Advertisement

Pesticide Residues in the Soil Cause Cross-Resistance Among Soil Bacteria

  • Rangasamy Kirubakaran
  • Athiappan Murugan
  • Nowsheen Shameem
  • Javid A. Parray
Chapter
Part of the Microorganisms for Sustainability book series (MICRO, volume 12)

Abstract

Multi-drug resistance among bacterial pathogens remains a serious problem worldwide. There is no clear and complete understanding about the multi-drug resistance mechanism even though the field is attaining continuous growth. Indiscriminate use of pesticides enabling the bacterial population to acquire multidrug resistance has been revived in this paper. Pesticide residues impose a bacterial system adopted for the stress due to the presence of xenobiotics. The natural evolutionary mutation mechanisms occurring randomly in the core gene sequences responsible for catabolizing complex substrates are the major reasons behind microbial resistance. Mutated gene products produced pose lesser substrate specificity than a wild enzyme. Organophosphorus hydrolase (OPH) or formaldehyde dehydrogenase and laccase are the few enzymes able to degrade many other similar xenobiotics. It has been extrapolated that degradation of many antibiotics by organophosphorus hydrolase is a kind of nonspecific degradation. Organisms growing in metal-polluted sites produce enzymes with different metal ions in their binding sites differing in specificity and conferring cross-resistance to antibiotics.

Keywords

Pesticide degradation Cross-resistance Soil bacteria pMK-07 (plasmid_Murugan_Kirubakaran) 

Notes

Acknowledgments

All authors acknowledge the Periyar University, Salem, Tamil Nadu, India, for a University Research Fellowship (ref. no PU/A&A-3/URF/2015) and DST-FIST (grant no. SR/FST/LSI-640/2015(c)).

References

  1. Amitai G, Adani R, Sod-Moriah G, Rabinovitz I, Vincze A, Leader H, Hadar Y (1998) Oxidative biodegradation of phosphorothioates by fungal laccase. FEBS Lett 438(3):195–200PubMedCrossRefGoogle Scholar
  2. Anjum R, Krakat N (2015) Improper antibiotic utilization evokes the dissemination of resistance in biotic environments-a high risk of health hazards. Pharm Anal Acta 6:12. http://dx.doi.org/10.4 172/2153-2435.1000454
  3. Anjum R, Krakat N (2016) Detection of multiple resistances, biofilm formation and conjugative transfer of Bacillus cereus from contaminated soils. Curr Microbiol 72(3):321–328PubMedGoogle Scholar
  4. Bainy ACD (2000) Biochemical responses in penaeids caused by contaminants. Aquaculture 191:163–168.  https://doi.org/10.1016/S0044-8486(00)00432-4CrossRefGoogle Scholar
  5. Bass C, Field LM (2011) Gene amplification and insecticide resistance. Pest Manag Sci 67:886–890PubMedCrossRefGoogle Scholar
  6. Beigel C, Di Pietro L (1999) Transport of triticonazole in homogeneous soil columns influence of non equilibrium sorption. Soil Sci Soc Am J 63:1077–1086CrossRefGoogle Scholar
  7. Benitez J, Beltran-Heredia J, Gonzalez T, Real F (1995) Photooxidation of carbofuran by a polychromatic UV irradiation without and with hydrogen peroxide. Ind Eng Chem Res 34(11):4099–4105CrossRefGoogle Scholar
  8. Benning MM, Sims H, Raushel FM, Holden HM (2001) High-resolution X-ray structures of different metal-substituted forms of phosphotriesterase from Pseudomonas diminuta. Biochemist 40:2712–2722CrossRefGoogle Scholar
  9. Bergman J (2003) Does the acquisition of antibiotic and pesticide resistance provide evidence for evolution? J Creat 17:26–32Google Scholar
  10. Bertrand ND, Barcelo D, Legrini O, Oliveros E, Braun AM (1991) Photodegradation of the carbamate pesticides aldicarb, carbaryl and carbofuran in water. Anal Chim Photochem Process Acta 254:235–244CrossRefGoogle Scholar
  11. Bhadbhade BJ, Sarnaik SS, Kanekar PP (2002) Bioremediation of an industrial effluent containing monocrotophos. Curr Microbiol 45:346–349PubMedCrossRefGoogle Scholar
  12. Bhalerao ST, Puranik RP (2009) Microbial degradation of monocrotophos by Aspergillus oryzae. Int Biodeterior Biodegradation 63:503–508CrossRefGoogle Scholar
  13. Blatchley ER, Do-Quang Z, Janex ML, Laıne JM (1998) Process modeling of ultraviolet disinfection. Water Sci Technol 38(6):63–69CrossRefGoogle Scholar
  14. Chen CC, Huang C, Wu MT, Chou CH, Huang CC, Tseng TY, Chang FY, Li YT, Tsai CC, Wang TS, Wong RH (2014) Multidrug resistance gene variants, pesticide exposure, and increased risk of DNA damage. BioMed Res Int 965729:01–09.  https://doi.org/10.1155/2014/965729Google Scholar
  15. Cheng TC, Harvey SP, Stroup AN (1993) Purification and properties of a highly active organophosphorus acid anhydrolase from Alteromonas undina. Appl Environ Microbiol 59(9):3138–3140Google Scholar
  16. Cheng TC, Harvey SP, Chen GL (1996) Cloning and expression of a gene encoding a bacterial enzyme for decontamination of organophosphorus nerve agents and nucleotide sequence of the enzyme. Appl Environ Microbiol 62(5):1636–1641PubMedPubMedCentralGoogle Scholar
  17. Cheng T, Liu L, Wang B, Wu J, DeFrank JJ, Anderson DM, Rastogi VK, Hamilton AB (1997) Nucleotide sequence of a gene encoding an organophosphorus nerve agent degrading enzyme from Alteromonas haloplanktis. J Ind Microbiol Biotechnol 18(1):49–55PubMedCrossRefGoogle Scholar
  18. Cofie O, Veenhuizen RV, Drechsel P (2003) Contribution of urban and Peri-urban agriculture to food security in sub-Saharan Africa. Africa session of 3rd WWF, KyotoGoogle Scholar
  19. Cynthia JB, Muller JG (1998) Oxidative nucleobase modifications leading to strand scission. Chem Rev 98(3):1109–1152CrossRefGoogle Scholar
  20. Daniel H (1991) Out of the earth: civilization and the life of the soil. Free Press, New YorkGoogle Scholar
  21. DeFrank JJ, White WE (2002) Phosphofluoridates: biological activity and biodegradation. Handbook Environ Chem 10:295–343CrossRefGoogle Scholar
  22. Ding C, He J (2010) Effect of antibiotics in the environment on microbial populations. Appl Microbiol Biotechnol 87:925–941PubMedCrossRefGoogle Scholar
  23. DiSioudi BD, Miller CE, Lai KH, Gimsley JK, Wild JR (1999) Rational design of organophosphorus hydrolase for altered substrate specificities. Chem Biol Interact 120:211–223CrossRefGoogle Scholar
  24. Dumas DP, Caldwell SR, Wild JR, Raushel FM (1989) Purification and properties of the phosphotriesterase from Pseudomonas diminuta. J Biol Chem 264:19659–19665PubMedGoogle Scholar
  25. Eerd LLV, Hoagland RE, Zablotowicz RM, Hall JC (2003) Pesticide metabolism in plants and microorganisms. Weed Sci 51(4):472–495CrossRefGoogle Scholar
  26. Efrmenko EN, Sergeeva VS (2001) Organophosphate hydrolase – an enzyme catalyzing the degradation of phosphorus-containing toxins and pesticides. Russ Chem Bull (Int Ed) 50:1826–1832CrossRefGoogle Scholar
  27. Gerlt JA, Raushel FM (2003) Evolution of function in (b/a) 8- barrel enzymes. Curr Opini Chem Biol 7:252–264CrossRefGoogle Scholar
  28. Gonzalez-Lopez J, Martinez-Toledo MV, Rodelas B, Salmeron V (1993) Studies on the effects of the insecticides phorate and malathion on soil microorganisms. Environ Toxicol Chem 12:1209–1214CrossRefGoogle Scholar
  29. Grover R, Cessna AJ (1991) Environmental chemistry of herbicides, insecticides, and fungicides. CRC Press, Boca RatonGoogle Scholar
  30. Gundi VA, Reddy BR (2006) Degradation of monocrotophos in soils. Chemosphere 62(3):396–403PubMedCrossRefGoogle Scholar
  31. Hausinger RP, Fukumori F (1995) Characterization of the first enzyme in 2, 4-dichlorophenoxyacetic acid metabolism. Environ Health Perspect 103(5):37–39PubMedPubMedCentralGoogle Scholar
  32. Heinemann J (2000) Do antibiotics maintain antibiotic resistance. Drug Discov Today 5:195–204PubMedCrossRefGoogle Scholar
  33. Henry LM, Maiden MC, Ferrari J, Godfray HCJ (2015) Insect life history and the evolution of bacterial mutualism. Ecol Lett 18:516–525PubMedCrossRefGoogle Scholar
  34. Holm L, Sander C (1997) An evolutionary treasure: unification of a broad set of amidohydrolase related to urease. Proteins 28:72–82PubMedCrossRefGoogle Scholar
  35. Horne I, Harcourt RL, Sutherland TD, Russell RJ, Oakeshott JG (2002) Isolation of a Pseudomonas monteilli strain with a novel phosphotriesterase. FEMS Microbiol Lett 206:51–55PubMedCrossRefGoogle Scholar
  36. Kazanjian P, Wendy A, Hossler PA, Burman W, Richardson J, Lee CH, Lawrence C, Katz J, Meshnick SR (2000) Pneumocystis carinii mutations are associated with duration of sulfa or sulfone prophylaxis exposure in AIDS patients. J Infect Dis 182(2):551–557.  https://doi.org/10.1086/315719PubMedCrossRefGoogle Scholar
  37. Kirubakaran R, Murugan A, Natarajan D, Parray JA (2017a) Emergence of multi drug resistance among soil bacteria exposing to insecticides. Microb Pathogenesis 105:153–165CrossRefGoogle Scholar
  38. Kirubakaran R, Murugan A, Chinnathambi P, Parray JA (2017b) Influence of residual pesticide on plant growth promoting bacteria isolated from agriculture field. J Basic Appl Plant Sci 1(2):110Google Scholar
  39. Kirubakaran R, Murugan A, Natarajan D, Parray JA, Gopinath S, Aruljothi KN, Nowsheen S, Abdulaziz AA, Abeer H, Elsayed FA (2018a) Pesticide-degrading, naturally multidrug-resistant bacteria flora. Microb Pathogenesis 114:304–310CrossRefGoogle Scholar
  40. Kirubakaran R, Murugan A, Natarajan D, Parray JA, Shameem N, Aruljothi KN, Hashem A, Alqarawi AA, Abd_Allah EF (2018b) Cloning and expression of the organophosphate pesticide-degrading 𝛼-𝛽 hydrolase gene in plasmid pMK-07 to confer cross-resistance to antibiotics. Biomed Res Int 2018:1535209.  https://doi.org/10.1155/2018/1535209CrossRefGoogle Scholar
  41. Kopf G, Schwack W (1995) Photodegradation of the carbamate insecticide ethiofencarb. J Pest Sci 43:303–309CrossRefGoogle Scholar
  42. Kruger M, Schledorn P, Schrodl W, Hoppe H, Walburga L, Shehata AA (2014) Detection of glyphosate residues in animals and humans. J Environ Anal Toxicol 4:1–5CrossRefGoogle Scholar
  43. Kurenbach B, Marjoshi D, Amabile-Cuevas CF, Ferguson GC, Godsoe W, Gibson P, Heinemann JA (2015) Sublethal exposure to commercial formulations of the herbicides dicamba, 2,4-dichlorophenoxyacetic acid, and glyphosate cause changes in antibiotic susceptibility in Escherichia coli and Salmonella entericaserovar, Typhimurium. MBio 6(2):e00009–e00015PubMedPubMedCentralCrossRefGoogle Scholar
  44. Lan WS, Gu JD, Zhang JL, Shen BC, Jiang H, Mulchandani A, Chen W, Qiao CL (2006) Coexpression of two detoxifying pesticide-degrading enzymes in a genetically engineered bacterium. Int Biodeterior Biodegradation 58:70–76CrossRefGoogle Scholar
  45. Li FB, Li XM, Zhou SG, Zhuang L, Cao F, Huang DY, Xu W, Liu T, Feng CH (2010) Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide. Environ Pollut 158(5):1733–1740PubMedCrossRefGoogle Scholar
  46. Liu YH, Liu Y, Chen ZS, Lian J, Huang X, Chung YC (2004) Purification and characterization of a novel organophosphorus pesticide hydrolase from Penicillium lilacinum BP303. Enzym Microb Technol 34(3):297–303CrossRefGoogle Scholar
  47. Liu GQ, Zhang G, Li J, Qi SH (2008) Source and distribution characteristic of atmospheric organochlorine pesticides in the Pearl River estuary and the adjacent South China Sea. Environ Sci 29(12):3320–3325Google Scholar
  48. Livingstone DR (1998) The fate of organic xenobiotics in aquatic ecosystems: quantitative and qualitative differences in biotransformation by invertebrates and fish. Comp Biochem Phys 120:43–49CrossRefGoogle Scholar
  49. Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602PubMedPubMedCentralGoogle Scholar
  50. Marc R, James U (2005) Rhodococcus phenolics sp. a novel bioprocessor isolated actinomycete with the ability to degrade chlorobenzene, dichlorobenzene, and phenol as sole carbon sources. Syst Appl Microbiol 28(8):695–701CrossRefGoogle Scholar
  51. Meallier P, Momouni A, Mansour M (1994) Photodegradation des molecules phytosanitary. VII. Photodegradation du carbetamide soul et en presence d’ajuvants de formulation, Chemosphere 20(46):267–273Google Scholar
  52. Mulbry WW (1992) The aryldialkylphosphatase-encoding gene adpB from Nocardia sp. strain B-1: cloning, sequencing and expression in Escherichia coli. Gene 121(1):149–153PubMedCrossRefGoogle Scholar
  53. Mulbry WW, Karns JS (1989) Purification and characterization of three parathion hydrolase from gram-negative bacterial strains. Appl Environ Microbiol 55:289–293PubMedPubMedCentralGoogle Scholar
  54. Nyle BC, Ray WR (2002) The nature and properties of soils, 13th edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  55. Omburo GA, Kuo JM, Mullins LS, Raushel FM (1992) Characterization of zinc binding site of bacterial phosphotriesterase. Comput Biol Chem 267:13278–13283Google Scholar
  56. Ortiz-Hernandez ML, Sanchez-Salinas E (2010) Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in Mexico. Revista Internacional de Contaminacion Ambiental 26:27–38Google Scholar
  57. Orzech KM, Nichter M (2008) From resilience to resistance: political ecological lessons from antibiotic and pesticide resistance. Annu Rev Anthropol 37:267–282CrossRefGoogle Scholar
  58. Pandit NP, Ahmad N, Maheshwari SK (2012) Vermicomposting biotechnology: an eco-loving approach for recycling of solid organic wastes into valuable biofertilizers. J Agric Sci Food Res 2:113Google Scholar
  59. Prammer B (1998) Directive 98/83/CE relative to the quality of waters for human use. Official Bulletin of the EC, European Union, Clavijo, Study of photodegradation of the pesticide ethiofencarb in Brussels:32–54Google Scholar
  60. Quin LD (2000) A guide to organophosphorus chemistry. Wiley. ISBN 0-471-31824-8Google Scholar
  61. Ramakrishnan B, Megharaj M, Venkateswarlu K, Sethunathan N, Naidu R (2011) Mixtures of environmental pollutants: effects on microorganisms and their activities in soils. Rev Environ Contamin Toxicol 211:63–120Google Scholar
  62. Rangaswamy V, Venkateswarlu K (1992) Degradation of selected insecticides by bacteria isolated from soil. Bull Environ Contam Toxicol 49(6):797–804PubMedCrossRefGoogle Scholar
  63. Raushel FM (2002) Bacterial detoxification of organophosphate nerve agents. Curr Opin Microbiol 5:288–295PubMedCrossRefGoogle Scholar
  64. Riya P, Jagapati T (2012) Biodegradation and bioremediation of pesticides in soil: its objectives, classification of pesticides, factors and recent developments. World J Sci Technol 2:36–41CrossRefGoogle Scholar
  65. Ruifu Z, Zhongli C, Jiandong J, Jian H, Xiangyan G, Shunpeng L (2005) Diversity of organophosphorus pesticide-degrading bacteria in a polluted soil and conservation of their organophosphorus hydrolase genes. Can J Microbiol 51:337–343.  https://doi.org/10.1139/w05CrossRefGoogle Scholar
  66. Russell WR, Hoyles L, Flint HJ, Dumas ME (2013) Colonic bacterial metabolites, and human health. Curr Opin Microbiol 16:246–254PubMedCrossRefGoogle Scholar
  67. Sander P, Wittich RM, Fortnagel P, Wilkes H, Francke W (1991) Degradation of 1,2,4-trichloro- and 1,2,4,5- tetrachlorobenzene by Pseudomonas strains. Appl Environ Microbiol 57:1430–1440PubMedPubMedCentralGoogle Scholar
  68. Scott C, Pandey G, Hartley CJ, Jackson CJ, Cheesman MJ, Taylor MC, Pandey R, Khurana JL, Teese M, Coppin CW, Weir KM, Jain RK, Lal R, Russell RJ, Oakeshott JG (2008) The enzymatic basis for pesticide bioremediation. Indian J Microbiol 48:65–79PubMedPubMedCentralCrossRefGoogle Scholar
  69. Selvapandiyan A, Bhatnagar RK (1994) Isolation of a glyphosate-metabolizing Pseudomonas: detection, partial purification and localization of carbon-phosphorus lyase. Appl Microbiol Biotechnol 40:876–882CrossRefGoogle Scholar
  70. Seo JS, Keum YS, Harada RM, Li QX (2007) Isolation and cauterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHs) and organophosphorus pesticides from the PAH-contaminated soil in Hilo, Hawaii. J Agric Food Chem 55:5383–5389PubMedCrossRefGoogle Scholar
  71. Serdar CM, Gibson DT, Munnecke DM, Lancaster JH (1982) Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Appl Environ Microbiol 44:246–249PubMedPubMedCentralGoogle Scholar
  72. Shafiani S, Malik A (2003) Tolerance of pesticides and antibiotic resistance in bacteria isolated from wastewater-irrigated soil. World J Microbiol Biotechnol 19:897–901CrossRefGoogle Scholar
  73. Shah BP, Devkota B (2009) Obsolete pesticides: their environmental and human health hazards. J Agric Environ 10:51–56CrossRefGoogle Scholar
  74. Shim H, Hong SB, Raushel FM (1998) Hydrolysis of phosphodiesters through the transformation of the bacterial phosphotriesterase. J Biol Chem 272:17445–17450CrossRefGoogle Scholar
  75. Singh S, Singh DK (2003) Utilization of monocrotophos as phosphorus source by Pseudomonas aeruginosa F10B and Clavibacter michiganense sub sp. inisidiosum SBL. Can J Microbiol 49:101–109PubMedCrossRefGoogle Scholar
  76. Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471PubMedCrossRefGoogle Scholar
  77. Singh BK, Walker A, Morgan JAW, Wrigh DJ (2003) Role of soil pH in the development of enhanced biodegradation of fenamiphos. Appl Environ Microbiol 69:7035–7043PubMedPubMedCentralCrossRefGoogle Scholar
  78. Stevenson PC, Isman MB, Steven R (2017) Belmain Pesticidal plants in Africa: a global vision of new biological control products from local uses. Ind Crops Prod 110(30):2–9CrossRefGoogle Scholar
  79. Tomlin C (1995) The pesticide manual, 10th edn. British Crop Protection Council and the Royal Society of ChemistryGoogle Scholar
  80. Tu H, Frederic-Silvestre YZ, Nguyen-Thanh PZ, Patrick K (2010) Effects of pesticides and antibiotics on Penaeid shrimp with special emphases on behavioral and biomarker responses. Environ Toxicol Chem 29:929–938PubMedCrossRefGoogle Scholar
  81. U.S. EPA (U.S. Environmental Protection Agency) (2005) Guidelines for ensuring and maximizing the quality, objectivity, utility, and integrity for information disseminated by the Environmental Protection Agency. Office of Environmental Information, Washington, DC. EPA/630/P-03/001FGoogle Scholar
  82. Vig K, Singh DK, Agarwal HC, Dhawan AK, Dureja P (2001) Insecticide residues in cotton crop soil. J Environ Sci Health B 36:421–434PubMedCrossRefGoogle Scholar
  83. Waili NA, Salom K, Ghamdi AA, Ansari MJ (2012) Antibiotic, Pesticide and microbial contaminants of honey: Human health hazards. Sci World J:01–09Google Scholar
  84. Walker A, Roberts SJ (1993) Degradation, biodegradation, and enhanced biodegradation. In: Proceedings of 9th Symposium Pesticide chemistry: the chemistry, mobility, and degradation of xenobiotics, Piacenza, ItalyGoogle Scholar
  85. Yadav S, Kumar S, Hotam V, Chaudhary S (2015) Isolation and characterization of organophosphate pesticides degrading bacteria from contaminated agricultural soil. Onl J Biol Sci 15:113–125CrossRefGoogle Scholar
  86. Yang H, Carr PD, McLoughlin SY, Liu LW, Horne I, Qui X, Jeffries CM, Russell RJ, Oakeshott JG, Ollis DL (2003) Evolution of an organophosphate-degrading enzyme: a comparison of natural and directed evolution. Protein Eng 16:135–145PubMedCrossRefGoogle Scholar
  87. Zhang R, Cui Z, Jiang J, Gu X, Li S (2005) Diversity of organophosphorus pesticides degrading bacteria in a polluted soil and conversation of their organophosphorus hydrolase genes. Can J Microbiol 5:337–343CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Rangasamy Kirubakaran
    • 1
  • Athiappan Murugan
    • 1
  • Nowsheen Shameem
    • 2
  • Javid A. Parray
    • 3
  1. 1.Department of MicrobiologyPeriyar UniversitySalemIndia
  2. 2.Department of Environmental ScienceCluster University SrinagarJammu and KashmirIndia
  3. 3.Department of Environmental ScienceGovernment SAM Degree College BudgamJammu and KashmirIndia

Personalised recommendations