Advertisement

Anatomy and Function

  • Masaki IwaiEmail author
  • Takashi Kojima
  • Arief A. Suriawinata
Chapter

Abstract

The liver weighing 1200–1500 g is the largest organ in the human adult and occupies about 2% of body weight. There are two anatomical lobes in the liver, right and left, with the right lobe six times in volume than the left lobe. The right and left lobes are separated anteriorly by the falciform ligament, posteriorly by ligamentum venosum, and inferiorly by ligamentum teres. The Couinaud classification [1] defines eight segments of the liver, and the Bismuth classification [2] divides it into four sectors; they are subdivided into right anterior (V and VIII), right posterior (VI and VII), left medial (IV), or left lateral (II and III) segment and caudate lobe (I) (Fig. 1.1).

Abbreviations

AFP

Alpha fetoprotein

cAMP

cyclic adenosine 3′,5′-monophosphate

cGMP

cyclic guanosine 3′,5′-monophosphate

Cx

Connexin

EGFR

Epidermal growth factor receptor

GVHD

Graft-versus-host disease

HCV

Hepatitis C virus

IL-6

Interleukin-6

JAMs

Junctional adhesion molecules

PDZ

Postsynaptic density 95; Discs large, zonula occludens

PKC

Protein kinase C

PSC

Primary sclerosing cholangitis

SR-BI

Scavenger receptor BI

TNF

Tumor necrosis factor

ZO

Zonula occludens

References

  1. 1.
    Le Foie CC. Etudes anatomiques et chirurgicales. Paris: Masson; 1957.Google Scholar
  2. 2.
    Bismuth H. Surgical anatomy and anatomical surgery of the liver. World J Surg. 1982;6:3–9.CrossRefGoogle Scholar
  3. 3.
    Timmermans JP, Geerts A. Nerves in liver: superfluous structures? A special issue of the anatomical record updating our reviews on hepatic innervation. Anat Rec B New Anat. 2005;282:4.CrossRefGoogle Scholar
  4. 4.
    Nakanuma Y, Katayanagi K, Terada T, Saito K. Intrahepatic peribiliary glands of humans. I. Anatomy, development and presumed functions. J Gastroenterol Hepatol. 1994;9:75–9.CrossRefGoogle Scholar
  5. 5.
    Severn CB. A morphological study of the development of the human liver. 1. Development of the hepatic diverticulum. Am J Anat. 1971;13:133–58.CrossRefGoogle Scholar
  6. 6.
    Strasberg SM. Terminology of liver anatomy and liver resections: coming to grips with hepatic babel. J Am Coll Surg. 1997;184:413–34.PubMedGoogle Scholar
  7. 7.
    Haruna Y, Saito K, Spaulding S, et al. Identification of bipotential progenitor cells in human liver development. Hepatology. 1996;23:476–81.CrossRefGoogle Scholar
  8. 8.
    Desmet VJ. Congenital diseases of intrahepatic bile ducts: variations on the theme “ductal plate malformation”. Hepatology. 1992;16:1069–83.CrossRefGoogle Scholar
  9. 9.
    Masyuk T, Masyuk A, LaRusso N. Cholangiociliopathies: genetics, molecular mechanisms and potential therapies. Curr Opin Gastroenterol. 2009;25:265–71.CrossRefGoogle Scholar
  10. 10.
    Rappaport AM. The of normal and pathologic hepatic structure. Beitr Pathol. 1976;157:215–43.CrossRefGoogle Scholar
  11. 11.
    Torre C, Perret C, Colnot S. Transcription dynamics in a physiological process: beta-catenin signaling directs liver metabolic zonation. Int J Biochem Cell Biol. 2011;43:271–8.CrossRefGoogle Scholar
  12. 12.
    Mitic L, Anderson JM. Molecular architecture of tight junctions. Annu Rev Physiol. 1998;60:121–41.CrossRefGoogle Scholar
  13. 13.
    Feldmann G. The cytoskeleton of the hepatocyte. Structure and functions. J Hepatol. 1989;8:380–6.CrossRefGoogle Scholar
  14. 14.
    Wisse E, Braet F, Luo D, et al. Structure and function of sinusoidal lining cells in the liver. Toxicol Pathol. 1996;24:100–11.CrossRefGoogle Scholar
  15. 15.
    Schaffner F, Papper H. Capillarization of hepatic sinusoids in man. Gastroenterology. 1963;44:239–42.CrossRefGoogle Scholar
  16. 16.
    Toth CA, Thomas P. Liver endocytosis and kupffer cells. Hepatology. 1992;24:255–66.CrossRefGoogle Scholar
  17. 17.
    Smedsrod B, LeCouteur D, Ikejima K, et al. Hepatic sinusoidal cells in health and disease: update from the 14th international symposium. Liver Int. 2009;29:490–9.CrossRefGoogle Scholar
  18. 18.
    Mathew J, Geerts A, Burt AD. Pathobiology of hepatic stellate cells. Hepato-Gastroenterology. 1996;43:72–91.PubMedGoogle Scholar
  19. 19.
    Sakamoto M, Ueno T, Kin M, et al. Ito cell contraction in response to endothelin-1 and substance P. Hepatology. 1993;18:973–83.CrossRefGoogle Scholar
  20. 20.
    Rockey DC, Weisiger RA. Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: implications for regulation of portal pressure and resistance. Hepatology. 1996;24:233–40.CrossRefGoogle Scholar
  21. 21.
    Skirtic S, Wallenius V, Ekberg S, et al. Insulin-like growth factors stimulate expression of hepatocyte growth factor but not transforming growth factors beta 1 in cultured hepatic stellate cells. Endocrinology. 1997;138:4683–9.CrossRefGoogle Scholar
  22. 22.
    Wisse E, Luo D, Vermijlen D, et al. On the function of pit cells, the liver specific natural killer cells. Semin Liver Dis. 1997;17:265–86.CrossRefGoogle Scholar
  23. 23.
    Alpini G, Prall RT, LaRusso NF. The pathobiology of biliary epithelia. In: Arias IM, Boyer JL, Chisari FV, et al., editors. The liver biology and pathobiology. 4th ed. London: Lippincott Williams & Wilkins; 2001. p. 421–35.Google Scholar
  24. 24.
    Sugiura H, Nakanuma Y. Secretory components and immunoglobulins in the intrahepatic biliary tree and peribiliary glands in normal livers and hepatolithiasis. Gastroenterol Jpn. 1989;24:308–14.CrossRefGoogle Scholar
  25. 25.
    Ishida F, Terada T, Nakanuma Y. Histologic and scanning electron microscopic observations of intrahepatic peribiliary glands in normal human livers. Lab Investig. 1989;60:260–5.PubMedGoogle Scholar
  26. 26.
    Hofmann AF, Yeh H-Z, Schteingart CD, et al. The cholehepatic circulation of organic anions: a decade of progress. In: Alvaro D, Benedeti A, Strazzabosco M, editors. Vanishing bile duct syndrome-pathophysiology and treatment. Dordrecht: Kluwer Academic; 1997. p. 90–103.Google Scholar
  27. 27.
    Gumbiner BM. Breaking through the tight junction barrier. J Cell Biol. 1993;123:1631–3.CrossRefGoogle Scholar
  28. 28.
    Schneeberger EE, Lynch RD. Structure, function, and regulation of cellular tight junctions. Am J Phys. 1992;262:L647–L661.100.Google Scholar
  29. 29.
    van Meer G, Simon K. The function of tight junctions in maintaining differences in lipid composition between the apical and basolateral cell surface domains of MDCK cells. EMBO J. 1986;5:1455–64.CrossRefGoogle Scholar
  30. 30.
    Cereijido M, Valdés J, Shoshani L, et al. Role of tight junctions in establishing and maintaining cell polarity. Annu Rev Physiol. 1998;60:161–77.CrossRefGoogle Scholar
  31. 31.
    Matter K, Balda MS. Signalling to and from tight junctions. Nat Rev Mol Cell Biol. 2003;4:225–36.CrossRefGoogle Scholar
  32. 32.
    Schneeberger EE, Lynch RD. The tight junction: a multifunctional complex. Am J Physiol Cell Physiol. 2004;286:C1213–28.CrossRefGoogle Scholar
  33. 33.
    Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol. 2001;4:285–93.CrossRefGoogle Scholar
  34. 34.
    Sawada N, Murata M, Kikuchi K, Osanai M, Tobioka H, Kojima T, Chiba H. Tight junctions and human diseases. Med Electron Microsc. 2003;36:147–56.CrossRefGoogle Scholar
  35. 35.
    Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S. Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol. 2005;171:939–45.CrossRefGoogle Scholar
  36. 36.
    Kojima T, Ninomiya T, Konno T, Kohno T, Taniguchi M, Sawada N. Expression of tricellulin in epithelial cells and non-epithelial cells. Histol Histopathol. 2013;28:1383–92.PubMedGoogle Scholar
  37. 37.
    Kojima T, Sawada N, Yamaguchi H, Fort AG, Spray DC. Gap and tight junctions in liver: composition, regulation, and function. In: Arias IM, et al., editors. The liver: biology and pathobiology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2009a. p. 201–20.CrossRefGoogle Scholar
  38. 38.
    Kojima T, Murata M, Yamamoto T, Lan M, Imamura M, Son S, Takano K, Yamaguchi H, Ito T, Tanaka S, Chiba H, Hirata K, Sawada N. Tight junction proteins and signal transduction pathways in hepatocytes. Histol Histopathol. 2009b;24:1463–72.PubMedGoogle Scholar
  39. 39.
    Carlton VE, Harris BZ, Puffenberger EG, Batta AK, Knisely AS, Robinson DL, Strauss KA, Shneider BL, Lim WA, Salen G, Morton DH, Bull LN. Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nat Genet. 2003;34:91–6.CrossRefGoogle Scholar
  40. 40.
    Hadj-Rabia S, Baala L, Vabres P, Hamel-Teillac D, Jacquemin E, Fabre M, Lyonnet S, De Prost Y, Munnich A, Hadchouel M, Smahi A. Claudin-1 gene mutations in neonatal sclerosing cholangitis associated with ichthyosis: a tight junction disease. Gastroenterology. 2004;127:1386–90.CrossRefGoogle Scholar
  41. 41.
    Helle F, Dubuisson J. Hepatitis C virus entry into host cells. Cell Mol Life Sci. 2008;65:100–12.CrossRefGoogle Scholar
  42. 42.
    Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, Wölk B, Hatziioannou T, McKeating JA, Bieniasz PD, Rice CM. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature. 2007;446:801–5.CrossRefGoogle Scholar
  43. 43.
    Benedicto I, Molina-Jiménez F, Barreiro O, Maldonado-Rodríguez A, Prieto J, Moreno-Otero R, Aldabe R, López-Cabrera M, Majano PL. Hepatitis C virus envelope components alter localization of hepatocyte tight junction-associated proteins and promote occludin retention in the endoplasmic reticulum. Hepatology. 2008;48:1044–53.CrossRefGoogle Scholar
  44. 44.
    Liu S, Yang W, Shen L, Turner JR, Coyne CB, Wang T. Tight junction proteins claudin-1 and occludin control hepatitis C virus entry and are downregulated during infection to prevent superinfection. J Virol. 2009;83:2011–4.CrossRefGoogle Scholar
  45. 45.
    Kumar NM, Gilula NB. The gap junction communication channel. Cell. 1996;84:381–8.CrossRefGoogle Scholar
  46. 46.
    Ayad WA, Locke D, Koreen IV, Harris AL. Heteromeric, but not homomeric, connexin channels are selectively permeable to inositol phosphates. J Biol Chem. 2006;281:16727–39.CrossRefGoogle Scholar
  47. 47.
    Maes M, Cogliati B, Crespo Yanguas S, Willebrords J, Vinken M. Roles of connexin and pannexin in digestive homeostasis. Cell Mol Life Sci. 2015;72:2809–21.CrossRefGoogle Scholar
  48. 48.
    Iwai M, Harada Y, Muramatsu A, Tanaka S, Mori T, Okanoue T, Katoh F, Ohkusa T, Kashima K. Development of gap junctional channels and intercellular communication in rat liver during ontogenesis. J Hepatol. 2000;32:11–8.CrossRefGoogle Scholar
  49. 49.
    Temme A, Buchmann A, Gabriel HD, Nelles E, Schwarz M, Willecke K. High incidence of spontaneous and chemically induced liver tumors in mice deficient for connexin32. Curr Biol. 1997;7:713–6.CrossRefGoogle Scholar
  50. 50.
    Vinken M, De Kock J, Oliveira AG, Menezes GB, Cogliati B, Dagli ML, Vanhaecke T, Rogiers V. Modifications in connexin expression in liver development and cancer. Cell Commun Adhes. 2012;19:55–62.CrossRefGoogle Scholar
  51. 51.
    Caro JF, Poulos J, Ittoop O, et al. Insulin-like growth factor 1 binding in hepatocytes from human liver, human hepatoma, and normal regenerating and fetal rat liver. J Clin Invest. 1988;81:976–81.CrossRefGoogle Scholar
  52. 52.
    Muramatsu A, Iwai M, Morikawa T, Tanaka S, Mori T, Harada Y, Okanoue T. Influence of transfection with connexin 26 gene on malignant potential of human hepatoma cells. Carcinogenesis. 2002;23:351–8.CrossRefGoogle Scholar
  53. 53.
    Maes M, Decrock E, Cogliati B, Oliveira AG, Marques PE, Dagli ML, Menezes GB, Mennecier G, Leybaert L, Vanhaecke T, Rogiers V, Vinken M. Connexin and pannexin (hemi) channels in the liver. Front Physiol. 2014;4:405.CrossRefGoogle Scholar
  54. 54.
    Kojima T, Kokai Y, Chiba H, Yamamoto M, Mochizuki Y, Sawada N. Cx32 but not Cx26 is associated with tight junctions in primary cultures of rat hepatocytes. Exp Cell Res. 2001;263(2):193–201.CrossRefGoogle Scholar
  55. 55.
    Kojima T, Sawada N, Chiba H, Kokai Y, Yamamoto M, Urban M, Lee GH, Hertzberg EL, Mochizuki Y, Spray DC. Induction of tight junctions in human connexin 32 (hCx32)-transfected mouse hepatocytes: connexin 32 interacts with occludin. Biochem Biophys Res Commun. 1999;266:222–9.CrossRefGoogle Scholar
  56. 56.
    Kojima T, Spray DC, Kokai Y, Chiba H, Mochizuki Y, Sawada N. Cx32 formation and/or Cx32-mediated intercellular communication induces expression and function of tight junctions in hepatocytic cell line. Exp Cell Res. 2002;276:40–51.CrossRefGoogle Scholar
  57. 57.
    Kojima T, Yamamoto T, Murata M, Chiba H, Kokai Y, Sawada N. Regulation of the blood-biliary barrier: interaction between gap and tight junctions in hepatocytes. Med Electron Microsc. 2003;36:157–64.CrossRefGoogle Scholar
  58. 58.
    Fausto N. Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology. 2004;39:1477–87.CrossRefGoogle Scholar
  59. 59.
    Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta. 1991;1072:129–57.PubMedGoogle Scholar
  60. 60.
    Kuhlmann WD, Peschke P. Hepatic progenitor cells, stem cells, and AFP expression in models of liver injury. Int J Exp Pathol. 2006;87:343–59.CrossRefGoogle Scholar
  61. 61.
    Kakisaka K, Kataoka K, Onodera M, Suzuki A, Endo K, Tatemichi Y, Kuroda H, Ishida K, Takikawa Y. Alpha-fetoprotein: a biomarker for the recruitment of progenitor cells in the liver in patients with acute liver injury or failure. Hepatol Res. 2015;45:E12–20.CrossRefGoogle Scholar
  62. 62.
    Tournier I, Legrès L, Schoevaert D, Feldmann G, Bernuau D. Cellular analysis of alpha-fetoprotein gene activation during carbon tetrachloride and D-galactosamine-induced acute liver injury in rats. Lab Investig. 1988;59:657–65.PubMedGoogle Scholar
  63. 63.
    Seo SI, Kim SS, Choi BY, Lee SH, Kim SJ, Park HW, Kim HS, Shin WG, Kim KH, Lee JH, Kim HY, Jang MK. Clinical significance of elevated serum alpha-fetoprotein (AFP) level in acute viral hepatitis a (AHA). Hepato-Gastroenterology. 2013;60:1592–6.PubMedGoogle Scholar
  64. 64.
    Ueki T, Kaneda Y, Tsutsui H, et al. Hepatocyte growth factor gene therapy of liver cirrhosis in rats. Nat Med. 1999;5:226–30.CrossRefGoogle Scholar
  65. 65.
    Marti U, Burwen SJ, Jones AL. Hepatic sequestration and biliary secretion of epidermal growth factors: evidence for a high-capacity uptake system. Proc Natl Acad Sci U S A. 1983;80:3797–801.CrossRefGoogle Scholar
  66. 66.
    Mead JE, Fausto N. Transforming growth factor alpha may be a physiological regulator of liver regeneration by means of an autocrine mechanism. Proc Natl Acad Sci U S A. 1989;86:4–13.CrossRefGoogle Scholar
  67. 67.
    Kan M, Huang J, Mansson PE, et al. Heparin-binding growth factor type 1(acidic fibroblast growth factor): a potential biphasic autocrine and paracrine regulator of hepatocyte regeneration. Proc Natl Acad Sci U S A. 1989;86:7432–6.CrossRefGoogle Scholar
  68. 68.
    Caro JE, Poulos J, Ittoop O, et al. Insulin-like growth factor 1 binding in hepatocytes from human liver, human hepatoma, and normal regenerating, and fetal rat liver. J Clin Invest. 1988;81:976–81.CrossRefGoogle Scholar
  69. 69.
    Bucher NLR, Strain AJ. Regulatory mechanisms in hepatic regeneration. In: Millward-Sadler GH, Wright R, Arthur MJP, editors. Wright’s liver and biliary disease. London: Saunders; 1992. p. 258–74.Google Scholar
  70. 70.
    Riehle KJ, Dan YY, Campbell JS, Fausto N. New concepts in liver regeneration. J Gastroenterol Hepatol. 2011;26(Suppl 1):203–12.CrossRefGoogle Scholar
  71. 71.
    Michalpoulos GK. Liver regeneration after partial hepatectomy. Am J Pathol. 2010;176:2–13.CrossRefGoogle Scholar
  72. 72.
    Duncan AW, Dorrell C, Grompe M. Stem cells and liver regeneration. Gastroenterology. 2009;137:466–81.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Masaki Iwai
    • 1
    Email author
  • Takashi Kojima
    • 2
  • Arief A. Suriawinata
    • 3
  1. 1.KyotoJapan
  2. 2.SapporoJapan
  3. 3.New HampshireUSA

Personalised recommendations