Particle Filter with Correction of Initial State for Direction of Arrival Tracking

  • Huang Wang
  • Qiyun Xuan
  • Yulong GaoEmail author
  • Xu Bai
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 516)


Generally, particle filter is used in the single snapshot situation and the initial state is assumed to be known. To make the measurement interval be small enough, we construct a multiple measurement vectors model for DOA tracking since it usually outperforms the single measurement vector model. And we take the initial state into consideration. The initial tracking error of the particle filter becomes very large when the initial state is unknown. Thus, we modify the initial state according to the likelihood of the generated random samples. The method is numerically evaluated using a uniform linear array in simulations. The results show that the proposed algorithm has higher tracking accuracy.


DOA tracking Particle filter Multiple measurement vectors 


  1. 1.
    Schmidt RO. Multiple emitter location and signal parameter estimation. IEEE Trans Antennas Propag. 1986;34(3):276–80.CrossRefGoogle Scholar
  2. 2.
    Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans Acoust Speech Signal Process. 1989;37(7):984–95.CrossRefGoogle Scholar
  3. 3.
    Badeau R, David B, Richard G. Fast approximated power iteration subspace tracking. IEEE Trans Signal Process. 2005;53(8):2931–41.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Liao B, Zhang ZG, Chan SC. DOA estimation and tracking of ULAs with mutual coupling. IEEE Trans Aerosp Electron Syst. 2012;48(1):891–905.CrossRefGoogle Scholar
  5. 5.
    Yang B. Projection approximation subspace tracking. IEEE Trans Signal Process. 1995;43(1):95–107.CrossRefGoogle Scholar
  6. 6.
    Kong D, Chun J. A fast DOA tracking algorithm based on the extended Kalman filter. In: National aerospace and electronics conference, 2000. Naecon 2000. Proceedings of the IEEE. IEEE Xplore; 2000. p. 235–8.Google Scholar
  7. 7.
    Kumar CV, Rajagopal R, Kiran R. An optimal integrated tracking (ITS) for passive DOA tracking using unscented Kalman filter. In: Information, decision and control, 2002. Final Program and. IEEE; 2002. p. 253–8.Google Scholar
  8. 8.
    Arulampalam MS, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Trans Signal Process. 2002;50(2):174–88.CrossRefGoogle Scholar
  9. 9.
    Orton M, Fitzgerald W. A Bayesian approach to tracking multiple targets using sensor arrays and particle filters. IEEE Trans Signal Process. 2002;50(2):216–23.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Zhong X, Premkumar AB, Madhukumar AS. Particle filtering and posterior cramér-rao bound for 2-D direction of arrival tracking using an acoustic vector sensor. IEEE Sens J. 2012;12(2):363–77.CrossRefGoogle Scholar
  11. 11.
    Zhong X, Premkumar AB, Madhukumar AS. Particle filtering for acoustic source tracking in impulsive noise with alpha-stable process. IEEE Sens J. 2013;13(2):589–600.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Harbin Institute of TechnologyHarbinChina

Personalised recommendations