Synthesis of High-Tc Oxide Superconductors

  • Chan-Joong Kim


This chapter introduces the method of synthesis of the high-Tc oxide superconductors (YBa2Cu3O7−y) used in superconducting levitation experiments. Descriptions are given of the solid-phase synthesis method in which raw powders (Y2O3, BaCO3 and CuO) are mixed and heated to form a superconducting phase. It also introduce the melt growth processes that produce large-grained YBa2Cu3O7−y superconductors. The magnetic levitation of the large grain superconductors is much larger than that of the polycrystalline superconductors prepared by the solid-phase synthesis method. The large grain superconductors are used in the superconducting suspension and magnetic levitation (Maglev) train experiments.


  1. 1.
    Muromachi ET, Uchida Y, Ishii M, Tanaka T, Kato K (1987) High Tc superconductor YBa2Cu3Ox - oxygen content vs Tc relation. Jpn J Appl Phys 26(7):L1156Google Scholar
  2. 2.
    Jeon YJ, Park SY, You BY, Park S-D, Kim C-J (2013) Synthesis of YBa2Cu3O7−y powder using a powder reaction method and fabrication of the bulk superconductor. J Kor Powd Met Inst 20(2):142Google Scholar
  3. 3.
    Kim YJ, Park SY, You BY, Park S-D, Kim C-J (2013) Fabrication of Gd1.5Ba2Cu3O7−y bulk superconductors from the powder synthesized by a solid-state reaction method. Kor J Mater Sci 23(6):309Google Scholar
  4. 4.
    Fahlman BD (2001) Superconductor synthesis - an improvement. J Chem Edu 78(9):1182Google Scholar
  5. 5.
    Arvanitidis I, Sichen D, Seetharaman S (1996) A study on the thermal decomposition of BaCO3. Metall Trans B 27B:409CrossRefGoogle Scholar
  6. 6.
    Izumi F, Asano H, Ishigaki T, Ono A, Okamura FP (1987) Crystal structure of a Ba-Y-Cu-O superconductor as revealed by Rietveld analysis of X-Ray powder diffraction data. Jpn J Appl Phys 26(5):L611CrossRefADSGoogle Scholar
  7. 7.
    Capponi JJ, Chaillot C, Hewat AW, Lejay P, Marezio M, Nguyen N, Raveau B, Soubeyroux JL, Tholence JL, Tournier R (1987) Structure of the 100 K superconductor Ba2YCu3O7 between (5−300) K by neutron powder diffraction. Europhys Lett 3(12):1301Google Scholar
  8. 8.
    Kishio K, Shimoyama J-i, Hasegawa T, Kitazawa K, Fueki K (1987) Determination of oxygen nonstoichiometry in a high-TC superconductor Ba2YCu3O7−δ. Jpn J Appl Phys 26(7):L1228Google Scholar
  9. 9.
    Kim C-J, Kim K-B, Won D-Y (1992) Oxygen diffusion paths and microcrack formation in the textured 1-2-3 regions of partial-melted Y-Ba-Cu-O Oxide. Mater Lett 14:268Google Scholar
  10. 10.
    Wu MK, Ashburn JR, Torng CJ, Hor PH, Meng RL, Gao L, Huang ZJ, Wang YQ, Chu CW (1987) Superconductivity at 93 K in a new-mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys Rev Lett 58(9):908CrossRefADSGoogle Scholar
  11. 11.
    Nishio T, Itoh Y, Ogasawara F, Suanuma M, Yamada Y, Mizutani U (1989) Superconducting and mechanical properties of YBCO-Ag composite superconductors. J Mater Sci 24:3228Google Scholar
  12. 12.
    Larbalestier DC, Babcick SE, Cai X, Daeumling M, Hampshire DP, Kelly TF, Lavanier LA, Lee PJ, Seuntjens J (1988) Weak links and the poor transport critical currents of the 123 compounds. Physica C 153–155:1580Google Scholar
  13. 13.
    Enomoto Y, Murakami T, Suzuki M, Moriwaki K (1987) Large anisotropic superconducting critical current in epitaxially grown Ba2YCu3O7-y Thin Film. Jpn J Appl Phys 26(7):L1248. AnisotropyGoogle Scholar
  14. 14.
    Ekin JW, Braginski AI, Panson AJ, Janocko MA, Capone DW II, Zaluzec NJ, Flandermeyer B, de Lima OF, Hong M, Kwo J, Lio SH (1998) Evidence for weak link and anisotropy limitations on the transport critical current in bulk polycrystalline Y1Ba2Cu3Ox. J Appl Phys 62:4821. CrossRefADSGoogle Scholar
  15. 15.
    Dimos D, Chadhar P, Mannhart J, LeGoues FK (1988) Orientation dependence of grain-boundary critical currents in YBa2Cu3O7−δ bicrystals. Phys Rev Lett 61(2):219Google Scholar
  16. 16.
    Tomimoto K, Telasaki I, Rykov AI, Miura T, Tajima S (1999) Impurity effects on the superconducting coherence length in Zn- or Ni-doped YBa2Cu3O6.9 single crystal. Phys Rev B 60(1):114Google Scholar
  17. 17.
    Murakami M (1992). Processing of bulk YBaCuO. Supercond Sci Technol 5:185CrossRefADSGoogle Scholar
  18. 18.
    Kim C-J, Kim K-B, Kuk I-H, Hong G-W, Lee Y-S, Park H-S (1997) Microstructure change during oxygen annealing and the effect on the levitation force of melt-textured Y-Ba-Cu-O superconductors. Supercond Sci Technol 10:947Google Scholar
  19. 19.
    Murakami M, Oyama T, Fujimoto H, Taguchi T, Gotoh S, Shiohara Y, Koshizuka N, Tanaka S (1990) Large levitation force due to the flux pinning in YBaCuO superconductors fabricated by melt-powder-melt-growth process. Jpn J Appl Phys 29(11):L1991CrossRefGoogle Scholar
  20. 20.
    Jin S, Tiefel T, Sherwood R, van Dover R, Davis M, Kammlott G, Fastnacht R (1988) Melt-textured growth of polycrystalline YBa2Cu3O7−δ with high transport Jc at 77 K. Phys Rev B37:7850Google Scholar
  21. 21.
    McGinn PJ, Chen W, Black MA (1989) Texture processing of bulk YBa2Cu3O6+x by zone melting. Physica C 161:198Google Scholar
  22. 22.
    Murakami M, Morita M, Koyama N (1989) A new process with the promise of high Jc in oxide superconductors. Jpn J Appl Phys 28:L1125CrossRefADSGoogle Scholar
  23. 23.
    Kim C-J, Kim K-B, Hong G-W (1995) Decomposition of Y1Ba2Cu3O7−y during incongruent melting. Physica C 243:366Google Scholar
  24. 24.
    Lo W, Cardwell DA, Dewhurst CD, Dung S-L (1996) Fabrication of large grain YBCO by seeded peritectic solidification. J Mater Res 11(4):786CrossRefADSGoogle Scholar
  25. 25.
    Kim C-J, Park H-W, Kim K-B, Hong G-W (1995) New method of producing fine Y2BaCuO5 in the melt-textured Y-Ba-Cu-O system: attrition milling of YBa2Cu3O7−y - Y2BaCuO5 powder and CeO2 addition prior to melting. Supercond Sci Technol 8:652Google Scholar
  26. 26.
    Kim C-J, Kim K-B, Jee TA, Kuk I-H, Hong G-W (1999) Effects of the heating rate on conversion of the precursor powders used for melt processes into YBa2Cu3O7−y. J Mater Res 14(4):1212Google Scholar
  27. 27.
    Kim C-J, Kuk I-H, Hong G-W, Sung T-H, Han S-C, Kim JJ (1998) CeO2 as a growth inhibitor of Y2BaCuO5 in Ba3Cu5Ox liquid phase. Mater Lett 34:392Google Scholar
  28. 28.
    Ogawa N, Hirabayashi I, Tanaka S (1991) Preparation of a High-Jc YBCO bulk superconductor by the platinum doped melt growth method. Physica C 177:101CrossRefADSGoogle Scholar
  29. 29.
    Morita M, Takebaysshi S, Yanaka M, Kimura K, Miyamoto K, Sawano K (1991) Quench and Melt Growth (QMG) process for large bulk superconductor fabrication. Adv Supercond 3:733Google Scholar
  30. 30.
    Selvamanickam V, Salama K (1990) Anisotropy and intergrain current density in oriented grained bulk YBa2Cu3Ox superconductor. Appl Phys Lett 57:1575Google Scholar
  31. 31.
    Kim C-J, Hong G-W (1999) Defect formation, distribution and size reduction of Y2BaCuO5 in melt-processed YBCO superconductors. Supercond Sci Technol 12:R27Google Scholar
  32. 32.
    Schätzler P, Krabbes G, Stöver G, Fuchs G, Schlöfer D (1999) Multi-seeded melt crystallization of YBCO bulk material for cryogenic applications. Supercond Sci Technol 12:69CrossRefADSGoogle Scholar
  33. 33.
    Jee YA, Kim C-J, Sung T-H, Hong G-W (2000) Top seeded melt growth of Y-Ba-Cu-O superconductor with multiseeding. Supercond Sci Technol 13:195CrossRefADSGoogle Scholar
  34. 34.
    Shi Y, Durrell JH, Dennis AR, Zhang Z, Zhai W, Babu NH, Cardwell DA (2013) A comparison of 0°-0° and 45°-45° bridge-seeded YBCO single grains. J Am Ceram Soc 96(6):1757CrossRefGoogle Scholar
  35. 35.
    Kim C-J, Park S-D, Park H-W, Jun B-H (2016) Interior seeding for the fabrication of single-grain REBCO bulk superconductors. Supercond Sci Technol 29:034003. CrossRefADSGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Chan-Joong Kim
    • 1
  1. 1.Neutron Utilization Research DivisionKorea Atomic Energy Research InstituteDaejeonKorea (Republic of)

Personalised recommendations