Advertisement

Exploring the Role of Mycorrhizae as Soil Ecosystem Engineer

  • Antra Chatterjee
  • Shbbir R. Khan
  • Huma Vaseem
Chapter

Abstract

Growing population poses pressure on physical resources such as land, water and air. Today, a major challenge before ecologists and agriculturists is to provide food security to a growing population despite fast degrading landmass and deteriorating soil health. In this regard, the omnipresent mycorrhiza, abundantly available in most terrestrial ecosystems, and its symbiotic association with plants are worth exploring. “Arbuscular mycorrhizal fungi” is a nutrient-enriching, growth-stimulant, phytoremediation bio-factor which provides protection to plants from diseases and resistance against draught, salinity stress and heavy metal toxicity. Presently, the role of mycorrhiza in soil aggregation is not duly acknowledged, and the restorative mechanisms of glomalin are not fully explained. Moreover, arbuscular mycorrhizal fungi needs more focussed research as its colonisation has shown varied responses to nearby organisms. Its synergistic and antagonistic effects entirely depend upon its varying type/identity. Indiscriminate application of chemical insecticides/pesticides/weedicides in the field is disrupting natural symbiotic relations between plant and soil. Mycorrhiza are natural alternative that can be gainfully utilised for improving soil fertility and restoration and reclamation of degraded land. Awareness about its utility among policy makers and agriculturists is a step towards sustainable agriculture, reforestation, and climate change resilient farming and enhanced food security.

Notes

Acknowledgement

Huma Vaseem is thankful to UGC for Start-Up grant, Antra Chatterjee is thankful to CSIR-UGC for senior research fellow and Shbbir R. Khan is thankful to MANF-UGC.

References

  1. Abdelmoneim, T. S., Tarek, A. A. M., Almaghrabi, O. A., Hassan, S. A., & Ismail, A. (2014). Increasing plant tolerance to drought stress by inoculation with arbuscular mycorrhizal fungi. Life Science Journal, 11(1), 10–17.Google Scholar
  2. Aktar, W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: Their benefits and hazards. Interdisc Toxicol, 2(1), 1–12.  https://doi.org/10.2478/v10102-009-0001-7.CrossRefGoogle Scholar
  3. Altieri, M. A. (1995). Agroecology: The science of sustainable agriculture. Boulder: Westview Press.Google Scholar
  4. Andrade, G., Linderman, R. G., & Bethlenfalvay, G. J. (1998). Bacterial associations with the mycorrhizosphere and hyphosphere of the arbuscular mycorrhizal fungus Glomus mosseae. Plant and Soil, 202, 79–87.CrossRefGoogle Scholar
  5. Andrade, S. A. L., Gratão, P. L., Azevedo, R. A., et al. (2010). Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environmental and Experimental Botany, 68, 198–207.  https://doi.org/10.1016/j.envexpbot.2009.11.009.CrossRefGoogle Scholar
  6. Angelovičová, L., Lodenius, M., Tulisalo, E., & Fazekašová, D. (2014). Effect of heavy metals on soil enzyme activity at different field conditions in middle Spis mining area (Slovakia). Bulletin of Environmental Contamination and Toxicology, 93(6), 670–675.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Aradottir, A. L., & Hagen, D. (2013). Ecological restoration: approaches and impacts on vegetation, soils and society. Advances in Agronomy, 120, 173–222.  https://doi.org/10.1016/b978-0-12-407686-0.00003-8.CrossRefGoogle Scholar
  8. Ash, N., Blanco, H., Brown, C., et al. (2010). Ecosystems and human well-being. Washington, DC: Island Press.Google Scholar
  9. Augé, R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11, 3–42.CrossRefGoogle Scholar
  10. Augé, R. M., Toler, H. D., & Saxton, A. M. (2015). Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: A meta-analysis. Mycorrhiza, 25, 13–24.PubMedCrossRefGoogle Scholar
  11. Azcón-Aguilar, C., & Barea, J. M. (1996). Arbuscular mycorrhizas and biological control of soil-borne plant pathogens: An overview of the mechanisms involved. Mycorrhiza, 6, 457–464.CrossRefGoogle Scholar
  12. Bakshi, M., & Varma, A. (2011). Soil enzyme: The state-of-art. In G. Shukla & A. Varma (Eds.), Soil enzymology, soil biology (Vol. 22, pp. 1–24). Berlin/Heidelberg: Springer.Google Scholar
  13. Bano, S. A., & Ashfaq, D. (2013). Role of mycorrhiza to reduce heavy metal stress. Natural Science, 5(12), 16–20.CrossRefGoogle Scholar
  14. Bardgett, R. (2005). The biology of soil. A community and ecosystems approach (242 pages). Oxford: Oxford University Press.CrossRefGoogle Scholar
  15. Barea, J. M. (1997). Mycorrhiza/bacteria interactions on plant growth promotion. In A. Ogoshi, L. Kobayashi, Y. Homma, F. Kodama, N. Kondon, & S. Akino (Eds.), Plant growth-promoting rhizobacteria, present status and future prospects (pp. 150–158). Paris: OECD.Google Scholar
  16. Barea, J. M. (2000). Rhizosphere and mycorrhiza of field crops. In J. P. Toutant, E. Balazs, E. Galante, J. M. Lynch, J. S. Schepers, D. Werner, & P. A. Werry (Eds.), Biological resource management: connecting science and policy (pp. 110–125). Berlin/Heidelberg/New York: (OECD) INRA Editions/Springer.Google Scholar
  17. Barea, J. M., Azcon, R., & Azcon-Aguilar, C. (2002). Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek, 81, 343–351.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Belimov, A. A., Hontzeas, N., Safronova, V. I., et al. (2005). Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology and Biochemistry, 37, 241–250.CrossRefGoogle Scholar
  19. Bingham, M. A., & Simard, S. W. (2011). Do mycorrhizal network benefits to survival and growth of interior Douglas-fir seedlings increase with soil moisture stress? Ecology and Evolution.  https://doi.org/10.1002/ece3.24.PubMedCrossRefGoogle Scholar
  20. Bingham, M. A., & Simard, S. W. (2012). Ectomycorrhizal networks of Pseudotsuga menziesii var. glauca trees facilitate establishment of conspecific seedlings under drought. Ecosystems, 15, 188–199.CrossRefGoogle Scholar
  21. Boddington, C. L., & Dodd, J. C. (2000). The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. I. Field studies in an Indonesian ultisol. Plant and Soil, 218, 137–144.CrossRefGoogle Scholar
  22. Bothe, H., Turnau, K., & Regvar, M. (2010). The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza, 20, 445–458.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Brockwell, J., Bottomley, P. J., & Thies, J. E. (1995). Manipulation of rhizobia microflora for improving legume productivity and soil fertility: A critical assessment. Plant and Soil, 174, 143–180.CrossRefGoogle Scholar
  24. Brundrett, M. C. (2004). Diversity and classification of mycorrhizal associations. Biological Reviews of the Cambridge Philosophical Society, 79, 473–495.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cardoso, I. M., & Kuyper, T. W. (2006). Mycorrhizas and tropical soil fertility. Agricultue, Ecosystems and Environment, 116, 72–84.Google Scholar
  26. CBD. (2010). Aichi biodiversity targets. Available at: http://www.cbd.int/sp/targets/ Google Scholar
  27. Chaer, G. M., Resende, A. S., Campello, E. F. C., et al. (2011). Nitrogen-fixing legume tree species for the reclamation of severely degraded lands in Brazil. Tree Physiology, 31, 139–149.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Challinor, A., Wheeler, T., & Garforth, C. (2007). Assessing the vulnerability of food crop systems in Africa to climate change. Climatic Change, 83, 381–399.CrossRefGoogle Scholar
  29. Chaubey, O. P., Bohre, P., & Singhal, P. K. (2012). Impact of bioreclamation of coal mine spoil on nutritional and microbial characteristics—A case study. International Journal of Bio-Science and Bio-Technology, 4, 69–79.Google Scholar
  30. Chaudhry, V., Rehman, A., Mishra, A., Chauhan, P., & Nautiyal, C. (2012). Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microbial Ecology, 64, 450–460.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Chen, B., Christie, P., & Li, L. (2001). A modified glass bead compartment cultivation system for studies on nutrient and trace metal uptake by arbuscular mycorrhiza. Chemosphere, 42, 185–192.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Chen, B. D., Xiao, X. Y., Zhu, Y. G., et al. (2007). The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. The Science of the Total Environment, 379, 226–234.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Chen, J., He, F., Zhang, X., Sun, X., Zheng, J., & Zheng, J. (2014). Heavy metal pollution decreases microbial abundance: Diversity and activity within particle-size fractions of a paddy soil. FEMS Microbiology Ecology, 87, 164–181.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Christie, P., Li, X. L., & Chen, B. D. (2004). Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant and Soil, 261, 209–217.CrossRefGoogle Scholar
  35. Clements, F. E. (1936). Nature and structure of the climax. Journal of Ecology, 24, 252–284.CrossRefGoogle Scholar
  36. Daeia, G., Ardekania, M. R., Rejalic, F., et al. (2009). Alleviation of salinity stress on wheat yield, yield components and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. Journal of Plant Physiology, 166, 617–625.CrossRefGoogle Scholar
  37. Dai, A. (2011). Drought under global warming: A review. Wiley Interdisciplinary Reviews: Climate Change, 2, 45–65.Google Scholar
  38. Daily, G. C., Alexander, S., Ehrlich, P., et al. (1997). Ecosystem services: Benefits supplied to human societies by natural ecosystems. Issues in Ecology, 2, 1–16.Google Scholar
  39. del Val, C., Barea, J. M., & Azcòn-Aguilar, C. (1999). Assessing the tolerance to heavy metals of arbuscular mycorrhizal fungi isolated from sewage sludge-contaminated soils. Applied Soil Ecology, 11, 261–269.CrossRefGoogle Scholar
  40. Dickson, S. (2004). The Arum-Paris continuum of mycorrhizal symbioses. The New Phytologist, 163, 187–200.CrossRefGoogle Scholar
  41. Djukic, D., & Mandic, L. (2006). Microorganisms as indicators of soil pollution with heavy metals. Acta Agriculturae Serbica, 11, 45–55.Google Scholar
  42. Dominguez, L. S., & Sersic, A. (2004). The southernmost mycoheterotrophic plant, Arachnitis uniflora: Root morphology and anatomy. Mycologia, 96, 1143–1151.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Dong, L. Q., & Zhang, K. Q. (2006). Microbial control of plant-parasitic nematodes: A five-party interaction. Plant and Soil, 288, 31–45.CrossRefGoogle Scholar
  44. Drigo, B., Pijl, A. S., Duyts, H., et al. (2010). Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proceedings of the National Academy of Sciences of the United States of America, 107, 10938–10942.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Druebert, C., Lang, C., Valtanen, K., et al. (2009). Beech carbon productivity as driver of ectomycorrhizal abundance and diversity. Plant, Cell & Environment, 32, 992–1003.CrossRefGoogle Scholar
  46. Dueck, T. A., Visser, P., Ernst, W. H. O., et al. (1986). Vesicular-arbuscular mycorrhizae decrease zinc-toxicity to grasses growing in zinc-polluted soil. Soil Biology and Biochemistry, 18, 331–333.CrossRefGoogle Scholar
  47. Fernandez, C. W., Langley, J. A., Chapman, S., et al. (2016). The decomposition of ectomycorrhizal fungal necromass. Soil Biology and Biochemistry, 93, 38–49.CrossRefGoogle Scholar
  48. Fitter, A. H., Heinemeyer, A., & Staddon, P. L. (2000). The impact of elevated CO2 and global climate change on arbuscular mycorrhizas: A mycocentric approach. The New Phytologist, 147, 179–187.CrossRefGoogle Scholar
  49. Frouz, J., Elhottová, D., Kuráž, V., et al. (2006). Effect of soil macrofauna on other soil biota and soil. Formation in reclaimed and unreclaimed post mining sites: Result of field microcosm experiment. Applied Soil Ecology, 33, 308–320.CrossRefGoogle Scholar
  50. Galli, U., Schüepp, H., & Brunold, C. (1994). Heavy metal binding by mycorrhizal fungi. Physiologia Plantarum, 92, 364–368.CrossRefGoogle Scholar
  51. Gamalero, E., Lingua, G., Berta, G., et al. (2009). Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Canadian Journal of Microbiology, 55, 501–514.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Gaur, A., & Adholeya, A. (2004). Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Science, 86, 528–534.Google Scholar
  53. Gianinazzi, S., Schüepp, H., Barea, J. M., et al. (2002). Mycorrhizal technology in agriculture—From genes to bioproducts. Basel: Birkha¨user Verlag.CrossRefGoogle Scholar
  54. Gianinazzi, S., Gollotte, A., Binet, M. N., et al. (2010). Agroecology: The key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza.  https://doi.org/10.1007/s00572-010-0333-3.PubMedCrossRefGoogle Scholar
  55. Gildon, A., & Tinker, P. B. (1981). A heavy metal tolerant strain of a mycorrhizal fungus. Transactions of the British Mycological Society, 77, 648–649.CrossRefGoogle Scholar
  56. Gisbert, C., Ros, R., De, H. A., et al. (2000). A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochemical and Biophysical Research Communications, 303, 440–445.CrossRefGoogle Scholar
  57. Glick, B. (2003). Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnology Advances, 21, 383–393.PubMedCrossRefGoogle Scholar
  58. Glick, B. R. (2010). Using soil bacteria to facilitate phytoremediation. Biotechnology Advances, 28, 367–374.PubMedCrossRefGoogle Scholar
  59. Griffioen, W. A. J., Ietswaart, J. H., & Ernst, W. H. O. (1994). Mycorrhizal infection of an Agrostis capillaris population on a copper contaminated soil. Plant and Soil, 158, 83–89.CrossRefGoogle Scholar
  60. Harrier, L. A., & Watson, C. A. (2003). The role of arbuscular mycorrhizal fungi in sustainable cropping systems. Advances in Agronomy, 79, 185–225.CrossRefGoogle Scholar
  61. Hartnett, D. C., & Wilson, W. T. (1999). Mycorrhizae influence plant community structure and diversity in tall grass prairie. Ecology, 80, 1187–1195.CrossRefGoogle Scholar
  62. Haselwandter, K., Leyval, C., & Sanders, F. E. (1994). Impact of arbuscular mycorrhizal fungi on plant uptake of heavy metals and radionuclides from soil. In S. Gianinazzi & H. Schüepp (Eds.), Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems (pp. 179–189). Basel: Birkhäuser.CrossRefGoogle Scholar
  63. Hashim, M. A., Mukhopadhyay, S., Sahu, J. N., et al. (2011). Remediation technologies for heavy metal contaminated groundwater. Journal of Environmental Management, 92, 2355–2388.PubMedCrossRefGoogle Scholar
  64. Hawkins, H. J., Johansen, A., & George, E. (2000). Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant and Soil, 226, 275–285.CrossRefGoogle Scholar
  65. Heggo, A., Angle, J. S., & Chaney, R. L. (1990). Effects of vesicular Arbuscular mycorrhizal fungi on heavy-metal uptake by soybeans. Soil Biology and Biochemistry, 22, 865–869.CrossRefGoogle Scholar
  66. Hodge, A. (2001). Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. The New Phytologist, 151, 725–734.CrossRefGoogle Scholar
  67. Hodge, A., Campbell, C. D., & Fitter, H. (2001). An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 413, 297–299.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Holec, M., & Frouz, J. (2006). The effect of two ant species Lasius niger and Lasius flavus on soil properties in two contrasting habitats. European Journal of Soil Biology, 42, 213–217.CrossRefGoogle Scholar
  69. Huang, L., Xie, J., Lv, B., et al. (2013). Optimization of nutrient component for diesel oil degradation by Acinetobacter beijerinckii ZRS. Marine Pollution Bulletin, 76, 325–332.  https://doi.org/10.1016/jmarpolbul.2013.03.037.CrossRefPubMedGoogle Scholar
  70. Ietswaart, J. H., Griffioen, W. A. J., & Ernst, W. H. O. (1992). Seasonality of VAM infection in three populations of Agrostis capillaries (Gramineae) on soil with or without heavy metal enrichment. Plant and Soil, 139, 67–73.CrossRefGoogle Scholar
  71. Imhof, S. (1997). Root anatomy and mycotrophy of the achlorophyllous Voyria tenella Hooker (Gentianaceae). Botanica Acta: Journal of the German Botanical Society, 110, 298–305.CrossRefGoogle Scholar
  72. Imhof, S. (1999). Anatomy and mycotrophy of the achlorophyllous Afrothismia winkleri (Engl.) Schltr. (Burmanniaceae). The New Phytologist, 144, 533–540.CrossRefGoogle Scholar
  73. Imhof, S. (2003). A dorsiventral mycorrhizal root in the achlorophyllous Sciaphila polygyna (Triuridaceae). Mycorrhiza, 13, 327–332.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Imhof, S. (2007). Specialized mycorrhizal colonization pattern in achlorophyllous Epirixanthes spp. (Polygalaceae). Plant Biology, 9, 786–792.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Imhof, S. (2009). Arbuscular, ecto-related, orchid mycorrhizas-three independent structural lineages towards mycoheterotrophy: Implications for classification? Mycorrhiza, 19, 357–363.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Isaac, S. (1992). Fungal-plant interactions. Cambridge: Chapman & Hall.Google Scholar
  77. Islam, M. R., Trivedi, P., Palaniappan, P., et al. (2009). Evaluating the effect of fertilizer application on soil microbial community structure in rice based cropping system using fatty acid methyl esters (FAME) analysis. World Journal of Microbiology and Biotechnology, 25, 1115.CrossRefGoogle Scholar
  78. Islam, M. R., Trivedi, P., Madhaiyan, M., et al. (2010). Isolation, enumeration, and characterization of diazotrophic bacteria from paddy soil sample under long-term fertilizer management experiment. Biology and Fertility of Soils, 46, 261.CrossRefGoogle Scholar
  79. Jacobs, D. F., Oliet, J. A., Aronson, J., et al. (2015). Restoring forests: What constitutes success in the twenty-first century? New Forest, 46, 601–614.  https://doi.org/10.1007/s11056-015-9513-5.CrossRefGoogle Scholar
  80. Jastrow, J. D., & Miller, R. M. (1997). Soil aggregate stabilization and carbon sequestration: Feedbacks through organomineral associations. In R. Lal, J. M. Kimble, R. F. Follett, & B. A. Stewart (Eds.), Soil processes and the carbon cycle (pp. 207–223). Boca Raton: CRC Press.Google Scholar
  81. Jeffries, P., Gianinazzi, S., Perotto, S., et al. (2002). The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils, 37, 1–16.Google Scholar
  82. Jeffries, P., Gianinazzi, S., Perotto, S., et al. (2003). The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils, 37, 1–16.Google Scholar
  83. Jenny, H. (1980). The soil resource: Origin and behaviour (Ecological studies, Vol. 37, 377 pages). New York: Springer.CrossRefGoogle Scholar
  84. Joner, E. J., Leyval, C., & Briones, R. (2000). Metal binding capacity of arbuscular mycorrhizal mycelium. Biology and Fertility of Soils, 226, 227–234.Google Scholar
  85. Jones, C. G., Lawton, J. H., & Shachak, M. (1994). Organisms as ecosystem engineers. Oikos, 69, 373–386.CrossRefGoogle Scholar
  86. Jouquet, P., Dauber, J., Lagerlof, J., Lavelle, P., et al. (2006). Soil invertebrates as ecosystem engineers: Intended and accidental effects on soil and feedback loops. Applied Soil Ecology, 32, 153–164.CrossRefGoogle Scholar
  87. Jouquet, P., Bernard-Reversat, F., Bottinelli, N., et al. (2007). Influence of changes in land use and earthworm activities on carbon and nitrogen dynamics in a steepland ecosystem in Northern Vietnam. Biology and Fertility of Soils, 44, 69–77.CrossRefGoogle Scholar
  88. Kaiser, C., Koranda, M., Kitzler, B., et al. (2010). Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. The New Phytologist, 187, 843–858.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Kaldorf, M., Kuhn, A. J., Schroder, W. H., et al. (1999). Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. Journal of Plant Physiology, 154, 718–728.CrossRefGoogle Scholar
  90. Kaur, R., Singh, A., & Kang, J. S. (2014). Influence on different types of mycorrhizal fungi on crop productivity. Current Agriculture Research Journal, 2, 51–54.CrossRefGoogle Scholar
  91. Khan, A. G. (2004). Co-inoculum of vesicular-arbuscular mycorrhizal fungi, mycorrhiza-helper-bacteria, and plant growth promoting rhizobacteria for phytoremediation of heavy metal contaminated soils. Proceedings of the V international conference on environmental geochemistry in the tropics, Haiko, Hainan, China. Institute Soil Science, Chinese Academy of Science, Nanjing, PR China. March 21–26, p. 68.Google Scholar
  92. Khan, A. G. (2005). Mycorrhizas and phytoremediation. In N. Willey (Ed.), Methods in biotechnology: Phytoremediation: Methods and reviews. Totowa: Humana Press Inc.Google Scholar
  93. Khan, A. G., Kuek, C., Chaudhry, T. M., et al. (2000). Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 41, 197e207.CrossRefGoogle Scholar
  94. Khan, S., Afzal, M., Iqbal, S., et al. (2013). Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere, 90, 1317–1332.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Khan, S. R., Singh, S. K., & Rastogi, N. (2017). Heavy metal accumulation and ecosystem engineering by two common mine site-nesting ant species: Implications for pollution-level assessment and bioremediation of coal mine soil. Environmental Monitoring and Assessment, 189, 195.  https://doi.org/10.1007/s10661-017-5865-y.CrossRefPubMedPubMedCentralGoogle Scholar
  96. Lebeau, T., Braud, A., & Jezequel, K. (2008). Performance of bioaugmentation assisted phytoextraction applied to metal contaminated soils: A review. Environmental Pollution, 153, 497–522.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Lehmann, J., Cravo, M. S., Maceˆdo, J. L. V., et al. (2001). Phosphorus management for perennial crops in central Amazonian upland soils. Plant and Soil, 237, 309–319.CrossRefGoogle Scholar
  98. Lehto, T., & Zwiazek, J. J. (2011). Ectomycorrhizas and water relations of trees: A review. Mycorrhiza, 21, 71–90.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Lekberg, Y., & Koide, R. T. (2005). Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. The New Phytologist, 168, 189–204.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Lewandowski, T. L., Dunfield, K. E., & Antunes, P. M. (2013). Isolate identity determines plant tolerance to pathogen attack in assembled mycorrhizal communities. PLoS One, 8(4), e61329.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Leyval, C., Turnau, K., & Haselwandter, K. (1997). Effect of heavy metal pollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects. Mycorrhiza, 7, 139–153.CrossRefGoogle Scholar
  102. Li, X. L., & Christie, P. (2001). Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn contaminated soil. Chemosphere, 42, 201–207.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Li, Z., Ma, Z., Van der Kuijp, T. J., et al. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468, 843–853.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Lovelock, C. E., Wright, S. F., Clark, D. A., et al. (2004). Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape. Journal of Ecology, 92, 278–287.CrossRefGoogle Scholar
  105. Malcova, R., Vosátka, M., & Gryndler, M. (2003). Effects of inoculation with Glomus intraradices on lead uptake by Zea mays L. and Agrostis capillaris L. Applied Soil Ecology, 2003(23), 55–67.CrossRefGoogle Scholar
  106. Malekzadeh, E., Alikhani, A. H., Savaghebi-Fioozabadi, R. G., et al. (2011). Influence of arbuscular mycorrhizal fungi and an improving growth bacterium on Cd uptake and maize growth in Cd-polluted soils. Spanish Journal of Agricultural Research, 9, 1213–1223.CrossRefGoogle Scholar
  107. Marques, A. P. G. C., Rangel, A. O. S. S., & Castro, P. M. L. (2009). Remediation of heavy metal contaminated soils: Phytoremediation as a potentially promising clean-up technology. Critical Reviews in Environmental Science and Technology, 39(8), 622–654.CrossRefGoogle Scholar
  108. Martin, F., & Nehls, U. (2009). Harnessing ectomycorrhizal genomics for ecological insights. Current Opinion in Plant Biology, 12, 508–515.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Martin, F., Kohler, A., & Duplessis, S. (2007). Living in harmony in the wood underground: Ectomycorrhizal genomics. Current Opinion in Plant Biology, 10, 204–210.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Marx, D. H. (1975). Mycorrhizae and the establishment of trees on stripmined land. The Ohio Journal of Science, 75, 88–297.Google Scholar
  111. Marx, D. H. (1980). Role of mycorrhizae in forestation of surface mines. In: Proceedings of Trees for Reclamation. 27–28 October, 1980, Lexington, KY, pp. 109–116.Google Scholar
  112. Masto, R. E., Chhonkar, P. K., Singh, D., et al. (2006). Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical Inceptisol. Soil Biology and Biochemistry, 38, 1577–1158.CrossRefGoogle Scholar
  113. Masto, R. E., Chhonkar, P. K., Singh, D., et al. (2007). Soil quality response to long-term nutrient and crop management on a semiarid Inceptisol. Agriculture, Ecosystems and Environment, 118, 130–142.CrossRefGoogle Scholar
  114. McCormick, M. K., Whigham, D. F., Sloan, D., et al. (2006). Orchid–fungus fidelity: A marriage meant to last? Ecology, 87, 903–911.PubMedCrossRefPubMedCentralGoogle Scholar
  115. McCormick, M. K., Whigham, D. F., O’Neill, J. P., et al. (2009). Abundance and distribution of Corallorhiza odontorhiza reflect variations in climate and ectomycorrhizae. Ecological Monographs, 79, 619–635.CrossRefGoogle Scholar
  116. McGonigle, T. P., & Miller, M. H. (1999). Winter survival of extraradical hyphae and spores of arbuscular mycorrhizal fungi in the field. Applied Soil Ecology, 12, 41–50.CrossRefGoogle Scholar
  117. McGrath, S. P., Chaudri, A. M., & Giller, K. E. (1995). Long-term effects of metal in sewage sludge on soils, microorganisms and plants. Journal of Industrial Microbiology, 14, 94–104.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Medina, A., Roldán, A., & Azcón, R. (2010). The effectiveness of arbuscular-mycorrhizal fungi and Aspergillus niger or Phanerochaete chrysosporium treated organic amendments from olive residues upon plant growth in a semi-arid degraded soil. Journal of Environmental Management, 91, 2553.  https://doi.org/10.1016/j.jenvman.2010.07.008.CrossRefGoogle Scholar
  119. Meena, V. S., Maurya, B. R., & Verma, J. P. (2014). Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiological Research, 169, 337–347.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being. In Millennium ecosystem assessment. Washington, DC: Island Press.Google Scholar
  121. Miller, R. M., & Jastrow, J. D. (1994). Vesicular-arbuscular mycorrhizae and biogeochemical cycling. In F. L. Pfleger & R. G. Linderman (Eds.), Mycorrhizae and plant health (pp. 189–212). St. Paul: APS Press, The American Phytopathlogical Society.Google Scholar
  122. Miller, R. M., & Jastrow, J. D. (2000). Mycorrhizal fungi influence soil structure. In Y. Kapulnik & D. D. Douds (Eds.), Arbuscular mycorrhizas: Physiology and function (pp. 3–18). Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  123. Mortimer, P. E., Pe’rez-Ferna’ndez, M. A., & Valentine, A. J. (2008). The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biology and Biochemistry, 40, 1019–1027.CrossRefGoogle Scholar
  124. Nath, S., Deb, B., & Sharma, I. (2012). Isolation and characterization of cadmium and lead resistant bacteria. Global Advanced Research Journal of Microbiology, 1(11), 194–198.Google Scholar
  125. Nehls, U., Gohringer, F., Wittulsky, S., et al. (2010). Fungal carbohydrate support in the ectomycorrhizal symbiosis: A review. Plant Biology, 12, 292–301.PubMedCrossRefGoogle Scholar
  126. Newsham, K. K., Fitter, A. H., & Watkinson, A. R. (1995). Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. Journal of Ecology, 83, 991–1000.CrossRefGoogle Scholar
  127. Nottingham, A. T., Turner, B. L., Winter, K., et al. (2013). Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest. FEMS Microbiology Ecology, 85, 37–50.PubMedCrossRefGoogle Scholar
  128. Olsson, P. A., Thingstrup, I., Jakobsen, I., et al. (1999). Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biology and Biochemistry, 31, 1879–1887.CrossRefGoogle Scholar
  129. Orlowska, E., Zubek, S., Jurkiewicz, A., et al. (2002). Influence of restoration on arbuscular mycorrhiza of Biscutella laevigata L. (Brassicaceae) and Plantago lanceolata L. (Plantaginaceae) from calamine spoil mounds. Mycorrhiza, 12, 153–160.PubMedCrossRefGoogle Scholar
  130. Pandey, B., Agrawal, M., & Singh, S. (2016). Ecological risk assessment of soil contamination by trace elements around coal mining area. Journal of Soils and Sediments, 16, 159–168.CrossRefGoogle Scholar
  131. Patra, P., Pati, B. K., Ghosh, G. K., et al. (2013). Effect of bio-fertilizers and Sulphur on growth, yield, and oil content of hybrid sunflower (Helianthus annuus L.) in a typical lateritic soil. 2, 603.  https://doi.org/10.4172/scientificreports.603.
  132. Pawlowska, T. B., Blaszkowski, J., & Rühling, A. (1996). The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland. Mycorrhiza, 6, 499–505.CrossRefGoogle Scholar
  133. Pena, R., Offermann, C., Simon, J., et al. (2010). Girdling affects ectomycorrhizal fungal (EMF) diversity and reveals functional differences in EMF community composition in a beech forest. Applied and Environmental Microbiology, 76, 1831–1841.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Poornima, M., Kumar, R. S., & Thomas, P. D. (2014). Isolation and molecular characterization of bacterial Strains from tannery effluent and reduction of chromium. International Journal of Current Microbiology and Applied Sciences, 3, 530–538.Google Scholar
  135. Porcel, R., Aroca, R., & Ruiz-Lozano, J. M. (2012). Salinity stress alleviation using arbuscular mycorrhizal fungi: A review. Agronomy for Sustainable Development, 31(1), 181–200.CrossRefGoogle Scholar
  136. Querejeta, J. I., Egerton-Warburton, L. M., & Allen, M. F. (2009). Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability. Ecology, 90, 649–662.PubMedCrossRefGoogle Scholar
  137. Rashid, M. I., Mujawar, L. H., Shahzad, T., et al. (2016). Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiolgical Research, 183, 26–41.CrossRefGoogle Scholar
  138. Ravnskov, S., Nybroe, O., & Jakobsen, I. (1999). Influence of an Arbuscular mycorrhizal fungus on Pseudomonas fluorescens DF57 in rhizosphere and hyphosphere soil. The New Phytologist, 142, 113–122.CrossRefGoogle Scholar
  139. Read, D. J. (1991). Mycorrhizas in ecosystems. Experientia, 47, 376–391.CrossRefGoogle Scholar
  140. Remy, W., Taylor, T. N., Hass, H., & Kerp, H. (1994). 4-hundred million year old vesicular-arbuscular mycorrhizae. PNAS USA, 91, 11841–11843.PubMedCrossRefGoogle Scholar
  141. Rillig, M. C. (2004a). Arbuscular mycorrhizae and terrestrial ecosystemprocesses. Ecology Letters, 7, 740–754.CrossRefGoogle Scholar
  142. Rillig, M. C. (2004b). Arbuscular mycorrhizae, glomalin and soil aggregation. Canadian Journal of Soil Science, 84(4), 355–363.CrossRefGoogle Scholar
  143. Rillig, M. C., Wright, S. F., Nichols, K. A., et al. (2001). Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant and Soil, 233, 167–177.CrossRefGoogle Scholar
  144. Rillig, M. C., Wright, S. F., Nichols, K. A., Schmid, W. F., & Torn, M. S. (2002). The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species. Plant and Soil, 238, 325–333.CrossRefGoogle Scholar
  145. Ritz, K., & Young, I. M. (2004). Interaction between soil structure and fungi. Mycologist, 18, 52–59.CrossRefGoogle Scholar
  146. Robertson, G. P., & Swinton, S. M. (2005). Reconciling agricultural productivity and environmental integrity: A grand challenge for agriculture. Frontiers in Ecology and the Environment, 3, 38–46.CrossRefGoogle Scholar
  147. Rooney, D. C., Killham, K., Bending, G. D., et al. (2009). Mycorrhizas and biomass crops: Opportunities for future sustainable development. Trends in Plant Science, 14, 542–549.PubMedCrossRefPubMedCentralGoogle Scholar
  148. Rosenzweig, C., Iglesias, A., Yang, X. B., et al. (2001). Climate change and extreme weather events: Implications for food production, plant diseases, and pests. Global Change and Human Health, 2, 90–104.CrossRefGoogle Scholar
  149. Ryan, M. H., & Graham, J. H. (2002). Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant and Soil, 244, 263–271.CrossRefGoogle Scholar
  150. Salminen, J., Anh, B. T., & van Gestel, C. A. M. (2001). Indirect effects of zinc on soli microbes via a keystone enchytraeid species. Environmental Toxicology and Chemistry, 20, 1167–1174.PubMedCrossRefPubMedCentralGoogle Scholar
  151. Sambandan, K., Kannan, K., & Raman, N. (1992). Distribution of vesicular-arbuscular mycorrhizal fungi in heavy metal polluted soils of Tamil Nadu, India. Journal of Environmental Biology, 13, 159–167.Google Scholar
  152. Sekabira, K., Oryem-Origa, H., Mutumba, G., et al. (2011). Heavy metal phytoremediation by Commelina benghalensis (L.) and Cynodon dactylon (L.) growing in urban stream sediments. International Journal of Plant Physiology and Biochemistry, 3, 133–142.Google Scholar
  153. Selosse, M. A., Richard, R., XSimar, H., et al. (2006). Mycorrhizal networks: des liaisons dangereuses. Trends in Ecology & Evolution, 21, 621–628.CrossRefGoogle Scholar
  154. Sheoran, V., Sheoran, A. S., & Poonia, P. (2010). Soil reclamation of abandoned mine land by revegetation: A review. International Journal of Soil, Sediment and Water, 3, 1–20.Google Scholar
  155. Shetty, K. G., Hetrick, B. A. D., Figge, D. A. H., et al. (1994). Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoil. Environmental Pollution, 86, 181–188.PubMedCrossRefGoogle Scholar
  156. Shu, W. S., Yeb, Z. H., Lana, C. Y., et al. (2002). Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon. Environmental Pollution, 120, 445–453.PubMedCrossRefGoogle Scholar
  157. Singh, A. N., Raghubanshi, A. S., & Singh, J. S. (2002). Plantations as a tool for mine spoil restoration. Current Science, 82, 1436–1441.Google Scholar
  158. Singh, P. K., Singh, M., & Tripathi, B. N. (2013). Glomalin: an arbuscular mycorrhizal fungal soil protein. Protoplasma, 250(3), 663–669.PubMedCrossRefPubMedCentralGoogle Scholar
  159. Smith, S. E., & Read, D. J. (1997a). Mycorrhizal symbiosis. New York: Academic.Google Scholar
  160. Smith, S. E., & Read, D. J. (1997b). Mycorrhizal symbiosis. London: Academic.Google Scholar
  161. Smith, S. E., & Read, D. J. (2008a). Mycorrhizal symbiosis. San Diego: Academic.Google Scholar
  162. Smith, S. E., & Read, D. J. (2008b). Mycorrhizal symbiosis (3rd ed.). London: Academic.Google Scholar
  163. Šourková, M., Frouz, J., & Šantrůčková, H. (2005). Accumulation of carbon, nitrogen and phosphorus during soil formation on alder spoil heaps after brown-coal mining, near Sokolov (Czech Republic). Geoderma, 124, 203–214.CrossRefGoogle Scholar
  164. Susarla, S., Medina, V. F., & McCutcheon, S. C. (2002). Phytoremediation: An ecological solution to organic chemical contamination. Ecological Engineering, 18, 647–658.CrossRefGoogle Scholar
  165. Swaty, R., Michael, H. M., Deckert, R., & Gehring, C. A. (2016). Mapping the potential mycorrhizal associations of the conterminous United States of America. Fungal Ecology, 1–9.Google Scholar
  166. Thompson, J. P. (1991). Improving the mycorrhizal condition of the soil through cultural practices and effects on growth and phosphorus uptake in plants. In C. Johansen, K. K. Lee, & K. L. Sahrawat (Eds.), Phosphorus nutrition of grain legumes in the semi-arid tropics (pp. 117–137). Andhra Pradesh: ICRISAT.Google Scholar
  167. Tilman, D., Lehman, C. L., & Thomson, K. T. (1997). Plant diversity and ecosystem productivity: Theoretical considerations. Proceedings of the National Academy of Sciences of the United States of America, 94, 1857–1861.PubMedPubMedCentralCrossRefGoogle Scholar
  168. Tonin, C., Vandenkoornhuyse, P., Joner, E. J., et al. (2001). Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza, 10, 161–168.CrossRefGoogle Scholar
  169. Toro, M., Azcón, R., & Barea, J. M. (1997). Improvement of arbuscular mycorrhizal development by inoculation with phosphate solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Applied and Environmental Microbiology, 63, 4408–4412.PubMedPubMedCentralGoogle Scholar
  170. Trenberth, K. E., Dai, A., van der Schrier, G., et al. (2013). Global warming and changes in drought. Nature Climate Change, 4, 17–22.CrossRefGoogle Scholar
  171. Tscherko, D., Hammesfahr, U., Marx, M. C., et al. (2004). Shifts in rhizosphere microbial communities and enzyme activity of Poa alpina across an alpine chronosequence. Soil Biology and Biochemistry, 36, 1685–1698.CrossRefGoogle Scholar
  172. Tubiello, F. N., Rosenzweig, C., Goldberg, R. A., et al. (2002). Effects of climate change on us crop production: Simulation results using two different GCM scenarios. Part I: Wheat, potato, maize, and citrus. Climate Research, 20, 259–270.CrossRefGoogle Scholar
  173. Turnau, K., Kottke, I., & Oberwinkler, F. (1993). Element localization in mycorrhizal roots of Pteridium aquilinum (L.) Kuhn collected from experimental plots treated with cadmium dust. The New Phytologist, 123, 313–324.CrossRefGoogle Scholar
  174. Turnau, K., Jurkiewicz, A., & Lingua, G. (2005). Role of arbuscular mycorrhiza and associated microorganisms in phytoremediation of heavy metal polluted sites. In M. N. V. Prasad, K. S. Sajwan, & R. Naidu (Eds.), Trace elements in the environment (pp. 235–252). Boca Raton: CRC Press.CrossRefGoogle Scholar
  175. Turnau, K., Anielska, T., & Ryszka, P. (2008). Establishment of arbuscular mycorrhizal plants originating from xerothermic grasslands on heavy metal rich industrial wastes-new solution for waste revegetation. Plant and Soil, 305, 267–280.CrossRefGoogle Scholar
  176. Ul Hassan, Z., Ali, S., Rizwan, M., et al. (2017). Role of bioremediation agents (bacteria, fungi, and algae) in alleviating heavy metal toxicity (Probiotics in agroecosystem, pp. 517–537). Singapore: Springer.CrossRefGoogle Scholar
  177. UN. (2000). UN Secretary General’s report A/504/2000 Chapter C. “Defending the Soil”.Google Scholar
  178. Upadhyaya, H., Panda, S. K., Bhattacharjee, M. K., et al. (2010). Role of arbuscular mycorrhiza in heavy metal tolerance in plants: Prospects for phytoremediation. Journal of Phytology, 2, 16–27.Google Scholar
  179. Valdenegro, M., Barea, J. M., & Azcòn, R. (2001). Influence of arbuscular mycorrhizal fungi, Rhizobium meliloti strains and PGPR inoculation on the growth of Medicago arborea used as model legume for revegetation and biological reactivation in a semi-arid Mediterranean area. Plant Growth Regulation, 34, 233–240.CrossRefGoogle Scholar
  180. Van der Heijden, M. G. A., & Horton, T. R. (2009). Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology, 97, 1139–1150.CrossRefGoogle Scholar
  181. Van der Heijden, M. G. A., Klironomos, J. N., Ursic, M., et al. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69–72.CrossRefGoogle Scholar
  182. Van der Heijden, M. G. A., Bardgett, R. D., & van Straalen, N. M. (2008). The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296–310.PubMedCrossRefPubMedCentralGoogle Scholar
  183. Van der Heijden, M. G. A., Martin, F. M., Selosse, M. A., et al. (2015). Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytologist, 205, 1406–1423.PubMedCrossRefPubMedCentralGoogle Scholar
  184. Vivas, A., Vörös, A., Biro, B., et al. (2003). Beneficial effects of indigenous Cd tolerant and Cd-sensitive Glomus mosseae associated with a Cd-adapted strain of Brevibacillus sp. in improving plant tolerance to Cd contamination. Applied Soil Ecology, 24, 177–186.CrossRefGoogle Scholar
  185. Wall, D. H., & Virginia, R. A. (1999). Controls on soil biodiversity: Insights from extreme environments. Applied Soil Ecology, 13, 137–150.CrossRefGoogle Scholar
  186. Wang, F. Y., Lin, X. G., & Yin, R. (2007). Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens – a field case. Environmental Pollution, 147, 248–255.PubMedCrossRefPubMedCentralGoogle Scholar
  187. Weissenhorn, I., Leyval, C., & Berthelin, J. (1993). Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy metal-polluted soils. Plant and Soil, 157, 247–256.CrossRefGoogle Scholar
  188. Weissenhorn, I., Leyval, C., & Berthelin, J. (1995a). Bioavailability of heavy metals and abundance of arbuscular mycorrhiza in a soil polluted by atmospheric deposition from a smelter. Biology and Fertility of Soils, 19, 22–28.CrossRefGoogle Scholar
  189. Weissenhorn, I., Leyval, C., Belgy, G., et al. (1995b). Arbuscular mycorrhizal contribution to heavy metal uptake by maize (Zea mays L.) in pot culture with contaminated soil. Mycorrhiza, 5, 245–251.Google Scholar
  190. Weyens, N., Truyens, S., Dupae, J., et al. (2010). Potential of the TCE-Degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings. S. Environmental Pollution, 158, 2915–2919.PubMedCrossRefPubMedCentralGoogle Scholar
  191. Widden, P. (1996). The morphology of vesicular-arbuscular mycorrhizae in Clintonia borealis and Medeola virginiana. Canadian Journal of Botany, 74, 679–685.CrossRefGoogle Scholar
  192. Wright, S. F., & Upadhyaya, A. (1998). A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil, 198, 97–107.CrossRefGoogle Scholar
  193. Yang, G., Liu, N., Lu, W., et al. (2014). The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability. Journal of Ecology, 102, 1072–1082.CrossRefGoogle Scholar
  194. Yao, Q., Li, X., Weidang, A., et al. (2003). Bi-directional transfer of phosphorus between red clover and perennial ryegrass via arbuscular mycorrhizal hyphal links. European Journal of Soil Biology, 39, 47–54.CrossRefGoogle Scholar
  195. Yasmeen, T., Hameed, S., Tariq, M., et al. (2012). Vigna radiata root associated mycorrhizae and their helping bacteria for improving crop productivity. Pakistan Journal of Botany, 44, 87–94.Google Scholar
  196. Zaidi, A., & Khan, M. S. (2005). Interactive effect of Rhizotrophic microorganisms on growth, yield and nutrient uptake of wheat. Journal of Plant Nutrition, 28, 2079–2092.CrossRefGoogle Scholar
  197. Zak, J. C., & Parkinson, D. (1982). Initial vesicular-arbuscular mycorrhizal development of the slender wheatgrass on two amended mine soils. Canadian Journal of Botany, 60, 2241–2248.CrossRefGoogle Scholar
  198. Zhu, Y. G., & Miller, R. M. (2003). Carbon cycling by arbuscular mycorrhizal fungi in soil—Plant systems. Trends in Plant Science, 8, 407–409.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Antra Chatterjee
    • 1
  • Shbbir R. Khan
    • 2
  • Huma Vaseem
    • 3
  1. 1.Department of Botany, Institute of ScienceBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of Zoology, Institute of ScienceBanaras Hindu UniversityVaranasiIndia
  3. 3.Department of Zoology, Faculty of Life ScienceAligarh Muslim UniversityAligarhIndia

Personalised recommendations