Performance Analysis of Mid-Far Infrared Wave in Satellite-Ground Link

  • Meng JingEmail author
  • Li Shuai
  • Lin Qingqing
  • Liu Shuai
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 517)


Based on the basic theory of laser communication in the atmosphere, the effects of wavelengths, transmission distance, and visibility on communication link are studied; considering the restriction parameters in the satellite-ground communication link, the outage probability, fade statistic, intensity fluctuation and bit error rate of OOK/BPSK modulation are derived; the link budget is discussed; the results show that mid-far infrared wave has better transmission performance in atrocious atmosphere compared with the near-infrared wave, which could become an optimization choice in satellite-ground downlinks.


Communication in satellite-ground link Mid-far infrared wave Link performance BER 


  1. 1.
    Seel, S., Kgmpfner, H., Heine, F., et al.: Space to ground bidirectional optical communication link at 5.6 Gbps and EDRS connectivity outlook. In: IEEE Aerospace Conference, pp. 1–7 (2011)Google Scholar
  2. 2.
    Edwards, B.L., Israel, D., Wilson, K., et al.: Overview of the laser communications relay demonstration project. ASTIA Documents 1303, 1–13 (2012)Google Scholar
  3. 3.
    Bohmer, K., Gregory, M., Heine, F., et al.: Laser communication terminals for the European Data Relay System. In: Proceedings of SPIE, vol. 8246, p. 82460D (2012)Google Scholar
  4. 4.
  5. 5.
  6. 6.
    Gutowska, M., Pierscińska, D., Nowakowski, M., et al.: Transmitter with quantum cascade laser for free space optics communication system. Bull. Pol. Acad. Sci. 59(4), 419–423 (2011)Google Scholar
  7. 7.
    Pavelchek, A., Trissel, R.G, Plante, J., et al.: Long-wave infrared (10 μm) free-space optimal communication system. In: Proceedings of SPIE on Optical Science and Technology, pp. 247–252 (2004)Google Scholar
  8. 8.
    Hutchinson, D.P., Richards, R.K., et al.: All-weather long-wavelength infrared free space optical communications. In: International Symposium on Optical Science and Technology, pp. 44–49 (2002)Google Scholar
  9. 9.
    Hamid, H.: Deep Space Optical Communications. Jet Propulsion Laboratory California Institute of Technology Press, California (2005)Google Scholar
  10. 10.
    Beland, R.R.: Propagation Through Atmospheric Optical Turbulence. The Infrared and Electro Optical Systems Handbook. SPIE Optical Engineering Press, Bellingham (1993)Google Scholar
  11. 11.
    Wu, Z.S., Wei, H.Y., Yang, R.K., et al.: Study on scintillation considering inner-and outer-scales for laser beam propagation on the slant path through the atmospheric turbulence. Prog. Electromagn. Res. 80, 277–293 (2008)CrossRefGoogle Scholar
  12. 12.
    Al-Habash, M.A., Andrews, L.C.: Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media. Opt. Eng. 40(8), 1554–1562 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Qian Xuesen Laboratory of Space TechnologyBeijingChina

Personalised recommendations