Advertisement

Mycorrhizal Assisted Phytoremediation of Xenobiotics from Contaminated Soil

  • Awadhesh Kumar Shukla
  • Amit Kishore Singh
  • Anjney Sharma
Chapter

Abstract

Bioremediation is an integrative process where the polluted sites are decontaminated by potential exploitation of microorganisms. Arbuscular mycorrhizal fungi (AMF) often found in association with the roots of higher vascular plants and may constitute up to 50% of the total soil microbial biomass. AMF is considered as better alternative to impetus the phytoremediation process because the hyphae intermingled together and create a wide area network in order to make bridge between plant roots, soil and rhizospheric microorganisms. This chapter is focused on the role and significance of AMF in phytoremediation of hydrocarbon contaminated sites. Additionally the metabolite formation during bioremediation of organic compounds is discussed. Furthermore the factors affecting the bioremediation process is also summarized.

References

  1. Aranda, E., Martín Scervino, J., Godoy, P., Reina, R., Antonio Ocampo, J., Regina-Michaela, W., & García-Romera, I. (2013). Role of arbuscular mycorrhizal fungus Rhizophagus custos in the dissipation of PAHs under root-organ culture conditions. Environmental Pollution, 181, 182–189.CrossRefGoogle Scholar
  2. Binet, P., Portal, J. M., & Leyval, C. (2001). Application of GC-MS to the study of anthracene disappearance in the rhizosphere of ryegrass. Organic Geochemistry, 32, 217–222.CrossRefGoogle Scholar
  3. Cheung, K. C., Zhang, J. Y., Deng, H. H., Ou, Y. K., Leung, H. M., Wu, S. C., & Wong, M. H. (2008). Interaction of higher plant (jute), electrofused bacteria and mycorrhiza on anthracene biodegradation. Bioresource Technology, 99, 2148–2155.CrossRefGoogle Scholar
  4. Corgie, S. C., Fons, F., Beguiristain, T., & Leyval, C. (2006). Biodegradation of phenanthrene, spatial distribution of bacteria populations and dioxygenase expression in the mycorrhizosphere of Lolium perenne inoculated with Glomus mosseae. Mycorrhiza, 16, 207–212.CrossRefGoogle Scholar
  5. El Fantroussi, S., & Agathos, S. N. (2005). Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Current Opinion in Microbiology, 8, 268–275.CrossRefGoogle Scholar
  6. Finlay, R. D. (2008). Ecological aspects of mycorrhizal symbiosis: With special emphasis on the functional diversity of interactions involving the extraradical mycelium. Journal of Experimental Botany, 59, 1115–1126.CrossRefGoogle Scholar
  7. Gan, S., Lau, E. V., & Ng, H. K. (2009). Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAH). Journal of Hazardous Materials, 172, 532–549.CrossRefGoogle Scholar
  8. Gao, Y., Li, Q., Ling, W., & Zhu, X. (2011). Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene. Journal of Hazardous Materials, 185, 703–709.Google Scholar
  9. Huang, H., Zhang, S., Shan, X. Q., Chen, B. D., Zhu, Y. G., & Bell, J. N. (2007). Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil. Environmental Pollution, 146, 452–457.CrossRefGoogle Scholar
  10. Huang, H. L., Zhang, S., Wu, N., Luo, L., & Christie, P. (2009). Influence of Glomus etunicatum/Zea mays mycorrhiza on atrazine degradation, soil phosphatase and dehydrogenase activities, and soil microbial community structure. Soil Biology and Biochemistry, 41, 726–734.CrossRefGoogle Scholar
  11. Joner, E. J., Johnsen, A., Loibner, A. P., Szolar, O. H. J., Portal, J. M., & Leyval, C. (2001). Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soil. Environmental Science & Technology, 35, 2773–2777.CrossRefGoogle Scholar
  12. Khan, A. G., Kuek, C., Chaudhry, T. M., Khoo, C. S., & Hayes, W. J. (2000). Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 41, 197–207.CrossRefGoogle Scholar
  13. Lenoir, I., Lounes-Hadjsahraoui, A., & Fontaine, J. (2016). Arbuscular mycorrhizal fungal- assisted phytoremediation of soil contaminated with persistent organic pollutants: A review. European Journal of Soil Science, 67, 624–640.CrossRefGoogle Scholar
  14. Leyval, C., Joner, E. J., Del Val, C., & Haselwandter, K. (2002). Potential of arbuscular mycorrhizal fungi for bioremediation. In S. Gianinazzi, H. Schϋepp, J. M. Barea, & K. Haselwandter (Eds.), Mycorrhizal technology in agriculture: From genes to bioproducts (pp. 175–186). Birkhauser: Springer.CrossRefGoogle Scholar
  15. Liao, J. P., Lin, X. G., Cao, Z. H., Shi, Y. Q., & Wong, M. H. (2003). Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment. Chemosphere, 50, 847–853.CrossRefGoogle Scholar
  16. Lu, Y. F., & Lu, M. (2015). Remediation of PAH-contaminated soil by the combination of tall fescue, arbuscular mycorrhizal fungus and epigeic earthworms. Journal of Hazardous Materials, 285, 535–541.CrossRefGoogle Scholar
  17. Małachowska-Jutsz, A., Rudek, J., & Janosz, W. (2011). The effect of ribwort (Plantago lanceolata) and its mycorrhizas on the growth of microflora in soil contaminated with used engine oil. Archives of Environmental Protection, 37, 99–113.Google Scholar
  18. Parniske, M. (2008). Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nature Reviews. Microbiology, 6, 763–775.CrossRefGoogle Scholar
  19. Rabie, G. H. (2005). Role of arbuscular mycorrhizal fungi in phytoremediation of soil rhizosphere spiked with poly aromatic hydrocarbons. Mycobiology, 33, 41–50.CrossRefGoogle Scholar
  20. Rajtor, M., & Piotrowska-Seget, Z. (2016). Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants. Chemosphere, 162, 105–116.CrossRefGoogle Scholar
  21. van der Heijden, M. G., & Horton, T. R. (2009). Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology, 97, 1139–1150.CrossRefGoogle Scholar
  22. Wu, F. Y., Yu, X. Z., Wu, S. C., Lin, X. G., & Wong, M. H. (2011). Phenanthrene and pyrene uptake by arbuscular mycorrhizal maize and their dissipation in soil. Journal of Hazardous Materials, 187, 341–347.CrossRefGoogle Scholar
  23. Yu, X. Z., Wu, S. C., Wu, F. Y., & Wong, M. H. (2011). Enhanced dissipation of PAHs from soil using mycorrhizal ryegrass and PAH-degrading bacteria. Journal of Hazardous Materials, 186, 1206–1217.CrossRefGoogle Scholar
  24. Zhou, X., Zhou, J., Xiang, X., Cebron, A., Beguiristain, T., & Leyval, C. (2013). Impact of four plant species and arbuscular mycorrhizal (AM) fungi on polycyclic aromatic hydrocarbon (PAH) dissipation in spiked soil. Polish Journal of Environmental Studies, 22, 1239–1245.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Awadhesh Kumar Shukla
    • 1
  • Amit Kishore Singh
    • 2
  • Anjney Sharma
    • 3
  1. 1.Department of BotanyK. S. Saket P.G. CollegeAyodhyaIndia
  2. 2.Kamla Nehru P.G. CollegeRaebareliIndia
  3. 3.ICAR-National Bureau of Agriculturally Important MicroorganismsMau Nath BhanjanIndia

Personalised recommendations