Advertisement

Memory Confidentiality and Integrity Protection Technology

  • Hongjin Wang
  • Huimin MengEmail author
  • Nianmin Yao
  • Yishun Cheng
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 517)

Abstract

In most existing computer systems, data transmission and preservation in the form of plaintext are vulnerable to various attacks. In this paper, we use Parralelized memory Confidentiality and Integrity Protection technology (PCIP) algorithm to ensure the confidentiality and integrity of memory data. On the basis of PCIP, we use PCIP Bonsai Merkle Tree (PCIP+BMT) to protect the counter values of off-chip to reduce system delay and overhead. PCIP is that uses counter mode encryption to encrypt data while adding redundant data for integrity checking. Finally, we use the SimpleScalar Tool to simulate the PCIP and PE-ICE algorithms. The results show that PCIP is encrypted more effectively than the PC-ICE. Compared with the Hash algorithm, it can reduce the system delay and reduce the internal memory overhead. The tree mechanism adopted in this paper reduces the impact on system performance.

Keywords

PCIP Confidentiality Integrity Counter mode encryption System delay Overhead 

References

  1. 1.
    Chen, X., Shang, T., Kim, I., et al.: A remote data integrity checking scheme for big data storage. In: IEEE Second International Conference on Data Science in Cyberspace, pp. 53–59. IEEE (2017)Google Scholar
  2. 2.
    Patrick, C., Jiawen, Z., James, G., et al.: Protecting data on smartphones and tablets from memory attacks. Twent. Int. Conf. Archit. Supp. Progr. Lang. Oper. Syst. 50(4), 177–189 (2015)Google Scholar
  3. 3.
    Rejani, R., Murugan, D., Krishnan, V.: Digital data protection using steganography. ICTACT J. Commun. Technol. 7(1), 1245–1254 (2016)Google Scholar
  4. 4.
    Abdellatif, K.M., Chotin, A.R., Mehrez, H.: AES-GCM and AEGIS: efficient and high speed hardware implementations. J. Sig. Process. Syst. 88(1), 1–12 (2017)CrossRefGoogle Scholar
  5. 5.
    Ueno, R., Morioka, S., Homma, N., et al.: A high throughput/gate AES hardware architecture by compressing encryption and decryption datapaths. In: International Conference on Cryptographic Hardware and Embedded Systems, pp. 538–558. Springer, Berlin, Heidelberg (2016)Google Scholar
  6. 6.
    Wen, W., Jun, Y., Youtao, Z.: Optimizing power efficiency for 3D stacked GPU-in-memory architecture. Microprocess. Microsyst. 49, 44–53 (2017)CrossRefGoogle Scholar
  7. 7.
    Mohan, P., Chelliah, S., Li, Y.: An authentication technique for accessing de-duplicated data from private cloud using one time password. Int. J. Inf. Secur. Priv. 11(2), 1–10 (2017)CrossRefGoogle Scholar
  8. 8.
    Rasjid, Z.E., Soewito, B., Witjaksono, G., et al.: A review of collisions in cryptographic hash function used in digital forensic tools. Procedia Comput. Sci. 116, 381–392 (2017)CrossRefGoogle Scholar
  9. 9.
    Elbaz, R., Torres, L., Sassatelli, G., et al.: Block-level added redundancy explicit authentication for parallelized encryption and integrity checking of processor-memory transactions. Trans. Comp. Sci. X 10, 231–260 (2011)Google Scholar
  10. 10.
    Chen, C.: QR code authentication with embedded message authentication code. Mob. Netw. Appl. 22(3), 1–12 (2016)Google Scholar
  11. 11.
    Suh, G.E, Fletcher, C., Clarke, D., et al.: Author retrospective AEGIS. In: Anniversary International Conference, pp. 8–70 (2014)Google Scholar
  12. 12.
    Garg, N., Bawa, S.: RITS-MHT: relative indexed and time stamped Merkle hash tree based data auditing protocol for cloud computing. J. Netw. Comput. Appl. 84, 1–13 (2017)CrossRefGoogle Scholar
  13. 13.
    Elbaz, R., Torres, L., Sassatelli, G., et al.: A parallelized way to provide data encryption and integrity checking on a processor-memory bus. In: Design Automation Conference, pp. 506–509. ACM (2006)Google Scholar
  14. 14.
    Mohanraj, V., Srinivasan, S.: Development of advanced encryption standard architecture with sbox parity. Walailak J. Sci. Technol. 14(4), 315–325 (2017)Google Scholar
  15. 15.
    Kermani, M.M., Jalali, A., Azarderakhsh, R., et al.: Reliable inversion in GF(28) with redundant arithmetic for secure error detection of cryptographic architectures. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. PP(99), 1–1 (2017)Google Scholar
  16. 16.
    Sharma, N.A., Farik, M.: A performance test on symmetric encryption algorithms—RC2 Vs Rijndael. Int. J. Sci. Technol. Res. 6(7), 292–294 (2017)Google Scholar
  17. 17.
  18. 18.
    Arora, H., Bhatia, U., Pandita, S.: Comparative study of different cache models on SimpleScalar architecture. In: Communication and Computing, pp. 302–304. IET (2015)Google Scholar
  19. 19.
  20. 20.
    Uddin, I.: One-IPC high-level simulation of microthreaded many-core architectures. J. Syst. Architect. 60(7), 529–552 (2014)CrossRefGoogle Scholar
  21. 21.
    Zhang, W., Ji, X., Lu, Y., et al.: Prophet: a parallel instruction-oriented many-core simulator. IEEE Trans. Parall. Distrib. Syst. PP(99), 1–1 (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Hongjin Wang
    • 1
  • Huimin Meng
    • 1
    Email author
  • Nianmin Yao
    • 2
  • Yishun Cheng
    • 2
  1. 1.School of Information Science and EngineeringDalian Polytechnic UniversityDalianChina
  2. 2.School of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianChina

Personalised recommendations