Advertisement

Molecular Microbial Biodiversity Assessment in the Mycorrhizosphere

  • Kalaivani NadarajahEmail author
  • Ilakiya Sharanee Kumar
Chapter

Abstract

The mycorrhizosphere is an active and dynamic region with various types of organisms inhabiting this zone. While the most important player in the mycorrhizosphere may be the mycorrhizae, past research has indicated an equally important role for the bacterial community within this biosphere. The bacterial community interacts with the mycorrhizae and also with other communities and these interactions can either be direct or indirect and beneficial or non-beneficial. Exploring the immense diversity within this biosphere will require techniques that will best represent the microbial diversity and structure. This is especially important when a large number of these organisms are non-culturable or difficult to culture, therefore making the entire process of isolation, identification and characterization more difficult. Molecular microbial diversity assessment is a way forward for us to analyze the soil diversity in the mycorrhizosphere. This chapter will address the various PCR based and non PCR based molecular techniques that may be utilized to study the microbial diversity and structure within the mycorrhizosphere.

Keywords

Molecular Mycorrhizosphere Markers Bacteria Fungi 

References

  1. Agrawal, P. K., & Shrivastava, R. (2013). Molecular markers. In J. Saxena, I. Ravi, & M. Bhaunthiyal (Eds.), Advance in biotechnology (pp. 25–39). New Delhi: Springer.Google Scholar
  2. Amann, R. I., Ludwig, W., & Schleifer, K.-H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59, 143–169.PubMedPubMedCentralGoogle Scholar
  3. Atkins, S. D., & Clark, I. M. (2004). Fungal molecular diagnostics: A mini review. Journal of Applied Genetics, 45, 3–15.PubMedGoogle Scholar
  4. Avise, J. C. (1994). Molecular tools. In Molecular markers, natural history and evolution (pp. 44–91). Boston: Springer.  https://doi.org/10.1007/978-1-4615-2381-9.CrossRefGoogle Scholar
  5. Banfield, J. F., Verberkmoes, N. C., Hettich, R. L., & Thelen, M. P. (2005). Proteogenomic approaches for the molecular characterization of natural microbial communities. OMICS: A Journal of Integrative Biology, 9, 301–333.  https://doi.org/10.1089/omi.2005.9.301.CrossRefPubMedGoogle Scholar
  6. Bashiardes, S., Zilberman-Schapira, G., & Elinav, E. (2016). Use of metatranscriptomics in microbiome research. Bioinformatics and Biology Insights, 10, BBI. S34610.CrossRefGoogle Scholar
  7. Benndorf, D., Balcke, G. U., Harms, H., & Von Bergen, M. (2007). Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. The ISME Journal, 1, 224.  https://doi.org/10.1038/ismej.2007.39.CrossRefPubMedGoogle Scholar
  8. Bianciotto, V., Minerdi, D., Perotto, S., & Bonfante, P. (1996). Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma, 193, 123–131.  https://doi.org/10.1007/BF01276640.CrossRefGoogle Scholar
  9. Bianciotto, V., Lumini, E., Lanfranco, L., Minerdi, D., Bonfante, P., & Perotto, S. (2000). Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae. Applied and Environmental Microbiology, 66, 4503–4509.  https://doi.org/10.1128/AEM.66.10.4503-4509.2000.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Caracciolo, A. B., Bottoni, P., & Grenni, P. (2010). Fluorescence in situ hybridization in soil and water ecosystems: A useful method for studying the effect of xenobiotics on bacterial community structure. Toxicological & Environmental Chemistry, 92, 567–579.  https://doi.org/10.1080/02772241003620244.CrossRefGoogle Scholar
  11. Cardinale, M., et al. (2004). Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Applied and Environmental Microbiology, 70, 6147–6156.  https://doi.org/10.1128/AEM.70.10.6147-6156.2004.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Case, R. J., Boucher, Y., Dahllöf, I., Holmström, C., Doolittle, W. F., & Kjelleberg, S. (2007). Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Applied and Environmental Microbiology, 73, 278–288.  https://doi.org/10.1128/AEM.01177-06.CrossRefPubMedGoogle Scholar
  13. Cetecioglu, Z., Ince, O., & Ince, B. (2012). Gel electrophoresis based genetic fingerprinting techniques on environmental ecology. In Gel electrophoresis-advanced techniques. Rijeka: InTech.Google Scholar
  14. Ciardo, D. E., Schär, G., Altwegg, M., Böttger, E. C., & Bosshard, P. P. (2007). Identification of moulds in the diagnostic laboratory—An algorithm implementing molecular and phenotypic methods. Diagnostic Microbiology and Infectious Disease, 59, 49–60.CrossRefGoogle Scholar
  15. Ciardo, D. E., Lucke, K., Imhof, A., Bloemberg, G. V., & Böttger, E. C. (2010). Systematic internal transcribed spacer sequence analysis for identification of clinical mold isolates in diagnostic mycology: A 5-year study. Journal of Clinical Microbiology, 48, 2809–2813.CrossRefGoogle Scholar
  16. Costa, R., Gomes, N., Krögerrecklenfort, E., Opelt, K., Berg, G., & Smalla, K. (2007). Pseudomonas community structure and antagonistic potential in the rhizosphere: Insights gained by combining phylogenetic and functional gene-based analyzes. Environmental Microbiology, 9, 2260–2273.  https://doi.org/10.1111/j.1462-2920.2007.01340.x.CrossRefPubMedGoogle Scholar
  17. Coutinho, M., et al. (2013). Microbial communities on deteriorated artistic tiles from Pena National Palace (Sintra, Portugal). International Biodeterioration & Biodegradation, 84, 322–332.  https://doi.org/10.1016/j.ibiod.2012.05.028.CrossRefGoogle Scholar
  18. Dakal, T. C., & Arora, P. K. (2012). Evaluation of potential of molecular and physical techniques in studying biodeterioration. Reviews in Environmental Science and Bio/Technology, 11, 71–104.  https://doi.org/10.1007/s11157-012-9264-0.CrossRefGoogle Scholar
  19. De Ley, J. (1970). Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. Journal of Bacteriology, 101, 738–754.PubMedPubMedCentralGoogle Scholar
  20. Deja-Sikora, E., Sikora, M., Golebiewski, M., & Tretyn, A. (2007). Metagenomic libraries as sources of genes useful for biotechnology. Biotechnologia, 4, 125–139.Google Scholar
  21. Delmotte, N., et al. (2009). Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proceedings of the National Academy of Sciences, 106, 16428–16433.  https://doi.org/10.1073/pnas.0905240106.CrossRefGoogle Scholar
  22. DeSantis, T. Z., Brodie, E. L., Moberg, J. P., Zubieta, I. X., Piceno, Y. M., & Andersen, G. L. (2007). High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microbial Ecology, 53, 371–383.  https://doi.org/10.1007/s00248-006-9134-9.CrossRefPubMedGoogle Scholar
  23. Elshahed, M. S., et al. (2008). Novelty and uniqueness patterns of rare members of the soil biosphere. Applied and Environmental Microbiology, 74, 5422–5428.  https://doi.org/10.1128/AEM.00410-08.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fakruddin, M., & Mannan, K. (2013). Methods for analyzing diversity of microbial communities in natural environments. Ceylon Journal of Science (Biological Sciences), 42.  https://doi.org/10.4038/cjsbs.v42i1.5896.CrossRefGoogle Scholar
  25. Finlay, B. B., & Medzhitov, R. (2007). Host-microbe interactions: Fulfilling a niche. Cell Host & Microbe, 1, 3–4.CrossRefGoogle Scholar
  26. Fisher, M. M., & Triplett, E. W. (1999). Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Applied and Environmental Microbiology, 65, 4630–4636.PubMedPubMedCentralGoogle Scholar
  27. Gaylarde, C. C., Rodríguez, C. H., Navarro-Noya, Y. E., & Ortega-Morales, B. O. (2012). Microbial biofilms on the sandstone monuments of the Angkor Wat complex, Cambodia. Current Microbiology, 64, 85–92.  https://doi.org/10.1007/s00284-011-0034-y.CrossRefPubMedGoogle Scholar
  28. Giacomucci, L., et al. (2011). Microbial deterioration of artistic tiles from the façade of the Grande Albergo Ausonia & Hungaria (Venice, Italy). Microbial Ecology, 62, 287–298.  https://doi.org/10.1007/s00248-011-9812-0.CrossRefPubMedGoogle Scholar
  29. Gich, F. B., Amer, E., Figueras, J. B., Charles, A., Abella, C. A. A., Balaguer, M. D., & Poch, M. (2000). Assessment of microbial community structure changes by amplified ribosomal DNA restriction analysis (ARDRA). International Microbiology, 3, 103–106.PubMedGoogle Scholar
  30. González, J. M., & Saiz-Jiménez, C. (2005). Application of molecular nucleic acid-based techniques for the study of microbial communities in monuments and artworks. International Microbiology, 8, 189.PubMedGoogle Scholar
  31. Gonzalez, J., Ortiz-Martinez, A., Gonzalez-delValle, M., Laiz, L., & Saiz-Jimenez, C. (2003). An efficient strategy for screening large cloned libraries of amplified 16S rDNA sequences from complex environmental communities. Journal of Microbiological Methods, 55, 459–463.CrossRefGoogle Scholar
  32. Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P., & Tiedje, J. M. (2007). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. International Journal of Systematic and Evolutionary Microbiology, 57, 81–91.  https://doi.org/10.1099/ijs.0.64483-0.CrossRefPubMedGoogle Scholar
  33. Greene, E. A., & Voordouw, G. (2003). Analysis of environmental microbial communities by reverse sample genome probing. Journal of Microbiological Methods, 53, 211–219.CrossRefGoogle Scholar
  34. He, L., et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature, 447, 1130.  https://doi.org/10.1038/nature05939.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hugenholtz, P., Goebel, B. M., & Pace, N. R. (1998). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology, 180, 4765–4774.PubMedPubMedCentralGoogle Scholar
  36. Hugenholtz, P., Tyson, G. W., Webb, R. I., Wagner, A. M., & Blackall, L. L. (2001). Investigation of candidate division TM7, a recently recognized major lineage of the domain Bacteria with no known pure-culture representatives. Applied and Environmental Microbiology, 67, 411–419.  https://doi.org/10.1128/AEM.67.1.411-419.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jacobi, S. K., Xi, L., Maltecca, C., Borst, L., Smith, A., & Odle, J. (2017). Dietary prebiotics and arachidonic acid (ARA) modulate intestinal injury and microbial taxa following acute dextran sodium sulfate induced colitis in formula-fed piglets. The FASEB Journal, 31, lb324–lb324.Google Scholar
  38. Karp, A., Seberg, O., & Buiatti, M. (1996). Molecular techniques in the assessment of botanical diversity. Annals of Botany, 78, 143–149.CrossRefGoogle Scholar
  39. Keller, M., & Hettich, R. (2009). Environmental proteomics: A paradigm shift in characterizing microbial activities at the molecular level. Microbiology and Molecular Biology Reviews, 73, 62–70.  https://doi.org/10.1128/MMBR.00028-08.CrossRefPubMedGoogle Scholar
  40. Kolb, S., Knief, C., Stubner, S., & Conrad, R. (2003). Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Applied and Environmental Microbiology, 69, 2423–2429.  https://doi.org/10.1128/AEM.69.5.2423-2429.2003.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Krieg, N., & Holt, J. (1984). Bergey’s manual of systemic bacteriology (Vol. 1). The William & Wilkins Co: Baltimore.  https://doi.org/10.1007/978-0-387-21609-6.CrossRefGoogle Scholar
  42. Lauber, C. L., Strickland, M. S., Bradford, M. A., & Fierer, N. (2008). The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry, 40, 2407–2415.CrossRefGoogle Scholar
  43. Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75, 5111–5120.  https://doi.org/10.1128/AEM.00335-09.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Li, T., Wu, T. D., Mazéas, L., Toffin, L., Guerquin-Kern, J. L., Leblon, G., & Bouchez, T. (2008). Simultaneous analysis of microbial identity and function using NanoSIMS. Environmental Microbiology, 10, 580–588.  https://doi.org/10.1111/j.1462-2920.2007.01478.x.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Liu, W.-T., Marsh, T. L., Cheng, H., & Forney, L. J. (1997). Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environmental Microbiology, 63, 4516–4522.PubMedPubMedCentralGoogle Scholar
  46. Liu, Z., Lozupone, C., Hamady, M., Bushman, F. D., & Knight, R. (2007). Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Research, 35, e120.  https://doi.org/10.1093/nar/gkm541.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Mandel, M., & Marmur, J. (1968). [109] Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods in enzymology, 12, 195–206. Elsevier.  https://doi.org/10.1016/0076-6879(67)12133-2.Google Scholar
  48. Margulies, M., et al. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437, 376.  https://doi.org/10.1038/nature03959.CrossRefPubMedPubMedCentralGoogle Scholar
  49. McNamara, C. J., Perry, T. D., Bearce, K. A., Hernandez-Duque, G., & Mitchell, R. (2006). Epilithic and endolithic bacterial communities in limestone from a Maya archaeological site. Microbiology. Ecology, 51, 51–64.  https://doi.org/10.1007/s00248-005-0200-5.CrossRefGoogle Scholar
  50. Mecler, I., & Nawrot, U. (2007). Molecular methods applied in microbiological diagnosis. Mikologia Lekarska, 14, 280.Google Scholar
  51. Mesbah, M., Premachandran, U., & Whitman, W. B. (1989). Precise measurement of the G+ C content of deoxyribonucleic acid by high-performance liquid chromatography. International Journal of Systematic and Evolutionary Microbiology, 39, 159–167.  https://doi.org/10.1099/00207713-39-2-159.CrossRefGoogle Scholar
  52. Mocali, S., & Benedetti, A. (2010). Exploring research frontiers in microbiology: The challenge of metagenomics in soil microbiology. Research in Microbiology, 161, 497–505.  https://doi.org/10.1016/j.resmic.2010.04.010.CrossRefPubMedGoogle Scholar
  53. Moran, M. A. (2009). Metatranscriptomics: Eavesdropping on Complex Microbial Communities-Large-scale sequencing of mRNAs retrieved from natural communities provides insights into microbial activities and how they are regulated. Microbe, 4, 329.Google Scholar
  54. Muller, M. P., et al. (2016). Antimicrobial surfaces to prevent healthcare-associated infections: A systematic review. Journal of Hospital Infection, 92, 7–13.CrossRefGoogle Scholar
  55. Muyzer, G. (1999). DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opinion in Microbiology, 2, 317–322.  https://doi.org/10.1016/S1369-5274(99)80055-1.CrossRefPubMedGoogle Scholar
  56. Muyzer, G., & Smalla, K. (1998). Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek, 73, 127–141.CrossRefGoogle Scholar
  57. Muyzer, G., De Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59, 695–700.PubMedPubMedCentralGoogle Scholar
  58. Nadarajah, K. (2017). Rhizosphere interactions: Life below ground. In Plant-microbe interaction: An approach to sustainable agriculture (pp. 3–23). Singapore: Springer.  https://doi.org/10.1007/978-981-10-2854-0_1.CrossRefGoogle Scholar
  59. Neelakanta, G., & Sultana, H. (2013). The use of metagenomic approaches to analyze changes in microbial communities. Microbiology Insights, 6, MBI. S10819.  https://doi.org/10.4137/MBI.S10819.CrossRefGoogle Scholar
  60. Nüsslein, K., & Tiedje, J. M. (1999). Soil bacterial community shift correlated with change from forest to pasture vegetation in a tropical soil. Applied and Environmental Microbiology, 65, 3622–3626.PubMedPubMedCentralGoogle Scholar
  61. Orita, M., Suzuki, Y., Sekiya, T., & Hayashi, K. (1989). Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics, 5, 874–879.CrossRefGoogle Scholar
  62. Piñar, G., Ramos, C., Rölleke, S., Schabereiter-Gurtner, C., Vybiral, D., Lubitz, W., & Denner, E. B. (2001a). Detection of indigenous Halobacillus populations in damaged ancient wall paintings and building materials: Molecular monitoring and cultivation. Applied and Environmental Microbiology, 67, 4891–4895.CrossRefGoogle Scholar
  63. Piñar, G., Saiz-Jimenez, C., Schabereiter-Gurtner, C., Blanco-Varela, M. T., Lubitz, W., & Rölleke, S. (2001b). Archaeal communities in two disparate deteriorated ancient wall paintings: Detection, identification and temporal monitoring by denaturing gradient gel electrophoresis. FEMS Microbiology Ecology, 37, 45–54.  https://doi.org/10.1111/j.1574-6941.2001.tb00852.x.CrossRefGoogle Scholar
  64. Piñar, G., Ripka, K., Weber, J., & Sterflinger, K. (2009). The micro-biota of a sub-surface monument: The medieval chapel of St. Virgil (Vienna, Austria). International Biodeterioration & Biodegradation, 63, 851–859.CrossRefGoogle Scholar
  65. Piñar, G., Piombino-Mascali, D., Maixner, F., Zink, A., & Sterflinger, K. (2013). Microbial survey of the mummies from the Capuchin Catacombs of Palermo, Italy: Biodeterioration risk and contamination of the indoor air. FEMS Microbiology Ecology, 86, 341–356.  https://doi.org/10.1111/1574-6941.12165.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Popa, R., Popa, R., Mashall, M. J., Nguyen, H., Tebo, B. M., & Brauer, S. (2009). Limitations and benefits of ARISA intra-genomic diversity fingerprinting. Journal of Microbiological Methods, 78, 111–118.  https://doi.org/10.1016/j.mimet.2009.06.005.CrossRefPubMedGoogle Scholar
  67. Poretsky, R. S., et al. (2005). Analysis of microbial gene transcripts in environmental samples. Applied and Environmental Microbiology, 71, 4121–4126.  https://doi.org/10.1128/AEM.71.7.4121-4126.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Puppi, G., Azcón, R., & Höflich, G. (1994). Management of positive interactions of arbuscular mycorrhizal fungi with essential groups of soil microorganisms. In Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems (pp. 201–215). Springer.  https://doi.org/10.1007/978-3-0348-8504-1_16.CrossRefGoogle Scholar
  69. Quince, C., et al. (2009). Accurate determination of microbial diversity from 454 pyrosequencing data. Nature Methods, 6, 639.  https://doi.org/10.1038/nmeth.1361.CrossRefPubMedGoogle Scholar
  70. Rastogi, G., & Sani, R. K. (2011). Molecular techniques to assess microbial community structure, function, and dynamics in the environment. In Microbes and microbial technology (pp. 29–57). Springer.Google Scholar
  71. Roesch, L. F., et al. (2007). Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME Journal, 1, 283.  https://doi.org/10.1038/ismej.2007.53.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Rogers, S. W., Moorman, T. B., & Ong, S. K. (2007). Fluorescent in situ hybridization and micro-autoradiography applied to ecophysiology in soil. Soil Science Society of America Journal, 71, 620–631.  https://doi.org/10.2136/sssaj2006.0105.CrossRefGoogle Scholar
  73. Ross, J. (1980). Effect of nontreated field soil on sporulation of vesicular-arbuscular mycorrhizal fungi associated with soybean. Phytopathology, 70, 1200–1205.CrossRefGoogle Scholar
  74. Rothberg, J. M., & Leamon, J. H. (2008). The development and impact of 454 sequencing. Nature Biotechnology, 26, 1117.  https://doi.org/10.1038/nbt1485.CrossRefPubMedGoogle Scholar
  75. Santos-González, J. C., Finlay, R. D., & Tehler, A. (2007). Seasonal dynamics of arbuscular mycorrhizal fungal communities in roots in a seminatural grassland. Applied and Environmental Microbiology, 73, 5613–5623.  https://doi.org/10.1128/AEM.00262-07.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Sehgal, A. K., & Sagar, A. (2017). Ectomycorrhiza and fungal diversity in the mycorrhizosphere of Pinus gerardiana. International Journal of Pure Applied Bioscience, 5, 475–483.CrossRefGoogle Scholar
  77. Simon, L., Lalonde, M., & Bruns, T. (1992). Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Applied and Environmental Microbiology, 58, 291–295.PubMedPubMedCentralGoogle Scholar
  78. Singh, S., Khawale, R., Singh, R., & Vimala, Y. (2005). Use of random amplified polymorphic DNA (RAPD) analysis to confirm genetic stability of in vitro regenerated grape plantlets. Indian Journal of Horticulture, 62, 12–15.Google Scholar
  79. Streit, W. R., & Schmitz, R. A. (2004). Metagenomics–the key to the uncultured microbes. Current Opinion in Microbiology, 7, 492–498.  https://doi.org/10.1016/j.mib.2004.08.002.CrossRefPubMedGoogle Scholar
  80. Tacão, M., Moura, A., Alves, A., Henriques, I., Saavedra, M. J., & Correia, A. (2005). Evaluation of 16S rDNA-and gyrB-DGGE for typing members of the genus Aeromonas. FEMS Microbiology Letters, 246, 11–18.  https://doi.org/10.1016/j.femsle.2005.03.033.CrossRefPubMedGoogle Scholar
  81. Tatusova, T. A., & Madden, T. L. (1999). BLAST 2 sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiology Letters, 174, 247–250.CrossRefGoogle Scholar
  82. Tiedje, J. M., Asuming-Brempong, S., Nüsslein, K., Marsh, T. L., & Flynn, S. J. (1999). Opening the black box of soil microbial diversity. Applied Soil Ecology, 13, 109–122.  https://doi.org/10.1016/S0929-1393(99)00026-8.CrossRefGoogle Scholar
  83. Tommerup, I. (1985). Inhibition of spore germination of vesicular-arbuscular mycorrhizal fungi in soil. Transactions of the British Mycological Society, 85, 267–278.  https://doi.org/10.1016/S0007-1536(85)80188-1.CrossRefGoogle Scholar
  84. Urich, T., Lanzén, A., Qi, J., Huson, D. H., Schleper, C., & Schuster, S. C. (2008). Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One, 3, e2527.  https://doi.org/10.1371/journal.pone.0002527.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Van Elsas, J., & Boersma, F. (2011). A review of molecular methods to study the microbiota of soil and the mycosphere European Journal of Soil Biology, 47, 77–87.Google Scholar
  86. van Elsas, J. D., Trevors, J. T., Jansson, J. K., & Nannipieri, P. (2006). Modern soil microbiology. CRC Press.Google Scholar
  87. Vandamme, P., Pot, B., Gillis, M., De Vos, P., Kersters, K., & Swings, J. (1996). Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiological Reviews, 60, 407–438.PubMedPubMedCentralGoogle Scholar
  88. Waleron, M., Waleron, K., Geider, K., & Lojkowska, E. (2008). Application of RFLP analysis of recA, gyrA and rpoS gene fragments for rapid differentiation of Erwinia amylovora from Erwinia strains isolated in Korea and Japan. European Journal of Plant Pathology, 121, 161–172.  https://doi.org/10.1007/s10658-007-9260-3.CrossRefGoogle Scholar
  89. Więckowicz, M. (2009). Molekularne metody identyfikacji mikroorganizmów w złożonych ekosystemach. Post Mikrobiol, 48, 67–73. (in Polish).Google Scholar
  90. Wilmes, P., & Bond, P. L. (2006). Metaproteomics: Studying functional gene expression in microbial ecosystems. Trends in Microbiology, 14, 92–97.  https://doi.org/10.1016/j.tim.2005.12.006.CrossRefPubMedGoogle Scholar
  91. Wilson, G., Hetrick, B. D., & Kitt, D. G. (1988). Suppression of mycorrhizal growth response of big bluestem by non-sterile soil. Mycologia, 338–343.  https://doi.org/10.2307/3807630.CrossRefGoogle Scholar
  92. Yergeau, E., Kang, S., He, Z., Zhou, J., & Kowalchuk, G. A. (2007). Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. The ISME Journal, 1, 163.  https://doi.org/10.1038/ismej.2007.24.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Environmental and Natural Resource Sciences, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations