Advertisement

The Beneficial Influence of Microbial Interactions on Plant Diseases and Plant Growth Promoting Effect

  • Ömür BaysalEmail author
  • Ragıp Soner Silme
Chapter

Abstract

Detailed knowledge on microbial systems and community are required to understand of microbial dynamism related microbial balance affecting ongoing struggle between beneficial microorganism and plant pathogens. As characteristic ancestry origin of mycorrhiza, molecular data shows a background lean to approximately 450 million years ago, which is symbiotic life style with plants. In contrast to many studies conducted on the influence of mycorrhizal growth on associated bacterial population, the mechanisms of interaction are still poorly understood. Intensive chemical usage in agriculture leads to environmental contamination and threats human health. These negative results enforce researchers for finding alternative ways to diminish of chemicals used in control of plant pathogens. In the frame of integrated pest management, sustainable production using microorganisms to maintain soil fertility and by environment friendly measurements such as biocontrol are important not only for effective and less hazardous effect on ecosystem but also provides low input in crop production. Beneficial microbial community is very dynamic and plays important role in balancing of characteristic property of soil that our knowledge on interaction between arbuscular mycorrhizal fungi (AMF) and plant receive much interest by scientific area since it has been considered as one of the effective control measurement and factor affecting re-mediation of pathogen and beneficial microorganism potential of soil. In this context, microbe-microbe interactions such as the mycorrhizal relationships with other soil micro biota in the rhizosphere like the rhizosphere bacteria and saprotrophic fungi are particularly important. A good understanding of the interactions between and rhizosphere bacteria or saprotrophic fungi in relation to plant growth and induction of plant resistance against diseases and nematodes have greatly increased. This chapter seeks to review the current research results on the effects of combined inoculation of the AMF and rhizosphere bacteria on plant growth, root colonization and induction of systemic resistance and compare it with those of AMF and saprotrophic fungi and to discuss their mechanisms of action and implications to biological control of plant diseases. In this review, we highlighted the positive influence of microbial interactions on plant diseases and plant growth promoting effect considering updated knowledge.

Keywords

Arbuscular mycorrhizal fungi Plant growth promotion Rhizobacteria Plant diseases Host-microbe interactions 

References

  1. Akiyama, K., & Hayashi, H. (2006). Strigolactones: chemical signals for fungal symbiosis and parasitic weeds in plant roots. Annals of Botany, 97, 925–931.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Akiyama, K., Matsuzaki, K., & Hayashi, H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435, 824–827.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Alejo-Iturvide, F., Márquez-Lucio, M. A., Morales-Ramírez, I., Vázquez-Garcidueñas, M. S., & Olalde-Portugal, V. (2008). Mycorrhizal protection of chili plants challenged with Phytophthora capsici. European Journal of Plant Pathology, 120, 13–20.CrossRefGoogle Scholar
  4. Amann, R. I., Ludwig, W., & Schleifer, K. H. (1995). Phylogenetic identification and in-situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59, 143–169.PubMedPubMedCentralGoogle Scholar
  5. Ames, R. N., Reid, C. P. P., & Ingham, E. R. (1984). Rhizosphere bacterial population responses to root colonization by a vesicular-arbuscular mycorrhizal fungus. The New Phytologist, 96, 555–563.CrossRefGoogle Scholar
  6. Amora-Lazcano, E., Vazquez, M. M., & Azcon, R. (1998). Response of nitrogen-transforming microorganisms to arbuscular mycorrhizal fungi. Biology and Fertility of Soils, 27, 65–70.CrossRefGoogle Scholar
  7. Andrade, G., Mihara, K. L., Linderman, R. G., & Bethlenfalvay, G. J. (1998). Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil, 202, 89–96.CrossRefGoogle Scholar
  8. Aranda, E., Sampedro, I., Díaz, R., García-Sánchez, M., Arriagada, C. A., Ocampo, J. A., & García-Romera, I. (2009). The effects of the arbuscular mycorrhizal fungus Glomus deserticola on growth of tomato plants grown in the presence of olive mill residues modified by treatment with saprophytic fungi. Symbiosis, 47, 133–140.CrossRefGoogle Scholar
  9. Arriagada, C., Sampedro, I., Garcia-Romera, I., & Ocampo, J. (2009). Improvement of growth of Eucalyptus globulus and soil biological parameters by amendment with sewage sludge and inoculation with arbuscular mycorrhizal and saprobe fungi. Science of the Total Environment, 407, 4799–4806.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Artursson, V., Finlay, R. D., & Jansson, J. K. (2006). Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environmental Microbiology, 8, 1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Azcón-Aguilar, C., & Barea, J. M. (1996). Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved. Mycorrhiza, 6, 457–464.CrossRefGoogle Scholar
  12. Barea, J., Pozo, M., Azcon, R., & Aguilar, C. (2005). Microbial co-operation in the rhizosphere. Journal of Experimental Botany, 56, 1761–1778.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Basu, M. J., & Santhaguru, K. (2009). Impact of Glomus fasciculatum and fluorescent pseudomonads on growth performance of Vigna radiata (L.) Wilczek challenged with phytopathogens. Journal of Plant Protection Research, 49, 190–194.CrossRefGoogle Scholar
  14. Baysal Ö, Silme RS (2018) The ecological role of biodiversity for crop protection. In: Dunea D (eds) Plant Competition in Cropping Systems. Intech, (in press).Google Scholar
  15. Baysal, Ö., Calışkan, M., & Yeşilova, Ö. (2008). An inhibitory effect of a new Bacillus subtilis strain (EU07) against Fusarium oxysporum f. sp. radicis lycopersici. Physiological and Molecular Plant Pathology, 73, 25–32.CrossRefGoogle Scholar
  16. Baysal, Ö., Lai, D., Xu, H. H., Siragusa, M., Calışkan, M., Carimi, F., Teixeira da Silva, J. A., & Tor, M. (2013). A proteomic approach provides new insights into the control of soil-borne plant pathogens by Bacillus species. PLoS One, 8, e53182.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Berg, G. (2009). Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84, 11–18.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Besserer, A., Bécard, G., Roux, C., & Séjalon-Delmas, N. (2009). Role of mitochondria in the response of arbuscular mycorrhizal fungi to strigolactones. Plant Signaling & Behavior, 4, 75–77.CrossRefGoogle Scholar
  19. Bianciotto, V., Bandi, C., Minerdi, D., Sironi, M., Tichy, H. V., & Bonfante, P. (1996a). An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Applied and Environmental Microbiology, 62, 3005–3010.PubMedPubMedCentralGoogle Scholar
  20. Bianciotto, V., Minerdi, D., Perotto, S., & Bonfante, P. (1996b). Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma, 193, 123–131.CrossRefGoogle Scholar
  21. Bianciotto, V., Lumini, E., Lanfranco, L., Minerdi, D., Bonfante, P., & Perotto, S. (2000). Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family gigasporaceae. Applied and Environmental Microbiology, 66, 4503–4509.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bianciotto, V., Andreotti, S., Balestrini, R., Bonfante, P., & Perotto, S. (2001). Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures. European Journal of Histochemistry, 45, 39–49.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Bødker, L., Kjøller, R., Kristensen, K., & Rosendahl, S. (2002). Interactions between indigenous arbuscular mycorrhizal fungi and Aphanomyces euteiches in field-grown pea. Mycorrhiza, 12, 7–12.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Bolan, N. S. (1991). A critical-review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and Soil, 134, 189–207.CrossRefGoogle Scholar
  25. Caron, M. (1989). Potential use of mycorrhizae in control of soilborne diseases. Canadian Journal of Plant Pathology, 11, 177–179.CrossRefGoogle Scholar
  26. Caron, M., Fortin, J. A., & Richard, C. (1986). Effect of inoculation sequence on the interaction between Glomus intraradices and Fusarium oxysporum f. sp. radices lycopersici in tomatoes. Canadian Journal of Plant Pathology, 8, 12–16.CrossRefGoogle Scholar
  27. Carpenter-Boggs, L., Loynachan, T. E., & Stahl, P. D. (1995). Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated actinomycetes. Soil Biology and Biochemistry, 27, 1445–1451.CrossRefGoogle Scholar
  28. Chandanie, W. A., Kubota, M., & Hyakumachi, M. (2006). Interactions between plant growth promoting fungi and arbuscular mycorrhizal fungus Glomus mosseae and induction of systemic resistance to anthracnose disease in cucumber. Plant and Soil, 286, 209–217.CrossRefGoogle Scholar
  29. Chin-A-Woeng, T. F. C., Bloemberg, G. V., Mulders, I. H. M., Dekkers, L. C., & Lugtenberg, B. J. J. (2000). Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Molecular Plant-Microbe Interactions, 13, 1340–1345.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Citernesi, A. S., Fortuna, P., Filippi, C., Bagnoli, G., & Giovannetti, M. (1996). The occurrence of antagonistic bacteria in Glomus mosseae pot cultures. Agronomie, 16, 671–677.CrossRefGoogle Scholar
  31. Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71, 4951–4959.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Daniels, B. A., & Trappe, J. M. (1980). Factors affecting spore germination of the vesicular-arbuscular mycorrhizal fungus, Glomus epigaeus. Mycologia, 72, 457–471.CrossRefGoogle Scholar
  33. Datnoff, L. E., Nemec, S., & Pernezny, K. (1995). Biological control of Fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biological Control, 5, 427–431.CrossRefGoogle Scholar
  34. De la Peña, E., Rodríguez-Echeverría, S., van der Putten, W. H., Freitas, H., & Moens, M. (2006). Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. The New Phytologist, 169, 829–840.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Dehne, H. W. (1982). Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Pytopathology, 72, 1115–1119.Google Scholar
  36. Diedhiou, P. M., Hallmann, J., Oerke, E. C., & Dehne, H. W. (2003). Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato. Mycorrhiza, 13, 199–204.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Drew, E. A., Murray, R. S., Smith, S. E., & Jakobsen, I. (2003). Beyond the rhizosphere: growth and function of arbuscular mycorrhizal external hyphae in sands of varying pore sizes. Plant Soil, 251, 105–114.CrossRefGoogle Scholar
  38. El-Tarabily, K. A., & Sivasithamparam, K. (2006). Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biology and Biochemistry, 38, 1505–1520.CrossRefGoogle Scholar
  39. Filion, M., St-Arnaud, M., & Fortin, J. A. (1999). Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. The New Phytologist, 141, 525–533.CrossRefGoogle Scholar
  40. Filippi, C., Bagnoli, G., Citernesi, A. S., & Giovannetti, M. (1998). Ultrastructural spatial distribution of bacteria associated with sporocarps of Glomus mosseae. Symbiosis, 24, 1–12.Google Scholar
  41. Forster, S. M., & Nicolson, T. H. (1981). Aggregation of sand from maritime embryo sand dune by microorganisms and higher plants. Soil Biology and Biochemistry, 13, 199–203.CrossRefGoogle Scholar
  42. Franzini, V., Azcon, R., Mendes, F., & Aroca, R. (2010). Interactions between Glomus species and Rhizobium strains affect the nutritional physiology of drought-stressed legume hosts. Journal of Plant Physiology, 167, 614–619.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Gamalero, E., Berta, G., Massa, N., Glick, B. R., & Lingua, G. (2010). Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences for the growth of cucumber under salt-stress conditions. Journal of Applied Microbiology, 108, 236–245.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Garbaye, J. (1994). Helper bacteria – a new dimension to the mycorrhizal symbiosis. The New Phytologist, 128, 197–210.CrossRefGoogle Scholar
  45. Garcia-Garrido, J. M., & Ocampo, J. A. (1988). Interaction between Glomus mosseae and Erwinia carotovora and its effect on the growth of tomato plants. The New Phytologist, 110, 551–555.CrossRefGoogle Scholar
  46. Garmendia, I., Aguirreolea, J., & Goicoechea, N. (2006). Defence-related enzymes in pepper roots during interactions with arbuscular mycorrhizal fungi and/or Verticillium dahliae. BioControl, 51, 293–310.CrossRefGoogle Scholar
  47. Gorzelak, M., Asay, A., Pickles, B., & Simard, S. (2015). Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities. AoB plants, 7.  https://doi.org/10.1093/aobpla/plv050.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Griffiths, R. I., Manefield, M., Ostle, N., McNamara, N., O’Donnell, A. G., Bailey, M. J., & Whiteley, A. (2004). 13CO2 pulse labelling of plant in tandem with stable isotope probing: methodological considerations for examining microbial function in the rhizosphere. Journal of Microbiological Methods, 58, 119–129.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Grunwald, U., Guo, W., Fischer, K., Isayenkov, S., Ludwig-Müller, J., Hause, B., Yan, X., Küster, H., & Franken, P. (2009). Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots. Planta, 229, 1023–1034.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Haggag, W. M., & Abd-El Latif, F. M. (2001). Interaction between vesicular arbuscular mycorrhizae and antagonistic biocontrol microorganisms on controlling root rot disease incidence of geranium plants. OnLine Journal of Biological Sciences, 1, 1147–1153.CrossRefGoogle Scholar
  51. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species—opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43–56.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hartmann, A., Schmid, M., van Tuinen, D., & Berg, G. (2009). Plant-driven selection of microbes. Plant and Soil, 321, 235–257.CrossRefGoogle Scholar
  53. Hause, B., Mrosk, C., Isayenkov, S., & Strack, D. (2007). Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry, 68, 101–110.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Hyakumachi, M., & Kubota, M. (2004a). Fungi as plant growth promoter and disease suppressor. In D. K. Arora (Ed.), Fungal biotechnology in agricultural, food, and environmental applications (Vol. 21, pp. 101–110). New York: Marcel Dekker Inc.Google Scholar
  55. Hyakumachi M, Kubota M (2004b) Biological control of plant diseases by plant growth promoting fungi. Proceedings of International Seminar Biological Control Soil Borne Plant Diseases (pp. 87–123). Japan-Argentina Joint Study.Google Scholar
  56. Isayenkov, S., Mrosk, C., Stenzel, I., Strack, D., & Hause, B. (2005). Suppression of allene oxide cyclase in hairy roots of Medicago truncatula reduces jasmonate levels and the degree of mycorrhization with Glomus intraradices. Plant Physiology, 139, 1401–1410.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Jeffries, P., & Barea, J. M. (2001). Arbuscular mycorrhiza: a key component of sustainable plant–soil ecosystems. In B. Hock (Ed.), The Mycota: fungal associations (Vol. 9, pp. 95–113). Berlin: Springer.CrossRefGoogle Scholar
  58. Johnson, D., Leake, J. R., & Read, D. J. (2001). Novel in-growth core system enables functional studies of grassland mycorrhizal mycelial networks. The New Phytologist, 152, 555–562.CrossRefGoogle Scholar
  59. Joner, E., & Leyval, C. (2009). Phytoremediation of organic pollutants using mycorrhizal plants: a new aspect of rhizosphere interactions. In E. Lichtfouse, M. Navarrete, P. Debaeke, S. Véronique, & C. Alberola (Eds.), Sustainable agriculture (pp. 885–894). Dordrecht: Springer.CrossRefGoogle Scholar
  60. Karagiannidis, N., Bletsos, F., & Stavropoulos, N. (2002). Effect of Verticillium wilt (Verticillium dahliae Kleb.) and mycorrhiza (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and eggplant seedlings. Scientia Horticulturae, 94, 145–156.CrossRefGoogle Scholar
  61. Kaye, J. W., Pfleger, F. L., & Stewart, E. L. (1984). Interaction of Glomus fasciculatum and Pythium ultimum on greenhouse-grown poinsettia. Canadian Journal of Botany, 62, 1575–1579.CrossRefGoogle Scholar
  62. Khan, A. (2005). Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology, 18, 355–364.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Kloepper, J. W., Ryu, C.-M., & Zhang, S. (2004). SA: Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94, 1259–1266.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Koike, N., Hyakumachi, M., Kageyama, K., Tsuyumu, S., & Doke, N. (2001). Induction of systemic resistance in cucumber against several diseases by plant growth promoting fungi: lignification and superoxide generation. European Journal of Plant Pathology, 107, 523–533.CrossRefGoogle Scholar
  65. Krishna, K. R., & Bagyaraj, D. J. (1983). Interaction between Glomus fasciculatum and Sclerotium rolfsii in peanut. Canadian Journal of Botany, 61, 2349–2351.CrossRefGoogle Scholar
  66. Ludwig-Muller, J. (2000). Indole-3-butyric acid in plant growth and development. Plant Growth Regulation, 32, 219–230.CrossRefGoogle Scholar
  67. MacDonald, R. M., Chandler, M. R., & Mosse, B. (1982). The occurrence of bacterium-like organelles in vesicular-arbuscular mycorrhizal fungi. The New Phytologist, 90, 659–663.CrossRefGoogle Scholar
  68. Mayo, K., Davis, R. E., & Motta, J. (1986). Stimulation of germination of spores of Glomus versiforme by spore-associated bacteria. Mycologia, 78, 426–431.CrossRefGoogle Scholar
  69. Meyer, J. R., & Linderman, R. G. (1986a). Response of subterranean clover to dual Inoculation with vesicular arbuscular mycorrhizal fungi and a plant growth-promoting bacterium, Pseudomonas putida. Soil Biology and Biochemistry, 18, 185–190.CrossRefGoogle Scholar
  70. Meyer, J. R., & Linderman, R. G. (1986b). Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biology and Biochemistry, 18, 191–196.CrossRefGoogle Scholar
  71. Minerdi, D., Fani, R., Gallo, R., Boarino, A., & Bonfante, P. (2001). Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Applied and Environmental Microbiology, 67, 725–732.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Miransari, M., & Smith, D. L. (2008). Using signal molecule genistein to alleviate the stress of suboptimal root zone temperature on soybean–Bradyrhizobium symbiosis under different soil textures. Journal of Plant Interactions, 3, 287–295.CrossRefGoogle Scholar
  73. Mosse, B. (1959). The regular germination of resting spores and some observations on the growth requirements of an Endogone sp. causing vesicular-arbuscular mycorrhiza. Transactions of the British Mycological Society, 42, 273–286.CrossRefGoogle Scholar
  74. Nemec, S., Datnoff, L. E., & Strandberg, J. (1996). Efficacy of biocontrol agents in planting mixes to colonize plant roots and control root diseases of vegetables and citrus. Crop Protection, 15, 735–742.CrossRefGoogle Scholar
  75. Newsham, K. K., Fitter, A. H., & Watkinson, A. R. (1995). Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. Journal of Ecology, 83, 991–1000.CrossRefGoogle Scholar
  76. Phirke, N. V., Kothari, R. M., & Chincholkar, S. B. (2008). Rhizobacteria in mycorrhizosphere improved plant health and yield of banana by offering proper nourishment and protection against diseases. Applied Biochemistry and Biotechnology, 151, 441–451.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Pieterse, C. M. J., van Pelt, J. A., Verhagen, B. W. M., Ton, J., van Wees, S. C. M., Léon-Kloosterziel, K. M., & van Loon, L. C. (2003). Induced systemic resistance by plant growth promoting rhizobacteria. Symbiosis, 35, 39–54.Google Scholar
  78. Pozo, M. J., & Azcón-Aguilar, C. (2007). Unravelling mycorrhiza-induced resistance. Current Opinion in Plant Biology, 10, 393–398.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Puppi, G., Azcón, R., & Höflich, G. (1994). Management of positive interactions of arbuscular mycorrhizal fungi with essential groups of soil microorganisms. In S. Gianinazzi & H. Schüepp (Eds.), Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems (pp. 201–215). Basel: Birkhäuser Verlag.CrossRefGoogle Scholar
  80. Rillig, M. C., & Mummey, D. L. (2006). Mycorrhizas and soil structure. The New Phytologist, 171, 41–53.CrossRefGoogle Scholar
  81. Roesti, D., Gaur, R., Johri, B. N., Imfeld, G., Sharma, S., Kawaljeet, K., & Aragno, M. (2006). Plant growth stage, fertilizer management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biology and Biochemistry, 38, 1111–1120.CrossRefGoogle Scholar
  82. Rosendahl, C. N., & Rosendahl, S. (1990). The role of vesicular-arbuscular mycorrhiza in controlling damping-off and growth reduction in cucumber caused by Pythium ultimum. Symbiosis, 9, 363–366.Google Scholar
  83. Rosewarne, G. M., Barker, S. J., Smith, S. E., Smith, A. F., Schachtman, D. P. A., & Schachtman, D. P. (1999). A Lycopersicon esculentum phosphate transporter (LePT1) involved in phosphorous uptake from a vesicular-arbuscular mycorrhizal fungus. The New Phytologist, 144, 507–516.CrossRefGoogle Scholar
  84. Ross, J. P. (1980). Effect of nontreated soil on sporulation of vesicular-arbuscular mycorrhizal fungi associated with soybean. Phytopathology, 70, 1200–1205.CrossRefGoogle Scholar
  85. Saldajeno, M. G. B., & Hyakumachi, M. (2011). The plant growthpromoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae stimulate plant growth and reduce severity of anthracnose and damping-off diseases in cucumber (Cucumis sativus) seedlings. The Annals of Applied Biology, 159, 28–40.CrossRefGoogle Scholar
  86. Saleem, M., Arshad, M., Hussain, S., & Bhatti, A. S. (2007). Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology & Biotechnology, 34, 635–648.CrossRefGoogle Scholar
  87. Schnepf, A., Leitner, D., Klepsch, S., Pellerin, S., & Mollier, A. (2011). Modelling phosphorus dynamics in the soil-plant system. In E. K. Bünemann, A. Obserson, & E. Frossard (Eds.), Phosphorus in action: biological processes in soil phosphorus cycling (pp. 113–133). Heidelberg: Springer.CrossRefGoogle Scholar
  88. Schreiner, R. P., Mihara, K. L., McDaniel, H., & Bethlenfalvay, G. J. (1997). Mycorrhizal fungi influence plant and soil functions and interactions. Plant and Soil, 188, 199–209.CrossRefGoogle Scholar
  89. Schrey, S. D., & Tarkka, M. T. (2008). Friends and foes: streptomycetes as modulators of plant disease and symbiosis. Antonie Van Leeuwenhoek, 94, 11–19.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Secilia, J., & Bagyaraj, D. J. (1987). Bacteria and actinomycetes associated with pot cultures of vesicular arbuscular mycorrhizas. Canadian Journal of Microbiology, 33, 1069–1073.CrossRefGoogle Scholar
  91. Shimizu-Sato, S., Tanaka, M., & Mori, H. (2009). Auxin–cytokinin interactions in the control of shoot branching. Plant Molecular Biology, 69, 429–435.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Shivanna, M. B., Meera, M. S., Kageyama, K., & Hyakumachi, M. (1996). Plant growth promoting fungi induce systemic disease resistance in cucumber. In T. Wenhua, R. J. Cook, & A. Rovira (Eds.), Advances in biological control of plant diseases (pp. 175–184). Beijing: China Agricultural University Press.Google Scholar
  93. Siddiqui, Z. A., & Akhtar, M. S. (2008a). Synergistic effects of antagonistic fungi and a plant growth promoting rhizobacterium, an arbuscular mycorrhizal fungus, or composted cow manure on populations of Meloidogyne incognita and growth of tomato. Biocontrol Science and Technology, 18, 279–290.CrossRefGoogle Scholar
  94. Siddiqui, Z. A., & Akhtar, M. S. (2008b). Effects of fertilizers, AM fungus and plant growth promoting rhizobacterium on the growth of tomato and on the reproduction of root-knot nematode Meloidogyne incognita. Journal of Plant Interactions, 3, 263–271.CrossRefGoogle Scholar
  95. Siddiqui, Z. A., & Akhtar, M. S. (2009). Effects of antagonistic fungi, plant growth promoting rhizobacteria, and arbuscular mycorrhizal fungi alone and in combination on the reproduction of Meloidogyne incognita and growth of tomato. Journal of General Plant Pathology, 75, 144–153.CrossRefGoogle Scholar
  96. Smith, S. E., & Read, D. J. (1997). Mycorrhizal symbiosis (2nd ed.). London: Academic.Google Scholar
  97. Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis (3rd ed.). New York: Academic.Google Scholar
  98. Söderberg, K. H., Olsson, P. A., & Baath, E. (2002). Structure and activity of the bacterial community in the rhizosphere of different plant species and the effect of arbuscular mycorrhizal colonisation. FEMS Microbiology Ecology, 40, 223–231.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Tahmatsidou, V., O‘Sullivan, J., Cassells, A. C., Voyiatzis, D., & Paroussi, G. (2006). Comparison of AMF and PGPR inoculants for the suppression of Verticillium wilt of strawberry (Fragaria x ananassa cv. Selva). Applied Soil Ecology, 32, 316–324.CrossRefGoogle Scholar
  100. Tisdall, J. M., & Oades, J. M. (1979). Stabilization of soil aggregates by the root systems of rye grass. Australian Journal of Soil Research, 17, 429–441.CrossRefGoogle Scholar
  101. Tommerup, I. C. (1985). Inhibition of spore germination of vesicular-abuscular mycorrhizal fungi in soil. Transactions of the British Mycological Society, 85, 267–278.CrossRefGoogle Scholar
  102. Trotta, A., Varese, G. C., Gnavi, E., Fusconi, A., Sampò, S., & Berta, G. (1996). Interactions between the soilborne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant and Soil, 185, 199–209.CrossRefGoogle Scholar
  103. Van Loon, L. C. (2007). Plant responses to plant growth promoting rhizobacteria. European Journal of Plant Pathology, 119, 243–254.CrossRefGoogle Scholar
  104. Van Wees, S., Van der Ent, S., & Pieterse, C. (2008). Plant immune responses triggered by beneficial microbes. Current Opinion in Plant Biology, 11, 443–448.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry, 40, 1–10.CrossRefGoogle Scholar
  106. Vivas, A., Vörös, I., Biró, B., Barea, J. M., Ruiz-Lozano, J. M., & Azcón, R. (2003a). Beneficial effects of indigenous Cd-tolerant and Cd-sensitive Glomus mosseae associated with a Cd-adapted strain of Brevibacillus sp. in improving plant tolerance to Cd contamination. Applied Soil Ecology, 24, 177–186.CrossRefGoogle Scholar
  107. Vivas, A., Vörös, I., Biró, B., Campos, E., Barea, J. M., & Azcón, R. (2003b). Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium levels. Environment Pollution, 126, 179–189.CrossRefGoogle Scholar
  108. Von der Weid, I., Artursson, V., Seldin, L., & Jansson, J. K. (2005). Antifungal and root surface colonization properties of GFP-tagged Paenibacillus bransilensis PB177. World Journal of Microbiology and Biotechnology, 21, 1591–1597.CrossRefGoogle Scholar
  109. Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Hückelhoven, R., Neumann, C., von Wettstein, D., Franken, P., & Kogel, K. H. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences of the United States of America, 102, 13386–13391.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Wamberg, C., Christensen, S., Jakobsen, I., Muller, A. K., & Sorensen, S. J. (2003). The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum). Soil Biology and Biochemistry, 35, 1349–1357.CrossRefGoogle Scholar
  111. Wei, G., Kloepper, J. W., & Tuzun, S. (1991). Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology, 81, 1508–1512.CrossRefGoogle Scholar
  112. Wilson, G. W. T., Hetrick, B. A. D., & Kitt, D. G. (1988). Suppression of mycorrhizal growth-response of big bluestem by nonsterile soil. Mycologia, 80, 338–343.CrossRefGoogle Scholar
  113. Xavier, L. J. C., & Boyetchko, S. M. (2002). Mycorrhizae as biocontrol agents. In K. G. Mukerji, C. Manoharachary, & B. P. Chamola (Eds.), Techniques in mycorrhizal studies (pp. 493–536). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  114. Zehnder, G. W., Murphy, J. F., Sikora, E. J., & Kloepper, J. W. (2001). Application to rhizobacteria for induced resistance. European Journal of Plant Pathology, 107, 39–50.CrossRefGoogle Scholar
  115. Zubek, S., Turnau, K., Tsimilli-Michael, M., & Strasser, R. J. (2009). Response of endangered plant species to inoculation with arbuscular mycorrhizal fungi and soil bacteria. Mycorrhiza, 19, 113–123.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Faculty of Science, Department of Molecular Biology and GeneticsMuğla Sıtkı Koçman UniversityMuğlaTurkey
  2. 2.Center of Biotechnology and Genetic Engineering Research and Practice, Istanbul UniversityIstanbulTurkey

Personalised recommendations