebla C (2010) Teleconexiones climáticas en el entorno de la Península Ibérica. Predictabilidad y cambios esperados. In: Pérez FF, Boscolo R (eds) Clima en España: pasado, presente y futuro: Informe de evaluación del cambio climático regional. CLIVAR-España, España, pp 1–85Google Scholar
  66. Rodríguez-Puebla C, Encinas AH, Nieto S, Garmendia J (1998) Spatial and temporal patterns of annual precipitation variability over the Iberian Peninsula. Int J Climatol 18(3):299–316CrossRefGoogle Scholar
  67. Sáenz J, Zubillaga J, Rodríguez-Puebla C (2001) Interannual winter temperature variability in the north of the Iberian Peninsula. Clim Res 16(3):169–179CrossRefGoogle Scholar
  68. Salat J, Pascual J (2006) Principales tendencias climatológicas en el Mediterráneo noroccidental, a partir de más de 30 años de observaciones oceanográficas y meteorológicas en la costa catalana. In: Cuadrat JM, Saz MA, Vicente Serrano SM, Lanjeri S, de Luis M, González-Hidalgo JC (eds) Clima, Sociedad y Medio Ambiente, Asociación Española de Cimatología serie A, n 5. AEC, Zaragoza, pp 283–290Google Scholar
  69. Salmi T, Maatta A, Anttila P, Ruoho-Airola T, Amnell T (2002) Detecting trends of annual values of atmospheric pollutants by the Mann–Kendall test and sen’s solpe stimates — the excel template application MAKESENS. Helsinki, Finnish Meteorological Institute Report No. 31. Helsinki, p 35Google Scholar
  70. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality complete samples. Biometrika 52:591–611CrossRefGoogle Scholar
  71. Sigro FJ (2004) Variabilidad espacio temporal de la temperatura del aire en Cataluña. Ph.D. Thesis, Universidad Rovira i Virgili, BarcelonaGoogle Scholar
  72. Sihag SK, Singh MK, Meena RS, Naga S, Bahadur SR, Gaurav YRS (2015) Influences of spacing on growth and yield potential of dry direct seeded rice (Oryza sativa L.) cultivars. The Ecoscan 9(1–2):517–519Google Scholar
  73. Skarbit N, Ács F, Breuer H (2018) The climate of the European region during the 20th and 21st centuries according to Feddema. Int J Climatol 38(5):2435–2448CrossRefGoogle Scholar
  74. Sneyers R (1992) On the use of statistical analysis for the objective determination on climatic change. Meteorol Z 1:247–256CrossRefGoogle Scholar
  75. Spinoni J, Vogt JV, Naumann G, Barbosa P, Dosio A (2018) Will drought events become more frequent and severe in Europe? Int J Climatol 38(4):1718–1736CrossRefGoogle Scholar
  76. Suppiah R, Hennessy KJ (1996) Trends in the intensity and frequency of heavy rainfall in tropical Australia and links with the Southern Oscillation. Aust Meteorol J 45(1):1–17Google Scholar
  77. Valle F (1984) Degradación del suelo. Alteración de la cubierta vegetal. Excma. Dip. Granada, p 139–144Google Scholar
  78. Varma D, Meena RS, Kumar S, Kumar E (2017) Response of mungbean to NPK and lime under the conditions of Vindhyan Region of Uttar Pradesh. Legum Res 40(3):542–545Google Scholar
  79. Yadav GS, Babu S, Meena RS, Debnath C, Saha P, Debbaram C, Datta M (2017) Effects of godawariphosgold and single supper phosphate on groundnut (Arachis hypogaea) productivity, phosphorus uptake, phosphorus use efficiency and economics. Indian J Agric Sci 87(9):1165–1169Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • E. Cano
    • 1
    Email author
  • A. Cano-Ortiz
    • 1
  • C. M. Musarella
    • 1
    • 2
  • J. C. Piñar Fuentes
    • 1
  • J. M. H. Ighbareyeh
    • 1
  • F. Leyva Gea
    • 1
  • S. del Río
    • 3
  1. 1.Departamento Biología Animal, Vegetal y Ecología. BotánicaUniversidad de JaénJaénSpain
  2. 2.Dipartimento di AGRARIAUniversità “Mediterranea” di Reggio CalabriaReggio CalabriaItaly
  3. 3.Department of Biodiversity and Environmental Management (Botany), Faculty of Biological and Environmental SciencesUniversity of LeónLeónSpain

Personalised recommendations