Advertisement

Performance of ANN Model in Predicting the Bearing Capacity of Shallow Foundations

  • Mozaher Ul KabirEmail author
  • Syed Shadman Sakib
  • Istiakur Rahman
  • Hossain Md. Shahin
Conference paper
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 29)

Abstract

This study deals with the performance of the artificial neural networks (ANNs) for predicting the ultimate bearing capacity of shallow foundations on cohesionless soil. From cone penetration tests (CPTs), footing dimensions and other soil parameters were considered as the input variables which have the most significant impact on bearing capacity predictions. The application of artificial neural network was carried out through the following steps; at first, we consider a total of 100 sets of data among which we used 89 sets of data for training to determine a relation between input variables and the bearing capacity of the soil. For testing and validation, other 11 data sets were used. The accuracy of the model was evaluated by comparing the results with conventional bearing capacity equations. Also, high coefficients of correlation, low root-mean-squared errors (RMSEs), and low mean absolute errors (MAE) were the indications to confirm that the ANN-based model predicts with much perfection.

Keywords

ANNs Bearing capacity RMSE MAE 

References

  1. Briaud JL, Gibbens R (1999) Behavior of five large spread footings in sand. ASCE J Geotech Geoenviron Eng 125(9):787–796CrossRefGoogle Scholar
  2. De Beer EE (1965) The scale effect on the phenomenon of progressive rupture in cohesionless soil. In: Proceedings of the 6th international conference on soil mechanics and foundations engineer,s vol. 2 p 13–7Google Scholar
  3. Fausett LV (1994) Fundamentals of neural networks: architectures, algorithms and applications. Prentice-Hall, Englewood cliff s (NJ)zbMATHGoogle Scholar
  4. Mackay DJC (1991) Bayesian methods for adaptive models. PhD thesis, California Institute of TechnologyGoogle Scholar
  5. Meyerhof GG (1950) The bearing capacity of sand. PhD thesis, University of LondonGoogle Scholar
  6. Meyerhof GG (1963) Some recent research on the bearing capacity of foundations. Can Geotech J 1(1):16–26CrossRefGoogle Scholar
  7. Muhs H, Weiß K (1971) Untersuchung von Grenztragfa¨higkeitundSetzungsverhalten flachgegru¨ndeter Einzelfundamente im ungleichfo¨rmigennichtbindigen Boden. Deutsche Forschungsgesellschaft fu¨ r Bodenmechanik (DEGEBO), Berlin. HEFT 69Google Scholar
  8. Muhs H, Weiß K (1973) Inclined load tests on shallow strip footings. In: Proceedings of the 8th international conference on soil mechanism and foundation engineering. vol II, p 173–9Google Scholar
  9. Muhs H, Elmiger R, Weiß K (1969) Sohlreibung und Grenztragfa¨higkeit unter lotrecht und schra¨g belasteten Einzelfundamenten. Forschungsgesellschaft fu¨r (DEGEBO), Berlin.HEFT 62Google Scholar
  10. Pande GN, Shin H-S (2004) Artificial intelligence v. equations. In: Proc ICE Civil Eng 157(1):43–6Google Scholar
  11. Shahin MA, Maier HR, Jaksa MB (2001) Artificial neural network applications in geotechnical eng. Austr Geomech 36(1):49–62Google Scholar
  12. Steenfelt JS (1977) Scale effect on bearing capacity factor Nc. Proc. of the 9th international conference on soil mechanism and foundation engineering. vol 1, p 749– 52Google Scholar
  13. Terzaghi K (1943) Theoretical soil mechanics. John Wiley & Sons, New YorkCrossRefGoogle Scholar
  14. Vesic AS (1973) Analysis of ultimate loads of shallow foundations. JSMFD, ASCE 99(1):45–73Google Scholar
  15. Weiß K (1970) Der Einfluß der Fundamentform auf die Grenztragfa¨higkeit flachgegru¨ndeter Fundamente. Deutsche Forschungsgesellschaft fu¨ r Bodenmechanik (DEGEBO), Berlin. HEFT 65Google Scholar
  16. Zurada JM (2003) Introduction to artificial neural systems. Jaico Publishing HouseGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Mozaher Ul Kabir
    • 1
    Email author
  • Syed Shadman Sakib
    • 1
  • Istiakur Rahman
    • 1
  • Hossain Md. Shahin
    • 1
  1. 1.Department of Civil EngineeringIslamic University of TechnologyGazipurBangladesh

Personalised recommendations