Advertisement

Influence of Xenobiotics on the Mycorrhizosphere

  • R. Koshila Ravi
  • S. Anusuya
  • M. Balachandar
  • S. Yuvarani
  • K. Nagaraj
  • T. Muthukumar
Chapter

Abstract

The pollution of air, soil and water by xenobiotics creates a disturbance to the ecosystem and cause climatic changes which pose a problem to the environment. Xenobiotics are unnatural toxic substances and include those chemicals used in agriculture such as pesticides and synthetic fertilizers. Certain microorganisms in the indigenous environment have evolved mechanisms to degrade or transform the hazardous organic compounds into non-toxic substances but this ability appears to be extremely limited in plants. The rhizosphere along with the hyphosphere is termed as mycorrhizosphere. Bioremediation involves the interaction between plants and their associated microbes that reside in mycorrhizosphere. Plant roots release organic compounds called rhizodeposits that allows the growth of microbial communities. Under certain conditions, contaminants resemble rhizodeposits which stimulate the degradation process in the rhizosphere by inducing desired degradation pathways. The root exudates also provide signalling mechanisms that lead to complex interactions in the rhizosphere including symbiosis. Root colonizing symbiotic mycorrhizal fungi is mainly involved in degrading or maintaining a wide range of soil microorganisms that can breakdown environmentally persistent toxic pollutants due to their enzymatic activity. The mycorrhizal fungi colonize the cortical cells of the roots forming intraradical structures and extend their extraradical mycelium deep into the contaminated soil. These fungi are therefore able to reach the pollutants effectively and also modify the functions of existing enzymes in the rhizosphere to catalyse reactions leading to the degradation of xenobiotics. Rhizoremediation enables the plant to accumulate, translocate and metabolize the organic xenobiotics into harmless products thereby alleviating the toxicity in contaminated sites. This chapter highlights the concept of mycorrhizosphere, xenobiotic metabolism, molecular approaches for detoxifying the organic xenobiotics and the role of mycorrhizosphere in stabilizing the environment in an eco-friendly way.

Keywords

Degradation Hyposphere Mycorrhizal fungi Remediation Rhizosphere Stress 

References

  1. Abd El-Ghany, T. M., & Masmali, I. A. (2016). Fungal biodegradation of organophosphorus insecticides and their impact on soil microbial population. Journal of Plant Pathology and Microbiology, 7, 349.  https://doi.org/10.4172/2157-7471.1000349.CrossRefGoogle Scholar
  2. Adesemoye, A. O., Torbert, H. A., & Kloepper, J. W. (2009). Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology, 58, 921–929.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Agrawal, N., & Dixit, A. K. (2015). An environmental cleanup strategy-Microbial transformation of xenobiotic compounds. International Journal of Current Microbiology and Applied Sciences, 4, 429–461.Google Scholar
  4. Alarcόn, A., Davies, F. T., Autenrieth, R. L., & Zuberer, D. A. (2008). Arbuscular mycorrhiza and petroleum-degrading microorganisms enhance phytoremediation of petroleum-contaminated soil. International Journal of Phytoremediation, 10, 251–263.CrossRefGoogle Scholar
  5. Alexander, M. (1965). Biodegradation: Problems of molecular recalcitrance and microbial infallibility. Advances in Applied Microbiology, 7, 35–80.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Alloway, B. J. (2013). Sources of heavy metals and metalloids in soils. In B. Alloway (Ed.), Heavy metals in soils. Environmental Pollution (Vol. 22, pp. 11–50). Dordrecht: Springer.CrossRefGoogle Scholar
  7. Amrani, A. E., Dumas, A. S., Wick, L. Y., Yergeau, E., & Berthome, R. (2015). “Omics” insights into PAH degradation toward improved green remediation biotechnologies. Environmental Science & Technology, 49, 11281–11291.CrossRefGoogle Scholar
  8. Anderson TA, Coats JR (1995) An overview of microbial degradation in the rhizosphere and its implications for bioremediation. In: Skipper HD, Turco RF (eds) Bioremediation: Science and applications. SSSA Spec. Publ. 43. SSSA, ASA, and CSSA, Madison, WI, pp 135–143.Google Scholar
  9. Anderson, T. A., Guthrie, E. A., & Walton, B. T. (1993). Bioremediation in the rhizosphere. Environmental Science & Technology, 27, 2630–2636.CrossRefGoogle Scholar
  10. Aranda, E., Scervino, J. M., Godoy, P., Reina, R., Ocampo, J. A., Wittich, R. M., & García-Romera, I. (2013). Role of arbuscular mycorrhizal fungus Rhizophagus custos in the dissipation of PAHs under root-organ culture conditions. Environmental Pollution, 181, 182–189.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Arora, P. K., Sasikala, C., & Ramana, C. V. (2012). Degradation of chlorinated nitroaromatic compounds. Applied Microbiology and Biotechnology, 93, 2265–2277.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Asif, M., & Bhabatosh, M. (2013). Effects of inoculation with stress adapted arbuscular mycorrhizal fungus Glomus deserticola on growth of Solanum melogena L. and Sorghum sudanese Staph., seedlings under salinity and heavy metal stress conditions. Archives of Agronomy and Soil Science, 59, 173–183.CrossRefGoogle Scholar
  13. Atafar, Z., Mesdaghinia, A. R., Nouri, J., Homaee, M., Yunesian, M., Ahmadimoghaddam, M., & Mahvi, A. H. (2010). Effect of fertilizer application on soil heavy metal concentration. Environmental Monitoring and Assessment, 160, 83–89.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Auge, R. M. (2001). Water relations drought and vesicular arbuscular mycorrhizal symbiosis. Mycorrhiza, 11, 3–42.CrossRefGoogle Scholar
  15. Azcón, R., Medina, A., Aroca, R., & Ruiz-Lozano, J. M. (2013). Abiotic stress remediation by the arbuscular mycorrhizal symbiosis and rhizosphere bacteria/yeast interactions. In F. J. de Bruijn (Ed.), Molecular Microbial Ecology of the Rhizosphere (Vol. 2, 1st ed., pp. 991–1002). New Jersey: John Wiley & Sons, Inc.CrossRefGoogle Scholar
  16. Baetz, U., & Martinoia, E. (2014). Root exudates: The hidden part of plant defense. Trends in Plant Science, 19, 90–98.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Barea, J. M. (1997). Mycorrhiza/bacteria interactions on plant growth promotion. In A. Ogoshi, L. Kobayashi, Y. Homma, F. Kodama, N. Kondon, & S. Akino (Eds.), Plant growth-promoting rhizobacteria, present status and future prospects (pp. 150–158). Paris: OECD.Google Scholar
  19. Barkay, T., & Pritchard, H. (1988). Adaptation of aquatic microbial communities to pollutant stress. Microbiological Sciences, 5, 165–169.PubMedPubMedCentralGoogle Scholar
  20. Barr, D. P., & Aust, S. D. (1994). Pollutant degradation by white rot fungi. Reviews of Environmental Contamination and Toxicology, 138, 49–72.PubMedPubMedCentralGoogle Scholar
  21. Bennet, T. W., Wnnch, K. G., & Faision, B. D. (2002). Use of fungi biodegradation. In C. J. Hurst (Ed.), Manual of environmental microbiology (pp. 960–971). Washington, DC: ASM Press.Google Scholar
  22. Bhandari, G. (2018). Bioremediation of industrial waste using microbial metabolic diversity. In Pankaj & A. Sharma (Eds.), Microbial biotechnology in environmental monitoring and cleanup (pp. 286–304). Hershey: IGI Global: International Publisher of Information Science and Technology Research.CrossRefGoogle Scholar
  23. Binet, P., Portal, J. M., & Leyval, C. (2000). Fate of polycyclic aromatic hydrocarbons (PAH) in the rhizosphere and mycorrhizosphere of ryegrass. Plant and Soil, 227, 207–213.CrossRefGoogle Scholar
  24. Bodekar, I. T. M., Nygren, C. M. R., Taylor, A. F. S., Olson, A., & Lindahl, B. D. (2009). Class II peroxidase-encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi. The ISME Journal, 3, 1387–1395.CrossRefGoogle Scholar
  25. Borde, M., Dudhane, M., & Jite, P. K. (2010). AM fungi influences the photosynthetic activity, growth and antioxidant enzymes in Allium sativum L. under salinity condition. Notulae Scientia Biologicae, 2, 64–71.CrossRefGoogle Scholar
  26. Borie, F., Rubio, R., & Morales, A. (2008). Arbuscular mycorrhizal fungi and soil aggregation. Journal of Soil Science and Plant Nutrition, 8, 9–18.Google Scholar
  27. Bray, D. E. (1997). Plant responses to water deficit. Trends in Plant Science, 2, 48–54.CrossRefGoogle Scholar
  28. Brundrett, M. C., & Abbott, L. K. (2002). Arbuscular mycorrhizas in plant communities. In K. Sivasithamparam, K. W. Dixon, & R. L. Barrett (Eds.), Microorganisms in plant diversity conservation and biodiversity (pp. 151–193). London: Kluwer Academica Publishers.Google Scholar
  29. Bulucea, C. A., Rosen, M. A., Mastorakis, N. E., Bulucea, C. A., & Brindusa, C. (2012). Approaching resonant absorption of environmental xenobiotics harmonic oscillation by linear structure. Sustainability, 4, 561–573.CrossRefGoogle Scholar
  30. Burke, R. M., & Cairney, J. W. G. (2002). Laccases and other polyphenol oxidases in ecto- and ericoid mycorrhizal fungi. Mycorrhiza, 12, 105–116.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Campagnac, E., Sahraoui, L. A., Debiane, D., Fontaine, J., Laruelle, F., Garcon, G., Verdin, A., Durand, R., Shiralo, P., & Grandmougin, F. (2010). Arbuscular mycorrhiza partially protected chicory roots against oxidative stress induced by two fungicides, fenpropimorph and fenhexamid. Mycorrhiza, 20, 167–178.PubMedCrossRefGoogle Scholar
  32. Cardozo Junior, F. M., Carneiro, R. F. V., Rocha, S. M. B., Nunes, L. A. P. L., Santos, V. M., dos Feitoza, L. L., & Araújo, A. S. F. (2016). The impact of pasture systems on soil microbial biomass and community-level physiological profiles. Land Degradation and Development, 29, 284–291.CrossRefGoogle Scholar
  33. Cébron, A., Louvel, B., Faure, P., France-Lanord, C., Chen, Y., & Murrell, J. C. (2011). Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates. Environmental Microbiology, 13, 722–736.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Chagnon, P. L., & Bradley, R. L. (2013). Evidence that soil nutrient stoichiometry controls the competitive abilities of arbuscular mycorrhizal vs. root-borne non-mycorrhizal fungi. Fungal Ecology, 6, 557–660.CrossRefGoogle Scholar
  35. Channabasava, A., Lakshman, H. C., & Jorquera, M. A. (2015). Effect of fungicides on association of arbuscular mycorrhiza fungus Rhizophagus fasciculatus and growth of Proso millet (Panicum miliaceum L.). Journal of Soil Science and Plant Nutrition, 15, 35–45.Google Scholar
  36. Chaudhry, Q., Blom-Zandstra, M., Gupta, S., & Joner, E. J. (2005). Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environmental Science and Pollution Research, 12, 34–48.PubMedCrossRefGoogle Scholar
  37. Chen, B. D., Zhu, Y. G., Duan, J., Xiao, X. Y., & Smith, S. E. (2007). Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environmental Pollution, 147, 374–380.PubMedCrossRefGoogle Scholar
  38. Chen, W., Consortium, F. B., & List, F. B. C. A. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America, 109, 6241–6246.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Chibuike, G. (2013). Use of mycorrhiza in soil remediation: a review. Scientific Research and Essays, 8, 1679–1687.CrossRefGoogle Scholar
  40. Chinnusamy, V., Jagendorf, A., & Zhu, J. K. (2005). Understanding and improving salt tolerance in plants. Crop Science, 45, 437–448.CrossRefGoogle Scholar
  41. Corgié, S. C., Beguiristain, T., & Leyval, C. (2004). Spatial distribution of bacterial communities and phenanthrene degradation in the rhizosphere of Lolium perenne L. Applied and Environmental Microbiology, 70, 3552–3557.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Courty, P. E., Labbé, J., Kohler, A., Marçais, B., Bastien, C., Churin, J. L., & Garbaye, V. (2011). Effect of poplar genotypes on mycorrhizal infection and secreted enzyme activities in mycorrhizal and non-mycorrhizal roots. Journal of Experimental Botany, 62, 249–260.PubMedCrossRefGoogle Scholar
  43. Crowley, D. E., Brennerova, M. V., Irwin, C., Brenner, V., & Focht, D. D. (1996). Rhizosphere effects on biodegradation of 2 5-dichlorobenzoate by a bioluminescent strain of root colonizing Pseudomonas fluorescens. FEMS Microbiology Ecology, 20, 79–89.CrossRefGoogle Scholar
  44. Cunningham, S. D., Anderson, T. A., Schwab, A. P., & Hsu, F. C. (1996). Phytoremediation of soils contaminated with organic pollutants. Advances in Agronomy, 56, 55–114.CrossRefGoogle Scholar
  45. Curl, E. A., & Truelove, B. (1986). The rhizosphere. Berlin: Springer.CrossRefGoogle Scholar
  46. Dennis, P. G., Miller, A. J., & Hirsch, P. R. (2010). Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities. FEMS Microbiology Ecology, 72, 313–327.PubMedCrossRefGoogle Scholar
  47. Díaz, E. (2004). Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. International Microbiology, 7, 173–180.PubMedGoogle Scholar
  48. Dietrich, D., Hickey, W. J., & Lamar, R. T. (1995). Degradation of 4,4′- dichlorobiphenyl, 3,3′, 4,4′-tetrachlorobiphenyl and 2,2′,4,4′,5,5′-hexachlorobiphenyl by the white-rot fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology, 61, 3904–3909.PubMedPubMedCentralGoogle Scholar
  49. Donnelly, P. K., & Fletcher, J. S. (1995). PCB metabolism by ectomycorrhizal fungi. Bulletin of Environmental Contamination and Toxicology, 54, 507–513.PubMedCrossRefGoogle Scholar
  50. Donnelly, P. K., Entry, J. A., & Crawford, D. L. (1993). Degradation of atrazine and 2,4-dichlorophenoxyacetic acid by mycorrhizal fungi at three nitrogen concentrations in vitro. Applied and Environmental Microbiology, 59, 2642–2647.PubMedPubMedCentralGoogle Scholar
  51. Doty, S. L., James, C. A., Moore, A. L., Vajzovic, A., Singleton, G. L., Ma, C., Khan, Z., Xin, G., Kang, J. W., Park, J. Y., Meilan, R., Strauss, S. H., Wilkerson, J., Farin, F., & Strand, S. E. (2007). Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Proceedings of the National Academy of Sciences of the United States of America, 104, 16816–16821.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Druillea, M., Cabellob, M. N., Omacinia, M., & Golluscioa, R. A. (2013a). Glyphosate reduces spore viability and root colonization of arbuscular mycorrhizal fungi. Applied Soil Ecology, 64, 99–103.CrossRefGoogle Scholar
  53. Druillea, M., Omacinia, M., Golluscioa, R. A., & Cabellob, M. N. (2013b). Arbuscular mycorrhizal fungi are directly and indirectly affected by glyphosate application. Applied Soil Ecology, 72, 143–149.CrossRefGoogle Scholar
  54. Dubey, K. K., & Fulekar, M. H. (2011). Effect of pesticides on the seed germination of Cenchrus setigerus and Pennisetum pedicellatum as monocropping and co-cropping system: Implications for rhizospheric bioremediation. Romanian Biotechnological Letters, 16, 5908–5918.Google Scholar
  55. Dubey, K. K., & Fulekar, M. H. (2013). Investigation of potential rhizospheric isolate for cypermethrin degradation. Biotech, 3, 33–43.Google Scholar
  56. Duponnois, R., Kisa, M., & Plenchette, C. (2006). Phosphate solubilizing potential of the nematofungus Arthrobotrys oligospora. Journal of Plant Nutrition and Soil Science, 169, 280–282.CrossRefGoogle Scholar
  57. Edwards, S. J., & Kjellerup, B. V. (2013). Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Applied Microbiology and Biotechnology, 97, 9909–9921.PubMedCrossRefGoogle Scholar
  58. Evelin, H., Kapoor, R., & Giri, B. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of Botany, 104, 1263–1280.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Fan, S., Li, P., Gong, Z., Ren, W., & He, N. (2008). Promotion of pyrene degradation in rhizosphere of alfalfa (Medicago sativa L.). Chemosphere, 71, 1593–1598.PubMedCrossRefGoogle Scholar
  60. Fang, C., Radosevich, M., & Fuhrmann, J. J. (2001). Characterization of rhizosphere microbial community structure in five similar grass species using fame and biology analyses. Soil Biology and Biochemistry, 33, 679–682.CrossRefGoogle Scholar
  61. Farooq, M., Basra, S. M. A., Hafeez, K., & Ahmad, N. (2005). Thermal hardening a new seed vigor enhancement tool in rice. Journal of Integrative Plant Biology, 47, 187–193.CrossRefGoogle Scholar
  62. Farrar, J., Aawes, M., Tones, D., & Lindow, S. (2003). How roots control the flux of carbon to the rhizosphere. Ecology, 84, 827–837.CrossRefGoogle Scholar
  63. Flathman, P. E., & Lanza, G. R. (1998). Phytoremediation current views on an emerging green technology. Journal of Soil Contamination, 7, 415–432.CrossRefGoogle Scholar
  64. Fokom, R., Teugwa, M. C., Nana, W. L., Ngonkeu, M. E. L., Tchameni, S., Nwaga, D., Rillig, C. M., & Amvam, Z. P. H. (2013). Glomalin, carbon, nitrogen and soil aggregate stability as affected by land use changes in the humid forest zone in South Cameroon. Applied Ecology and Environmental Research, 11, 581–592.CrossRefGoogle Scholar
  65. Furukawa, K. (2018). Microbial degradation of polychlorinated biphenyls. In A. M. Chakrabarty (Ed.), Biodegradation and detoxification of environmental pollutants (pp. 33–58). New York: CRC Press.CrossRefGoogle Scholar
  66. Gange, A. (1993). Translocation of mycorrhizal fungi by earthworms during early succession. Soil Biology and Biochemistry, 25, 1021–1026.CrossRefGoogle Scholar
  67. Gao, Y., Cheng, Z., Ling, W., & Zhu, X. (2010). Arbuscular mycorrhizal fungal hyphae contribute to the uptake of polycyclic aromatic hydrocarbons by plant roots. Bioresource Technology, 101, 6895–6901.PubMedCrossRefGoogle Scholar
  68. Gianfreda, L. (2015). Enzymes of importance to rhizosphere processes. Journal of Soil Science and Plant Nutrition, 15, 283–306.Google Scholar
  69. Gianfreda, L., & Rao, M. A. (2008). Interactions between xenobiotics and microbial and enzymatic soil activity. Critical Reviews in Environmental Science and Technology, 38, 269–310.CrossRefGoogle Scholar
  70. Gianinazzi, S., Gollotte, A., Marie-Noëlle, B., van Tuinen, D., & Redecker, W. D. (2010). Agroecology the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza, 20, 519–530.PubMedCrossRefGoogle Scholar
  71. Giovannetti, M., Turrini, A., Strani, P., Sbrana, C., Avio, L., & Pietrangeli, B. (2006). Mycorrhizal fungi in ecotoxicological studies: Soil impact of fungicides, insecticides and herbicides. Prevention Today, 2, 47–61.Google Scholar
  72. Gonzalez- Guerrero, M., Azcon- Aguilar, C., Mooney, M., Valderas, A., Macdiarmid, C. W., Eide, D. J., & Ferrol, N. (2005). Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genetics and Biology, 42, 130–140.Google Scholar
  73. Gonzalez, L. F., Sarria, V., & Sanchez, O. F. (2010). Degradation of chlorophenols by sequential biological-advanced oxidative process using Trametes pubescens and TiO2/U. Bioresource Technology, 101, 3493–3499.PubMedCrossRefGoogle Scholar
  74. González-Chávez, M. C., Carrillo-González, R., Wright, S. F., & Nichols, K. A. (2004). The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution, 130, 317–323.PubMedCrossRefGoogle Scholar
  75. Graham, J. H., Leonard, R. T., & Menge, J. A. (1981). Membrane-mediated decrease in root exudation responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiology, 68, 549–552.CrossRefGoogle Scholar
  76. Gramss, G., & Rudeschko, O. (1998). Activities of oxidoreductase enzymes in tissue extracts and sterile root exudates of three crop plants, and some properties of the peroxidase component. The New Phytologist, 138, 401–409.CrossRefGoogle Scholar
  77. Green, H., Larsen, J., Olsson, P. A., Jensen, D. F., & Jakobsen, I. (1999). Suppression of the biocontrol agent Trichoderma harzianum by mycelium of the arbuscular mycorrhizal fungus Glomus intraradices in root-free soil. Applied and Environmental Microbiology, 65, 1428–1434.PubMedPubMedCentralGoogle Scholar
  78. Greń, I., Guzik, U., Wojcieszyńska, D., & Łabużek, S. (2008). Molekularne podstawy rozkładu ksenobiotycznych związków aromatycznych. Biotechnologia, 2, 58–67.Google Scholar
  79. Harley, J. L. (1989). The fourth benefactors’ lecture the significance of mycorrhiza. Mycological Research, 92, 129–139.CrossRefGoogle Scholar
  80. Harms, H., Schlosser, D., & Wick, L. Y. (2011). Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews. Microbiology, 9, 177–192.PubMedCrossRefGoogle Scholar
  81. He, Y., Xu, J., Tang, C., & Wu, Y. (2005). Facilitation of pentachlorophenol degradation in the rhizosphere of ryegrass (Lolium perenne L.). Soil Biology and Biochemistry, 37, 2017–2024.CrossRefGoogle Scholar
  82. Higson, F. K. (1992). Microbial degradation of nitroaromatic compounds. Advances in Applied Microbiology, 37, 1–19.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Hildebrandt, U., Regvar, M., & Bothe, H. (2007). Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry, 68, 139–146.CrossRefGoogle Scholar
  84. Hinsinger, P., Gobran, G. R., Gregory, P. J., & Wenzel, W. W. (2005). Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. The New Phytologist, 168, 293–303.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Hinsinger, P., Bengough, A. G., Vetterlein, D., & Young, I. M. (2009). Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant and Soil, 321, 117–152.CrossRefGoogle Scholar
  86. Hsu, T. S., & Bartha, R. (1979). Accelerated mineralization of two organophosphate insecticides in the rhizosphere. Applied and Environmental Microbiology, 37, 36–41.PubMedPubMedCentralGoogle Scholar
  87. Huang, Y. L., Li, Q. B., Deng, X., Lu, Y. H., Liao, X. K., Hong, M. Y., & Wang, Y. (2005). Aerobic and anaerobic biodegradation of polyethylene glycols using sludge microbes. Process Biochemistry, 40, 207–211.CrossRefGoogle Scholar
  88. Huber, C., Bartha, B., Harpaintner, R., & Schröder, P. (2009). Metabolism of acetaminophen (paracetamol) in plants two independent pathways result in the formation of a glutathione and a glucose conjugate. Environmental Science and Pollution Research, 16, 206–213.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Husaini, A., Roslan, H. A., Hii, K. S. Y., & Ang, C. H. (2008). Biodegradation of aliphatic hydrocarbon by indigenous fungi isolated from used motor oil contaminated sites. World Journal of Microbiology and Biotechnology, 24, 2789–2797.CrossRefGoogle Scholar
  90. Ibanez, S. G., Medina, M. I., & Agostini, E. (2011). Phenol tolerance, changes of antioxidative enzymes and cellular damage in transgenic tobacco hairy roots colonized by arbuscular mycorrhizal fungi. Chemosphere, 83, 700–705.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Ichinose, H. (2013). Cytochrome P450 of wood-rotting basidiomycetes and biotechnological applications. Biotechnology and Applied Biochemistry, 60, 71–81.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Ipsilantis, I., Samourelis, C., & Karpouzas, D. G. (2012). The impact of biological pesticides on arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 45, 147–155.CrossRefGoogle Scholar
  93. Jacquot, E., van Tuinen, D., Gianinazzi, S., & Gianinazzi-Pearson, V. (2000). Monitoring species of arbuscular mycorrhizal fungi in planta and in soil by nested PCR: Application to the study of the impact of sewage sludge. Plant and Soil, 226, 179–188.CrossRefGoogle Scholar
  94. Jansa, J., Bukovská, P., & Gryndler, M. (2013). Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts – or just soil free-riders? Frontiers in Plant Science, 4, 134.  https://doi.org/10.3389/fpls.2013.00134.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Johansson, J. F., Paul, L. R., & Finlay, R. D. (2004). Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiology Ecology, 48, 1–13.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Joner, E., & Leyval, C. (2001). Influence of arbuscular mycorrhiza on clover and ryegrass grown together in a soil spiked with polycyclic aromatic hydrocarbons. Mycorrhiza, 10, 155–159.CrossRefGoogle Scholar
  97. Joner, E., & Leyval, C. (2009). Phytoremediation of organic pollutants using mycorrhizal plants: A new aspect of rhizosphere interactions. In E. Lichtfouse, M. Navarrete, P. Debaeke, S. Véronique, & C. Alberola (Eds.), Sustainable agriculture (pp. 885–894). Dordrecht: Springer.CrossRefGoogle Scholar
  98. Joner, E. J., Johansen, A., Loibner, A. P., de la Cruz, M. A., Szolar, O. H., Portal, J. M., & Leyval, C. (2001). Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soil. Environmental Science & Technology, 35, 2773–2777.CrossRefGoogle Scholar
  99. Joner, E. J., Roos, P., Jansa, J., Frossard, E., Leyval, C., & Jakobsen, I. (2004). No significant contribution of arbuscular mycorrhizal fungi to transfer of radiocesium from soil to plants. Applied and Environmental Microbiology, 70, 6512–6517.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Joner, E. J., Leyval, C., & Colpaert, J. V. (2006). Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere. Environmental Pollution, 142, 34–38.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Kaimi, E., Mukaidani, T., Miyoshi, S., & Tamaki, M. (2006). Ryegrass enhancement of biodegradation in diesel contaminated soil. Environmental and Experimental Botany, 55, 110–119.CrossRefGoogle Scholar
  102. Karimi, A., Khodaverdiloo, H., Sepehri, M., & Sadaghiani, M. R. (2011). Arbuscular mycorrhizal fungi and heavy metal contaminated soils. African Journal of Microbiology Research, 5, 1571–1576.Google Scholar
  103. Karpouzas, D. G., & Singh, B. K. (2006). Microbial degradation of organophosphorus xenobiotics metabolic pathways and molecular basis. Physics of Bacterial Morphogenesis, 51, 119–185.Google Scholar
  104. Karpouzas, D. G., Papadopoulou, E., Ipsilantis, I., Friedel, I., Petric, I., Udikovic-Kolic, N., Djuric, S., Kandeler, E., Menkissoglu-Spiroudi, U., & Martin-Laurent, F. (2014). Effects of nicosulfuron on the abundance and diversity of arbuscular mycorrhizal fungi used as indicators of pesticide soil microbial toxicity. Ecological Indicators, 39, 44–53.CrossRefGoogle Scholar
  105. Khalvati, M. A. (2005). Quantification of water uptake of hyphae contributing to barley subjected to drought conditions. Doctoral Dissertation, Technical University of Munich. Academic, pp 89.Google Scholar
  106. Khalvati, M., Barth, B., Dupigny, A., & Schröder, P. (2010). Arbuscular mycorrhizal association is beneficial for growth and detoxification of xenobiotics of barley under drought stress. Journal of Soils and Sediments, 10, 54–64.CrossRefGoogle Scholar
  107. Khan, A. G., Kuek, C., Chaudhry, T. M., Khoo, C. S., & Hayes, W. J. (2000). Plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 41, 197–207.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Kohler, A. (2015). Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics, 47, 410–415.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Kuiper, I., Lagendijk, E. L., Bloemberg, G. V., & Lugtenberg, B. J. (2004). Rhizoremediation: A beneficial plant–microbe interaction. Molecular Plant-Microbe Interactions, 17, 6–15.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Laheurte, F., Leyval, C., & Berthelin, J. (1990). Root exudates of maize, pine and beech seedlings influenced by mycorrhizal and bacterial inoculation. Symbiosis, 9, 111–116.Google Scholar
  111. Lanfranco, L., Bolchi, A., Ros, E. C., Ottonello, S., & Bonfante, P. (2002). Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiology, 130, 58–67.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Leake, J. R., Johnson, D., Donnelly, D. P., Muckle, G. E., Boddy, L., & Read, D. J. (2004). Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Canadian Journal of Botany, 82, 1016–1045.CrossRefGoogle Scholar
  113. Lee, S.-H., Lee, W.-S., Lee, C.-H., & Kim, J.-G. (2008). Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. Journal of Hazardous Materials, 153, 892–898.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Lehmann, A. (2015). Plant root and mycorrhizal fungal traits for understanding soil aggregation. The New Phytologist, 205, 1385–1388.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Leja, K., & Lewandowicz, G. (2010). Polymer biodegradation and biodegradable polymer sea review. Polish Journal of Environmental Studies, 19, 255–266.Google Scholar
  116. Lenoir, I., Fontaine, J., & Lounès-Hadj Sahraoui, A. (2016). Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. Phytochemistry, 123, 4–15.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Leyval, C., Turnau, K., & Haselwandter. (1997). Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza, 7, 139–153.CrossRefGoogle Scholar
  118. Li, X.-L., George, E., & Marschner, H. (1991). Phosphorus depletion and pH decrease at the root-soil and hyphae-soil interfaces of VA mycorrhizal white clover fertilized with ammonium. The New Phytologist, 119, 397–404.CrossRefGoogle Scholar
  119. Liao, H. L., Chen, Y., Bruns, T. D., Peay, K. G., Taylor, J. W., Branco, S., Talbot, J. M., & Vilgalys, R. (2014). Metatranscriptomic analysis of ectomycorrhizal roots reveal genes associated with Piloderma-Pinus symbiosis: Improved methodologies for assessing gene expression in situ. Environmental Microbiology, 16, 3730–3742.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Longato, S., & Bonfante, P. (1997). Molecular identification of mycorrhizal fungi by direct amplification of microsatellite regions. Mycological Research, 101, 425–432.CrossRefGoogle Scholar
  121. Mack, R. N., Simberloff, D., Mark Lonsdale, W., Evans, H., Clout, M., & Bazzaz, F. A. (2000). Biotic invasions: Causes, epidemiology, global consequences and control. Ecological Applications, 10, 689–710.CrossRefGoogle Scholar
  122. Malachowska-Jutsz, A., & Kalka, J. (2010). Influence of mycorrhizal fungi on remediation of soil contaminated by petroleum hydrocarbons. Bulletin of Environment, 19, 3217–3223.Google Scholar
  123. Mangan, S. A., Schnitzer, S. A., Herre, E. A., Mack, K. M. L., & Valencia, M. C. (2010). Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature, 466, 752–755.PubMedCrossRefPubMedCentralGoogle Scholar
  124. Marco-Urrea, E., & Reddy, C. A. (2012). Degradation of chloro organic pollutants by white rot fungi. In S. N. Singh (Ed.), Microbial degradation of xenobiotics (pp. 31–66). Heidelberg: Springer.CrossRefGoogle Scholar
  125. Marecik, R., Kroliczak, P., Czaczyk, K., Bialas, W., Olejnik, A., & Cyplik, P. (2008). Atrazine degradation by aerobic microorganisms isolated from the rhizosphere of sweet flag (Acorus calamus L.). Biodegradation, 19, 293–301.PubMedCrossRefPubMedCentralGoogle Scholar
  126. Mariela, F. P., Pável, M. E. I., Manuel, S. R. L., Jesús, F. G. M., & Reyes, L. O. (2016). Dehydrogenase and mycorrhizal colonization: tools for monitoring agrosystem soil quality. Applied Soil Ecology, 100, 144–153.CrossRefGoogle Scholar
  127. Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed.). London: Academic.Google Scholar
  128. Mathur, N., Bhatnagar, P., Mohan, K., Bakre, P., Nagar, P., & Bijarnia, M. (2007). Mutagenicity evaluation of industrial sludge from common effluent treatment plant. Chemosphere, 67, 1229–1235.PubMedCrossRefPubMedCentralGoogle Scholar
  129. Matsui, T., Nomura, Y., Takano, M., Imai, S., Nakayama, H., Miyasaka, H., Okuhata, H., Tanaka, S., Matsuura, H., Harada, K., Bamba, T., Hirata, K., & Kato, K. (2011). Molecular cloning and partial characterization of a peroxidase gene expressed in the roots of Portulaca oleracea cv., one potentially useful in the remediation of phenolic pollutants. Bioscience, Biotechnology, and Biochemistry, 75, 882–890.PubMedCrossRefPubMedCentralGoogle Scholar
  130. Maurya, P. K., & Malik, D. S. (2016). Distribution of heavy metals in water, sediments and fish tissue (Heteropneustis fossilis) in Kali River of western UP India. International Journal of Fisheries and Aquatic Studies, 4, 208–215.Google Scholar
  131. Meharg, A. A., & Cairney, J. W. G. (2000). Ectomycorrhizas- extending the capabilities of rhizosphere remediation? Soil Biology and Biochemistry, 32, 1475–1484.CrossRefGoogle Scholar
  132. Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37, 634–663.PubMedCrossRefPubMedCentralGoogle Scholar
  133. Miransari, M. (2011). Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnology Advances, 29, 645–653.PubMedCrossRefPubMedCentralGoogle Scholar
  134. Moredo, N., Lorenzo, M., Domínguez, A., Moldes, D., Cameselle, C., & Sanroman, A. (2003). Enhanced ligninolytic enzyme production and degrading capability of Phanerochaete chrysosporium and Trametes versicolor. World Journal of Microbiology and Biotechnology, 19, 665–669.CrossRefGoogle Scholar
  135. Mougin, C., Cheviron, N., Pinheiro, M., Lebrun, J. D., & Boukcim, H. (2013). New insights into the use of filamentous fungi and their degradative enzymes as tools for assessing the ecotoxicity of contaminated soils during bioremediation processes. In E. Goltapeh, Y. Danesh, & A. Varma (Eds.), Fungi as Bioremediators. Soil Biology (Vol. 32, pp. 419–432). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  136. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.PubMedCrossRefGoogle Scholar
  137. Nichols, K. A. (2003). Characterization of glomalin, a glycoprotein produced by arbuscular mycorrhizal fungi. Ph.D., Dissertation, University of Maryland, USA, http://hdl.handle.net/1903/86
  138. Nziguheba, G., & Smolders, E. (2008). Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Science of the Total Environment, 390, 53–57.PubMedCrossRefGoogle Scholar
  139. Padmavathi, T. (2017). The role of arbuscular mycorrhizal fungi in salt and drought stresses. In D. J. Bagyaraj & Jamaluddin (Eds.), Microbes for plant stress management (pp. 183–204). New Delhi: New India Publishing Agency.Google Scholar
  140. Paul, D., Pandey, G., Pandey, J., & Jain, R. K. (2005). Accessing microbial diversity for bioremediation and environmental restoration. Trends in Biotechnology, 23, 135–142.PubMedCrossRefGoogle Scholar
  141. Peng, G., Xiaofen, W., Wanbin, Z., Hongyan, Y., Xu, C., & Zongjun, C. (2008). Degradation of corn stalk by the composite microbial system of MC1. Journal of Environmental Sciences, 20, 109–111.CrossRefGoogle Scholar
  142. Philippot, L., Raaijmakers, J. M., Lemanceau, P., & van der Putten, W. H. (2013). Going back to the roots: The microbial ecology of the rhizosphere. Nature Reviews. Microbiology, 11, 789–799.PubMedCrossRefPubMedCentralGoogle Scholar
  143. Pinedo-Rilla, C., Aleu, J., & Collado, I. G. (2009). Pollutants biodegradation by fungi. Current Organic Chemistry, 13, 1194–1214.CrossRefGoogle Scholar
  144. Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C., & Mo€enne-Loccoz, Y. (2009). The rhizosphere: A playground and battlefield for soil borne pathogens and beneficial microorganisms. Plant and Soil, 321, 341–361.CrossRefGoogle Scholar
  145. Rambelli, A. (1973). The rhizosphere of mycorrhizae. In G. C. Marks & T. T. Kozlowski (Eds.), Ectomycorrhizae: Their ecology and physiology (pp. 299–343). New York: Academic.CrossRefGoogle Scholar
  146. Read, D. J., Leake, J. R., & Perez-Moreno, J. (2004). Mycorrhizal fungi as drivers of ecosystem process in heathland and boreal forest biomes. Canadian Journal of Botany, 82, 1243–1263.CrossRefGoogle Scholar
  147. Reiger, P. G., Meier, H.-M., Gerle, M., Vogt, U., Groth, T., & Knackmuss, H.-J. (2002). Xenobiotics in the environment: Present and future strategies to obviate the problem of biological persistence. Journal of Biotechnology, 94, 101–123.CrossRefGoogle Scholar
  148. Rengasamy, P. (2006). World salinization with emphasis on Australia. Journal of Experimental Botany, 57, 1017–1023.PubMedCrossRefPubMedCentralGoogle Scholar
  149. Rillig, M. C., & Mummey, D. L. (2006). Mycorrhizas and soil structure. The New Phytologist, 171, 41–53.CrossRefGoogle Scholar
  150. Rillig, M. C., Wright, S. F., & Eviner, V. T. (2002). The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species. Plant and Soil, 238, 325–333.CrossRefGoogle Scholar
  151. Rillig, M. C., Aguilar-Trigueros, C. A., Bergmann, J., Verbruggen, E., Veresoglou, S. D., & Lehmann, A. (2015). Plant root and mycorrhizal fungal traits for understanding soil aggregation. The New Phytologist, 205, 1385–1388.PubMedCrossRefPubMedCentralGoogle Scholar
  152. Rivera-Becerril, F., van Tuinen, D., Martin-Laurent, F., Metwally, A., Dietz, K. J., Gianinazzi, S., & Gianinazzi-Pearson, V. (2005). Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. Mycorrhiza, 16, 51–60.PubMedCrossRefPubMedCentralGoogle Scholar
  153. Rohrbacher, F., & St-Arnaud, M. (2016). Root exudation: The ecological driver of hydrocarbon rhizoremediation. Agronomy, 6, 19.  https://doi.org/10.3390/agronomy6010019.CrossRefGoogle Scholar
  154. Roth-Bejerano, N., Navarro-Ródenas, A., & Gutiérrez, A. (2014). Types of mycorrhizal association. In V. Kagan-Zur, N. Roth-Bejerano, Y. Sitrit, & A. Morte (Eds.), Desert Truffles. Soil Biology (Vol. 38, pp. 69–80). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  155. Ruiz-Lozano, J. M. (2003). Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza, 13, 309–317.PubMedCrossRefGoogle Scholar
  156. Sainz, M. J., Gonzalez, P. B., & Vilarino, A. (2006). Effects of hexachlorocyclohexane on rhizosphere fungal propagules and root colonization by arbuscular mycorrhizal fungi in Plantago lanceolata. European Journal of Soil Science, 57, 83–90.CrossRefGoogle Scholar
  157. Salzer, P., Corbere, H., & Boller, T. (1999). Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices. Planta, 208, 319–325.CrossRefGoogle Scholar
  158. Sanchez-Diaz, M., & Honrubia, M. (1994). Water relations and alleviation of drought stress in mycorrhizal plants. In S. Gianinazzi & H. Schepp (Eds.), Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems (pp. 167–178). Basel: Birkhuser.CrossRefGoogle Scholar
  159. Savci, S. (2012). Investigation of effect of chemical fertilizers on environment. APCBEE Procedia, 1, 287–292.CrossRefGoogle Scholar
  160. Scheibner, K., Hofrichter, M., & Fritsche, W. (1997). Mineralization of 2-amino-4,6-dinitrotoluene by manganese peroxidase of the white-rot fungus Nematoloma frowardii. Biotechnology Letters, 19, 835–839.CrossRefGoogle Scholar
  161. Scheublin, T. R., Sanders, I. R., Keel, C., & van der Meer, J. R. (2010). Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. The ISME Journal, 4, 752–763.PubMedCrossRefGoogle Scholar
  162. Schnoor, T. K., Lekberg, Y., Rosendahl, S., & Olsson, P. A. (2011). Mechanical soil disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-natural grassland. Mycorrhiza, 21, 211–220.PubMedCrossRefPubMedCentralGoogle Scholar
  163. Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W., Bolchacova, E., Voigt, K., & Crous, P. W. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proceedings of the National Academy of Sciences of the United States of America, 109, 6241–6246.PubMedPubMedCentralCrossRefGoogle Scholar
  164. Schreiner, R. P., & Bethlenfalvay, G. J. (1997). Plant and soil response to single and mixed species of arbuscular mycorrhizal fungi under fungicide stress. Applied Soil Ecology, 7, 93–102.CrossRefGoogle Scholar
  165. Schweiger, P. F., & Jakobsen, I. (1998). Dose-response relationships between four pesticides and phosphorus uptake by hyphae of arbuscular mycorrhizas. Soil Biology and Biochemistry, 30, 1415–1422.CrossRefGoogle Scholar
  166. Serra, A.-A., Nuttens, A., Larvor, V., Renault, D., Couée, I., Sulmon, C., & Gouesbet, G. (2013). Low environmentally relevant levels of bioactive xenobiotics and associated degradation products cause cryptic perturbations of metabolism and molecular stress responses in Arabidopsis thaliana. Journal of Experimental Botany, 64, 2753–2766.PubMedCrossRefGoogle Scholar
  167. Shah, F., Nicolas, C., Bentzer, J., Ellstrom, M., Smits, M., Rineau, F., Canbäck, B., Floudas, D., Carleer, R., Lackner, G., Braesel, J., Hoffmeister, D., Henrissat, B., Ahrén, D., Johansson, T., Hibbett, D. S., Martin, F., Persson, P., & Tunlid, A. (2015). Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saptrotrophic acncestors. The New Phytologist, 209, 1705–1719.PubMedPubMedCentralCrossRefGoogle Scholar
  168. Shann, J. R., & Boyle, J. J. (1994). Influence of plant species on in situ rhizosphere degradation. In T. A. Anderson & J. R. Coats (Eds.), Bioremediation through rhizosphere technology (pp. 70–81). Washington, DC: American Chemical Society.CrossRefGoogle Scholar
  169. Shaw, L. J., & Burns, R. G. (2007). Influence of the rhizosphere on the biodegradation of organic xenobiotics—a case study with 2,4-dichlorophenoxyacetic acid. In H. J. Heipieper (Ed.), Bioremediation of soils contaminated with aromatic compounds: Effects of rhizosphere, bioavailability, gene regulation and stress adaptation (pp. 5–30). Berlin: Springer.CrossRefGoogle Scholar
  170. Shetty, K. G., Hetrick, B. A. D., Figge, D. A. H., & Schwab, A. P. (1994). Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoil. Environmental Pollution, 86, 181–188.PubMedCrossRefGoogle Scholar
  171. Sicliliano, S. D., & Germide, J. T. (1999). Enhanced phytoremediation of chlorobenzoates in rhizosphere soil. Soil Biology and Biochemistry, 31, 299–305.CrossRefGoogle Scholar
  172. Silambarasan, S., & Abraham, J. (2013). Mycoremediation of endosulfan and its metabolites in aqueous medium and soil by Botryosphaeria laricina JAS6 and Aspergillus tamarii JAS9. PLoS One, 8, 77–170.CrossRefGoogle Scholar
  173. Simon, A., Bindshedler, S., Job, D., Wick, L. Y., Filippidou, S., Kooli, W. M., & Junier, P. (2015). Exploiting the fungal highway: Development of a novel tool for the in situ isolation of bacteria migrating along fungal mycelium. FEMS Microbiology Ecology, 91, 1–13.CrossRefGoogle Scholar
  174. Singh, R. (2017). Biodegradation of xenobiotics- a way for environmental detoxification. IJDR, 7, 14082–14087.Google Scholar
  175. Singh, D. K. (2008). Biodegradation and bioremediation of pesticide in soil: Concept, method and recent developments. Indian Journal of Microbiology, 48, 35–40.PubMedPubMedCentralCrossRefGoogle Scholar
  176. Singh, B., & Walker, A. (2006). Microbial degradation of organophosphorus compounds. FEMS Microbiology Reviews, 30, 428–471.PubMedCrossRefGoogle Scholar
  177. Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis. New York: Academic.Google Scholar
  178. Smith, S. E., & Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosytems scales. Annual Review of Plant Biology, 62, 227–250.CrossRefGoogle Scholar
  179. Sonon, L. S., & Schwab, A. P. (2004). Transport and persistence of nitrate atrazine and alachlor in large intact soil columns under two levels of moisture content. Soil Science, 8, 541–553.CrossRefGoogle Scholar
  180. Spain, J. C., & van Veld, P. A. (1983). Adaptation of natural microbial communities to degradation of xenobiotic compounds: Effects of concentration, exposure time, inoculum, and chemical structure. Applied and Environmental Microbiology, 45, 428–435.PubMedPubMedCentralGoogle Scholar
  181. Spokes, J. R., MacDonald, R. M., & Hayman, D. M. (1981). Effects of plant protection chemicals on vesicular-arbuscular mycorrhizas. Pesticide Science, 12, 346–350.CrossRefGoogle Scholar
  182. Sudova, R., & Vosatka, M. (2007). Difference in the effects of three arbuscular mycorrhizal fungal strains on P and Pb accumulation by maize plants. Plant and Soil, 296, 77–83.CrossRefGoogle Scholar
  183. Talaat, N. B., & Shawky. (2014). Protective effect of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environment and Experimental Botany, 98, 20–31.CrossRefGoogle Scholar
  184. Tejeda-Agredano, M. C., Gallego, S., Vila, J., Grifoll, M., Ortega-Calvo, J. J., & Cantos, M. (2013). Influence of the sunflower rhizosphere on the biodegradation of PAHs in soil. Soil Biology and Biochemistry, 57, 830–840.CrossRefGoogle Scholar
  185. Teng, Y., Luo, Y., Sun, X., Tu, C., Xu, L., Liu, W., Li, Z., & Christie, P. (2010). Influence of arbuscular mycorrhiza and Rhizobium on phytoremediation by alfalfa of an agricultural soil contaminated with weathered PCBs: A field study. International Journal of Phytoremediation, 12, 516–533.PubMedCrossRefPubMedCentralGoogle Scholar
  186. Testa, A., Di Matteo, A., Rao, M. A., Monti, M. M., Pedata, P. A., & Van Der Lee, T. A. J. (2012). A genomic approach for identification of fungal genes involved in pentachlorophenol degradation. Advance Research Science Areas, 9, 1386–1389.Google Scholar
  187. Toljander, J. F., Lindahl, B. D., Paul, L. R., Elfstrand, M., & Finlay, R. D. (2007). Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiology Ecology, 61, 295–304.PubMedCrossRefPubMedCentralGoogle Scholar
  188. Turnau, K., Mleczko, P., Blaudez, D., Chalot, M., & Botton, B. (2002). Heavy metal binding properties of Pinus sylvestris mycorrhizas from industrial wastes. Acta Societatis Botanicorum Poloniae, 71, 253–261.CrossRefGoogle Scholar
  189. Van Elsas, J. D., Costa, R., Jansson, J., Sjöling, S., Bailey, M., & Nalin, R. (2008). The metagenomics of disease-suppressive soils– experiences from the metacontrol project. Trends in Biotechnology, 26, 591–601.PubMedCrossRefPubMedCentralGoogle Scholar
  190. Van Hamme, J. D., Singh, A., & Ward, O. P. (2003). Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews, 67, 503–549.PubMedPubMedCentralCrossRefGoogle Scholar
  191. Varsha, Y. M., Naga Deepthi, C. H., & Chenna, S. (2011). An emphasis on xenobiotic degradation in environmental cleanup. Journal of Bioremediation and Biodegradation, 11, 001.  https://doi.org/10.4172/2155-6199.S11-001.CrossRefGoogle Scholar
  192. Visioli, F. (2015). Xenobiotics and human health: A new view of their pharma-nutritional role. Pharma Nutrition, 3, 60–64.CrossRefGoogle Scholar
  193. Vivas, A., Barea, J. M., Biro, B., & Azcon, R. (2006). Effectiveness of autochthonous bacterium and mycorrhizal fungus on Trifolium growth, symbiotic development and soil enzymatic activities in Zn contaminated soil. Journal of Applied Microbiology, 100, 587–598.PubMedCrossRefPubMedCentralGoogle Scholar
  194. Volante, A., Lingua, G., Cesaro, P., Cresta, A., Puppo, M., Ariati, L., & Berta, G. (2005). Influence of three species of arbuscular mycorrhizal fungi on the persistence of aromatic hydrocarbons in contaminated substrates. Mycorrhiza, 16, 43–50.PubMedCrossRefPubMedCentralGoogle Scholar
  195. Wang, F. Y., Shia, Z. Y., Tongb, R. J., & Xua, X. F. (2011a). Dynamics of phoxim residues in green onion and soil as influenced by arbuscular mycorrhizal fungi. Journal of Hazardous Materials, 185, 112–116.PubMedCrossRefPubMedCentralGoogle Scholar
  196. Wang, F. Y., Tong, R. J., Shi, Z. Y., Xu, X. F., & He, X. H. (2011b). Inoculations with arbuscular mycorrhizal fungi increase vegetable yields and decrease phoxim concentrations in carrot and green onion and their soils. PLoS One, 6, e16949.  https://doi.org/10.1371/journal.pone.0016949.CrossRefPubMedPubMedCentralGoogle Scholar
  197. Wang, Y., Ye, X., Ding, G., & Xu, F. (2013). Overexpression of phyA and appA genes improves soil organic phosphorus utilisation and seed phytase activity in Brassica napus. PLoS One, 8(4), e60801.  https://doi.org/10.1371/journal.pone.0060801.CrossRefPubMedPubMedCentralGoogle Scholar
  198. Weissenhorn, I., & Leyval, C. (1996). Spore germination of arbuscular mycorrhizal fungi in soils differing in heavy metal content and other parameters. European Journal of Soil Biology, 32, 165–172.Google Scholar
  199. White, J. C., Ross, D. W., Gent, M. P., Eitzer, B. D., & Mattina, M. I. (2006). Effect of mycorrhizal fungi on the phytoextraction of weathered p,p-DDE by Cucurbita pepo. Journal of Hazardous Materials, 137, 1750–1757.PubMedCrossRefPubMedCentralGoogle Scholar
  200. Wyss, P., & Bonfante, P. (1993). Amplification of genomic DNA of arbuscular mycorrhizal (AM) fungi by PCR using short arbitrary primers. Mycological Research, 97, 1351–1357.CrossRefGoogle Scholar
  201. Yadav, J. S., Quensen, J. F., III, Tiedje, J. M., & Reddy, C. A. (1995). Degradation of polychlorinated biphenyl mixtures (Aroclors 1242, 1254 and 1260) by the white-rot fungus Phanerochaete chrysosporium as evidenced by congener specific analysis. Applied and Environmental Microbiology, 61, 2560–2565.PubMedPubMedCentralGoogle Scholar
  202. Yu, X. Z., Wu, S. C., Wu, F. Y., & Wong, M. H. (2011). Earthworm- mycorrhiza interaction on Cd uptake and growth of ryegrass. Soil Biology and Biochemistry, 37, 195–201.CrossRefGoogle Scholar
  203. Zamal, A., Ayub, N., Usman, M., & Khan, A. G. (2002). Arbuscular mycorrhizal fungi enhance zinc and nickel uptake from contaminated soil by soybean and lentil. International Journal of Phytoremediation, 4, 205–221.CrossRefGoogle Scholar
  204. Zelenev, V. V., van Bruggen, A. H. C., & Semenov, A. M. (2005). Modeling wave-like dynamics of oligotrophic and copiotrophic bacteria along wheat roots in response to nutrient input from a growing root tip. Ecological Modelling, 188, 404–417.CrossRefGoogle Scholar
  205. Zhang, Y., Liu, J., Zhou, Y., Gong, T., Wang, J., & Ge, Y. (2013). Enhanced phytoremediation of mixed heavy metal mercury organic pollutants trichloroethylene with transgenic alfalfa co-expressing glutathione S-transferase and human P4502 E1. Journal of Hazardous Materials, 15, 1100–1107.CrossRefGoogle Scholar
  206. Zhang, L., Fan, J. Q., Ding, X. D., He, X. H., Zhang, F. S., & Feng, G. (2014). Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biology and Biochemistry, 74, 177–183.CrossRefGoogle Scholar
  207. Zocco, D., Van Aarle, I. M., Oger, E., Lanfranco, L., & Declerck, S. (2011). Fenpropimorph and fenhexamid impact phosphorus translocation by arbuscular mycorrhizal fungi. Mycorrhiza, 21, 363–374.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • R. Koshila Ravi
    • 1
  • S. Anusuya
    • 1
  • M. Balachandar
    • 1
  • S. Yuvarani
    • 1
  • K. Nagaraj
    • 1
  • T. Muthukumar
    • 1
  1. 1.Root and Soil Biology Laboratory, Department of BotanyBharathiar UniversityCoimbatoreIndia

Personalised recommendations