Application on Cyber-Physical Cloud Systems

  • Guoqi Xie
  • Gang Zeng
  • Renfa Li
  • Keqin Li


This chapter aims to reduce the energy consumption of multiple real-time parallel workflow applications on CPCS and it contains two objectives: (1) maximizing the number of parallel workflow applications that are completed within their deadlines; (2) minimizing the energy consumption of the parallel workflow applications that are completed within their deadlines. The former is solved by proposing a deadline-driven processor merging for multiple parallel workflow applications (DPMMA) algorithm, whereas the latter is solved by proposing a global energy saving for multiple parallel workflow applications (GESMA) algorithm to minimize the total energy consumption. In the end of this chapter, we validate that the combined DPMMW&GESMW algorithm can reduce deadline miss ratio (DMR) and save as much as possible energy over existing methods based on multiple experiments.


  1. 5.
    Ab Rahman, N.H., Glisson, W.B., Yang, Y., Choo, K.K.R.: Forensic-by-design framework for cyber-physical cloud systems. IEEE Cloud Comput. 3(1), 50–59 (2016)CrossRefGoogle Scholar
  2. 9.
    Arabnejad, H., Barbosa, J.: Fairness resource sharing for dynamic workflow scheduling on heterogeneous systems. In: 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications, pp. 633–639. IEEE (2012)Google Scholar
  3. 13.
    Baker, T.P.: An analysis of EDF schedulability on a multiprocessor. IEEE Trans. Parallel Distrib. Syst. 16(8), 760–768 (2005)CrossRefGoogle Scholar
  4. 29.
    Bittencourt, L.F., Madeira, E.R.: Towards the scheduling of multiple workflows on computational grids. J. Grid Comput. 8(3), 419–441 (2010)CrossRefGoogle Scholar
  5. 38.
    Chen, H., Zhu, X., Guo, H., Zhu, J., Qin, X., Wu, J.: Towards energy-efficient scheduling for real-time tasks under uncertain cloud computing environment. J. Syst. Softw. 99(2), 20–35 (2015)CrossRefGoogle Scholar
  6. 43.
    Convolbo, M.W., Chou, J.: Cost-aware DAG scheduling algorithms for minimizing execution cost on cloud resources. J. Supercomput. 72(3), 985–1012 (2016)CrossRefGoogle Scholar
  7. 65.
    Gupta, S.K., Mukherjee, T., Varsamopoulos, G., Banerjee, A.: Research directions in energy-sustainable cyber-physical systems. Sustain. Comput. Inform. Syst. 1(1), 57–74 (2011)Google Scholar
  8. 68.
    Hönig, U., Schiffmann, W.: A meta-algorithm for scheduling multiple dags in homogeneous system environments. In: Proceedings of the 8th IASTED International Conference on Parallel and Distributed Computing and Systems, pp. 147–152 (2006)Google Scholar
  9. 69.
    Hsu, C.C., Huang, K.C., Wang, F.J.: Online scheduling of workflow applications in grid environments. Futur. Gener. Comput. Syst. 27(6), 860–870 (2011)CrossRefGoogle Scholar
  10. 71.
    Huang, Q., Su, S., Li, J., Xu, P., Shuang, K., Huang, X.: Enhanced energy-efficient scheduling for parallel applications in cloud. In: Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID 2012), pp. 781–786. IEEE Computer Society (2012)Google Scholar
  11. 73.
    Karnouskos, S., Colombo, A.W., Bangemann, T.: Trends and challenges for cloud-based industrial cyber-physical systems. In: Industrial Cloud-Based Cyber-Physical Systems, pp. 231–240. Springer (2014)Google Scholar
  12. 79.
    Kleissl, J., Agarwal, Y.: Cyber-physical energy systems: focus on smart buildings. In: Proceedings of the 47th Design Automation Conference, pp. 749–754. ACM (2010)Google Scholar
  13. 90.
    Lee, Y.C., Zomaya, A.Y.: Energy conscious scheduling for distributed computing systems under different operating conditions. IEEE Trans. Parallel Distrib. Syst. 22(8), 1374–1381 (2011)CrossRefGoogle Scholar
  14. 96.
    Li, K.: Performance analysis of power-aware task scheduling algorithms on multiprocessor computers with dynamic voltage and speed. IEEE Trans. Parallel Distrib. Syst. 19(11), 1484–1497 (2008)CrossRefGoogle Scholar
  15. 97.
    Li, K.: Energy and time constrained task scheduling on multiprocessor computers with discrete speed levels. J. Parallel Distrib. Comput. 95, 15–28 (2016)CrossRefGoogle Scholar
  16. 98.
    Li, K.: Scheduling precedence constrained tasks with reduced processor energy on multiprocessor computers. IEEE Trans. Comput. 61(12), 1668–1681 (2012)MathSciNetCrossRefGoogle Scholar
  17. 99.
    Li, K.: Power and performance management for parallel computations in clouds and data centers. J. Comput. Syst. Sci. 82(2), 174–190 (2016)MathSciNetCrossRefGoogle Scholar
  18. 100.
    Lin, M., Pan, Y., Yang, L.T., Guo, M., Zheng, N.: Scheduling co-design for reliability and energy in cyber-physical systems. IEEE Trans. Emerg. Top. Comput. 1(2), 353–365 (2013)CrossRefGoogle Scholar
  19. 115.
    Ning, H., Liu, H., Ma, J., Yang, L.T., Huang, R.: Cybermatics: cyber–physical–social–thinking hyperspace based science and technology. Futur. Gener. Comput. Syst. 56, 504–522 (2016)CrossRefGoogle Scholar
  20. 117.
    NSF: Cyber-physical systems (cps). Program solicitation nsf 16-549. Website, pp. 1–21. (2016)
  21. 119.
    Palensky, P., Widl, E., Elsheikh, A.: Simulating cyber-physical energy systems: challenges, tools and methods. IEEE Trans. Syst. Man Cybern. Syst. 44(3), 318–326 (2014)CrossRefGoogle Scholar
  22. 120.
    Parolini, L., Sinopoli, B., Krogh, B.H., Wang, Z.: A cyber–physical systems approach to data center modeling and control for energy efficiency. Proc. IEEE 100(1), 254–268 (2012)CrossRefGoogle Scholar
  23. 121.
    Parolini, L., Tolia, N., Sinopoli, B., Krogh, B.H.: A cyber-physical systems approach to energy management in data centers. In: Proceedings of the 1st ACM/IEEE International Conference on Cyber-Physical Systems, pp. 168–177. ACM (2010)Google Scholar
  24. 129.
    Saber, A.Y., Venayagamoorthy, G.K.: Efficient utilization of renewable energy sources by gridable vehicles in cyber-physical energy systems. IEEE Syst. J. 4(3), 285–294 (2010)CrossRefGoogle Scholar
  25. 138.
    Stavrinides, G.L., Karatza, H.D.: Scheduling real-time DAGs in heterogeneous clusters by combining imprecise computations and bin packing techniques for the exploitation of schedule holes. Futur. Gener. Comput. Syst. 28(7), 977–988 (2012)CrossRefGoogle Scholar
  26. 146.
    Tang, Q., Gupta, S.K.S., Varsamopoulos, G.: Energy-efficient thermal-aware task scheduling for homogeneous high-performance computing data centers: a cyber-physical approach. IEEE Trans. Parallel Distrib. Syst. 19(11), 1458–1472 (2008)CrossRefGoogle Scholar
  27. 148.
    Tang, Z., Qi, L., Cheng, Z., Li, K., Khan, S.U., Li, K.: An energy-efficient task scheduling algorithm in DVFS-enabled cloud environment. J. Grid Comput. 14(1), 55–74 (2016)CrossRefGoogle Scholar
  28. 152.
    Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13(3), 260–274 (2002)CrossRefGoogle Scholar
  29. 157.
    Wang, W., Wu, Q., Tan, Y., Wu, F.: Maximize throughput scheduling and cost-fairness optimization for multiple dags with deadline constraint. In: International Conference on Algorithms and Architectures for Parallel Processing, pp. 621–634. Springer (2015)Google Scholar
  30. 164.
    Xie, G., Liu, L., Yang, L., Li, R.: Scheduling trade-off of dynamic multiple parallel workflows on heterogeneous distributed computing systems. Concurr. Comput. Pract. Exp. 29(8), 1–18 (2017). Google Scholar
  31. 169.
    Xie, G., Zeng, G., Liu, L., Li, R., Li, K.: High performance real-time scheduling of multiple mixed-criticality functions in heterogeneous distributed embedded systems. J. Syst. Archit. 70, 3–14 (2016)CrossRefGoogle Scholar
  32. 170.
    Xie, G., Zeng, G., Liu, L., Li, R., Li, K.: Mixed real-time scheduling of multiple dags-based applications on heterogeneous multi-core processors. Microprocess. Microsyst. 47, 93–103 (2016)CrossRefGoogle Scholar
  33. 174.
    Yu, Z., Shi, W.: A planner-guided scheduling strategy for multiple workflow applications. In: 2008 International Conference on Parallel Processing-Workshops, pp. 1–8. IEEE (2008)Google Scholar
  34. 177.
    Zeng, G., Matsubara, Y., Tomiyama, H., Takada, H.: Energy-aware task migration for multiprocessor real-time systems. Futur. Gener. Comput. Syst. 56, 220–228 (2016)CrossRefGoogle Scholar
  35. 183.
    Zhao, B., Aydin, H., Zhu, D.: On maximizing reliability of real-time embedded applications under hard energy constraint. IEEE Trans. Ind. Inf. 6(3), 316–328 (2010)CrossRefGoogle Scholar
  36. 184.
    Zhao, B., Aydin, H., Zhu, D.: Shared recovery for energy efficiency and reliability enhancements in real-time applications with precedence constraints. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 18(2), 23 (2013)CrossRefGoogle Scholar
  37. 185.
    Zhao, H., Sakellariou, R.: Scheduling multiple DAGs onto heterogeneous systems. In: Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International, pp. 159–172. IEEE (2006)Google Scholar
  38. 193.
    Zhu, D., Aydin, H.: Reliability-aware energy management for periodic real-time tasks. IEEE Trans. Comput. 58(10), 1382–1397 (2009)MathSciNetCrossRefGoogle Scholar
  39. 194.
    Zhu, X., He, C., Li, K., Qin, X.: Adaptive energy-efficient scheduling for real-time tasks on dvs-enabled heterogeneous clusters. J. Parallel Distrib. Comput. 72(6), 751–763 (2012)CrossRefGoogle Scholar
  40. 196.
    Zong, Z., Manzanares, A., Ruan, X., Qin, X.: EAD and PEBD: two energy-aware duplication scheduling algorithms for parallel tasks on homogeneous clusters. IEEE Trans. Comput. 60(3), 360–374 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Guoqi Xie
    • 1
  • Gang Zeng
    • 2
  • Renfa Li
    • 3
  • Keqin Li
    • 4
  1. 1.College of Computer Science and Electronic EngineeringHunan UniversityChangshaChina
  2. 2.Graduate School of EngineeringNagoya UniversityNagoyaJapan
  3. 3.Key Laboratory for Embedded and Cyber-Physical Systems of Hunan ProvinceHunan UniversityChangshaChina
  4. 4.Department of Computer ScienceState University of New YorkNew PaltzUSA

Personalised recommendations