Advertisement

Survey of Big Data Application Technology on Multimedia Data of Public Security

  • Huibo Li
  • Yinan JiangEmail author
  • Yunxiang Yang
  • Jing Guo
  • Xiaocheng Hu
  • Ke Guo
  • Bo Zhang
  • Jing Cheng
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 517)

Abstract

The era of multimedia big data has a profound and extensive impact on the field of public security. The application of multimedia data and big data technology has brought new opportunities to the construction of public security system, as well as new challenges. This paper summarizes the new characteristics of various public security risk events, such as violent terrorist attacks, serious criminal offences, major group events, and network crimes, and analyzes the main problems existing in the application of big data technology in the field of public security. The progresses and trends of some essential technologies are analyzed.

Keywords

Multimedia data Big data Public security Association analysis 

Notes

Acknowledgements

This paper is supported by Beijing NOVA Program (Z181100006218041) and National Key R&D Program of China (2017YFC0820106).

References

  1. 1.
    Lazer, D., Kennedy, R., King, G., Vespignani, A.: Big data. The parable of Google Flu: traps in big data analysis. Science 343(6176), 1203 (2014)CrossRefGoogle Scholar
  2. 2.
    Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., et al.: Big data: the next frontier for innovation, competition, and productivity. Analytics (2011)Google Scholar
  3. 3.
    Simon, P.: Case Studies: The Big Rewards of Big Data. Wiley (2015)Google Scholar
  4. 4.
    Williams, M.L., Burnap, P., Sloan, L.: Crime sensing with big data: the affordances and limitations of using open source communications to estimate crime patterns. Br. J. Criminol. 57(2) (2017).  https://doi.org/10.1093/bjc/azw031
  5. 5.
    Wang, H., Kiferm D., Graif, C., Li, Z. (eds.): Crime rate inference with big data. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)Google Scholar
  6. 6.
    Dhaka, P., Johari, R. (eds.): CRIB: cyber crime investigation, data archival and analysis using big data tool. In: International Conference on Computing, Communication and Automation (2017)Google Scholar
  7. 7.
    Zhang, Q.: The research for the problem of big data application in current crime prevention and control. Southwest University of Political Science and Law (2016)Google Scholar
  8. 8.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Tweet analysis for real-time event detection and earthquake reporting system development. IEEE Trans. Knowl. Data Eng. 25(4), 919–931 (2013)CrossRefGoogle Scholar
  9. 9.
    Wang, L.: Research on Influence and Dynamic Evolution Analysis of Internet Public Opinion Events. Tianjin University (2015)Google Scholar
  10. 10.
    Morton, J.F.: Next-Generation Homeland Security: Network Federalism and the Course to National Preparedness. US Naval Inst Press (2014)Google Scholar
  11. 11.
    Pedrycz, W., Chen, S.M.: Information Granularity, Big Data, and Computational Intelligence. Studies in Big Data, vol. 8 (2015)Google Scholar
  12. 12.
    Janssen, M., Voort, H.V.D., Wahyudi, A.: Factors influencing big data decision-making quality. J. Bus. Res. 70, 338–345 (2017)CrossRefGoogle Scholar
  13. 13.
    Meng, X., Du, Z.: Research on the big data fusion: issues and challenges. J. Comput. Res. Dev. 53(2), 231–246 (2016)Google Scholar
  14. 14.
    Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2012)CrossRefGoogle Scholar
  15. 15.
    Zhao, L., Ichise, R.: Ontology integration for linked data. J. Data Semantics. 3(4), 237–254 (2014)CrossRefGoogle Scholar
  16. 16.
    Matteini, A., Matteini, A., Isele, R., Becker, C., Becker, C. (eds.): LDIF-linked data integration framework. In: International Conference on Consuming Linked Data (2011)Google Scholar
  17. 17.
    Luo, R.C., Chang, C.C., Lai, C.C.: Multisensor fusion and integration: theories, applications, and its perspectives. IEEE Sens. J. 11(12), 3122–3138 (2011)CrossRefGoogle Scholar
  18. 18.
    Mitchell, T.M.: Machine Learning, pp. 417–433. McGraw-Hill (2003)Google Scholar
  19. 19.
    Witten, I.H., Frank, E.: Data mining: practical machine learning tools and techniques. ACM SIGMOD Record. 31(1), 76–77 (2005)CrossRefGoogle Scholar
  20. 20.
    Wang, D., Cui, P., Zhu, W. (eds.): Structural deep network embedding. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Huibo Li
    • 1
  • Yinan Jiang
    • 1
    Email author
  • Yunxiang Yang
    • 1
  • Jing Guo
    • 1
  • Xiaocheng Hu
    • 1
  • Ke Guo
    • 1
  • Bo Zhang
    • 1
  • Jing Cheng
    • 1
  1. 1.China Academy of Electronic Information TechnologyBeijingChina

Personalised recommendations