Short-Text Sentiment Analysis Based on Windowed Word Vector

  • Dongmei Zhao
  • Yingli Shen
  • Yabo Shen
  • Yong Ma
  • Yun Jin
  • Shidang Li
  • Mingliang GuEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 517)


The traditional text sentiment analysis directly inputs syntactic feature or word vector to model. It fails to consider the characteristics of time series in sentiment. Considering that product reviews are short text, this paper comes up with the method of windowed word vector and classifier fusion in the decision layer. The results indicate that the proposed method can achieve better performance than several existing methods.


Sentiment analysis Windowed word vector Classifier fusion Short text 



The paper is supported by the National Natural Science Foundation (61673108), China Postdoctoral Science Foundation (2016M601695), and Jiangsu University Natural Science Research Project (17KJB510018).


  1. 1.
    Medhat, W., Hassan, A., Korashy, H.: Sentiment analysis algorithms and applications: a survey. Ain Shams Eng. J. 5(4), 1093–1113 (2014)CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Keshavarz, H., Abadeh, M.S.: ALGA: adaptive lexicon learning using genetic algorithm for sentiment analysis of microblogs. Knowl. Syst. 122, 1–16 (2017)CrossRefGoogle Scholar
  4. 4.
    Chen, T., Xu, R., He, Y., et al.: Learning user and product distributed representations using a sequence model for sentiment analysis. IEEE Comput. Intell. Mag. 11(3), 34–44 (2016)CrossRefGoogle Scholar
  5. 5.
    Manek, A.S., Shenoy, P.D., Mohan, M.C., et al.: Aspect term extraction for sentiment analysis in large movie reviews using gini index feature selection method and SVM classifier. World Wide Web-internet Web Inf. Syst. 20(2), 135–154 (2017)CrossRefGoogle Scholar
  6. 6.
    Rout, J.K., Choo, K.K.R., Dash, A.K., et al.: A model for sentiment and emotion analysis of unstructured social media text. Electron. Commer. Res. 1–19 (2017)Google Scholar
  7. 7.
    Abbasi, A., Chen, H., Salem, A.: Sentiment analysis in multiple languages. ACM Trans. Inf. Syst. 26(3), 1–34 (2008)CrossRefGoogle Scholar
  8. 8.
    Salton, G., Wong, A., Yang, C.S.: On the specification of term values in automatic indexing. J. Doc. (1973)Google Scholar
  9. 9.
    Mikolov, T., Chen, K., Corrado, G., et al.: Efficient estimation of word representations in vector space. Comput. Sci. (2013)Google Scholar
  10. 10.
    Chen, T., Xu, R., He, Y., et al.: Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN. Expert Syst. Appl. 72, 221–230 (2017)CrossRefGoogle Scholar
  11. 11.
  12. 12.
  13. 13.
  14. 14.
    Vapnik, V.: The nature of statistical learning theory. Springer, New York, Inc. pp. 988–999 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Dongmei Zhao
    • 1
  • Yingli Shen
    • 1
  • Yabo Shen
    • 1
  • Yong Ma
    • 1
  • Yun Jin
    • 1
    • 2
  • Shidang Li
    • 1
  • Mingliang Gu
    • 1
    Email author
  1. 1.School of Physics and Electronic EngineeringJiangsu Normal UniversityXuzhouPeople’s Republic of China
  2. 2.The key laboratory of children development and learning science, ministry of educationSoutheast UniversityNanjingChina

Personalised recommendations