Genetic Algorithm-Based Beamforming Using Power Pattern Function

  • Shuoguang WangEmail author
  • Shiyong Li
  • Houjun Sun
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 517)


To solve the beamforming problems of small-scale array, this paper describes a new method using power pattern function and genetic algorithm. Compared with the traditional antenna beamforming methods which utilize the envelope of the radiation pattern, this method can control all the sidelobes quantitatively and form the desired array pattern. For a small-scale array, its envelope is difficult to be quantified and obtained. The proposed method in this paper is more intuitive and reliable to control the sidelobe levels. Using the power pattern optimization method, it can obtain an improved array pattern and fast convergence in small-scale arrays design. Numerical results are presented to verify the convergence and computational efficiency of the proposed method.


Beamforming Power pattern function Genetic algorithm Small-scale arrays design 


  1. 1.
    Murino, V., Trucco, A., Regazzoni, C.S.: Synthesis of equally spaced arrays by simulated annealing. IEEE Trans. Signal Process 44(1), 119–122 (1996)CrossRefGoogle Scholar
  2. 2.
    Rahmat-Samii, Y., Michielssen, E. (eds.): Electromagnetic Optimization by Genetic Algorithm. Wiley, New York (1999)zbMATHGoogle Scholar
  3. 3.
    Johnson, J., Rahmat-Samii, Y.: Genetic algorithms and method of moments (GA/MOM) for the design of integrated antennas. IEEE Trans. Antennas Propag. 47(10), 1606–1614 (2001)CrossRefGoogle Scholar
  4. 4.
    Himdi, M., Daniel, J.: Synthesis of slot coupled loaded patch antennas using a genetic algorithm through various examples. IEEE Trans. Antennas Propag. 3, 1700–1703 (1997)Google Scholar
  5. 5.
    Ares-Pena, F.J., Gonzalez, J.A., Lopez, E., Rengarajan, S.R.: Genetic algorithms in the design and optimization of antenna array patterns. IEEE Trans. Antennas Propag. 47(3), 506–510 (1999)CrossRefGoogle Scholar
  6. 6.
    Yan, K.K., Lu, Y.: Sidelobe reduction in array-pattern synthesis using genetic algorithm. IEEE Trans. Antennas Propag. 45(7), 1117–1122 (1997)Google Scholar
  7. 7.
    Tennant, A., Dawoud, M.M., Anderson, A.P.: Array pattern nulling by element position perturbations using a genetic algorithm. Electron. Lett. 30(3), 174–176 (1994)CrossRefGoogle Scholar
  8. 8.
    Yeo, B.K., Lu, Y.: Array failure correction with a genetic algorithm. IEEE Trans. Antennas Propag. 47(5), 823–828 (1999)CrossRefGoogle Scholar
  9. 9.
    Gies, D., Rahmat-Samii, Y.: Particle swarm optimization for reconfigurable phased-differentiated array design. Opt. Tech. Lett 38(3), 168–175 (2003)CrossRefGoogle Scholar
  10. 10.
    Yang, D., Wang, Y.-M., Gou, Y.: Comparative analysis of SA and GA algorithms in beam pattern design. Comput. Simul. 25(8), 323–327 (2008)Google Scholar
  11. 11.
    Keen-Keong, Y., Yilong, L.: Side lobe reduction in array-pattern synthesis using genetic algorithm. IEEE Trans. Antenna Propag. 45(7), 1117–1122 (1997)Google Scholar
  12. 12.
    Brown, A.D.: Electronically Scanned Arrays MATLAB Modeling and Simulation (2012)Google Scholar
  13. 13.
    Zhenghui, X., Weiming, L., Wu, R.: Array Antenna Analysis and Synthesis. Beihang University, pp. 102–178 (2011)Google Scholar
  14. 14.
    Man, K.F., Tang, K.S., Kwong, S.: Genetic algorithms: concepts and applications. IEEE Trans. Industr. Electron. 43(5), 519–534 (1996)CrossRefGoogle Scholar
  15. 15.
    Ming, Z., Shudong, S.: Principles and applications of genetic algorithms. National Defense Industry Press, Beijing: Academic, pp. 18–64 (1999)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Millimeter Wave and Terahertz TechnologyBeijing Institute of TechnologyBeijingChina

Personalised recommendations