Advertisement

Mycorrhizal Fungi: Potential Candidate for Sustainable Agriculture

  • Monika
  • S. Devi
  • S. S. Arya
  • N. Kumar
  • S. Kumar
Chapter

Abstract

The indiscriminate use of chemical fertilizers and pesticides in agriculture sector puts world at an alarming stage for protection of environment. Use of chemical fertilizers reduced soil fertility, creates environment pollution and many health hazardous for human as well as animals. The innovative view of crop production growing demands for organic based biofertilizers as compared harmful chemicals. Hence, the exploitation of mycorrhizal fungi as a biofertilizer in agriculture sector has become a promising source due to its potential role in sustainable crop production. Mycorrhiza is a symbiotic association between a fungus and root of higher plants. Mycorrhiza shares symbiotic association with higher plant provide scarce mineral nutrient, help in water absorption and retention, suppress growth of pathogens and boost defense mechanism in vascular plants. Moreover, novel finding on mycorrhizal fungi suggest that it could also contribute in controlling of soil erosion, toxic pollutant and heavy metal bioremediation. Optimization of crop management practices, agriculture practices increased proliferation and diversity of mycorrhizal fungi which in turn increase agriculture production. Next generation sequencing is now used to gain insights how mycorrhizal fungi intermingle with local microbial population and other beneficial microbial inoculants. The combination of all these potentials in present agriculture scenario will help to sustain agriculture and boost food security.

Keywords

Mycorrhiza Arbuscular mycorrhizal fungus (AMF) Phosphate solubilization Sustainability Bioremediation Biocontrol Mineral nutrition 

References

  1. Alban, R., Guerrero, R., & Toro, M. (2013). Interactions between a root- knot nematode (Meloidogyne exigua) and arbuscular mycorrhizae in coffee plant development (Coffea arabica). American Journal of Plant Sciences, 4, 19–23.CrossRefGoogle Scholar
  2. Alori, E. T., Dare, M. O., & Babalola, O. O. (2017). Microbial inoculants for soil quality and plant health. In Sustainable agriculture review (pp. 281–230). Cham: Springer International Publishing.CrossRefGoogle Scholar
  3. Bagyaraj, D. J., & Sreeramulu, K. R. (1982). Preinoculation with VA mycorrhiza improves growth and yield of chilli transplanted in the field and saves phosphatic fertilizer. Plant and Soil, 69, 375–381.CrossRefGoogle Scholar
  4. Balestrini, R., Lumini, E., Borriello, R., & Bianciotto, V. (2015). Plant-soil biota interactions. In E. A. Paul (Ed.), Soil microbiology, ecology and biochemistry (pp. 311–338). London: Academic/Elsevier.CrossRefGoogle Scholar
  5. Balliu, A., Sallaku, G., & Rewald, B. (2015). AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability, 7(12), 15967–15981.CrossRefGoogle Scholar
  6. Bhat, M., Yadav, S., Ali, T., & Bangroo, S. (2010). Combined effects of Rhizobium and vesicular arbuscular fungi on green gram (Vigna radiata L.) under temperate conditions. Indian Journal of Ecology, 37, 157–161.Google Scholar
  7. Breuillin Sessoms, F., Floss, D. S., Gomez, S. K., Pumplin, N., Ding, Y., & Levesque Tremblay, V. (2015). Suppression of arbuscule degeneration in Medicago truncatula phosphate transporter 4 mutants is dependent on the ammonium transporter 2 family protein AMT2. Plant Cell, 27, 1352–1366.  https://doi.org/10.1105/tpc.114.131144.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ceballos, I., Ruiz, M., Fernández, C., Peria, R., Rodriguez, A., & Sanders, I. R. (2013). The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava. PLoS One, 8, e70633.CrossRefGoogle Scholar
  9. Colpaert, J. V. (2008). Heavy metal pollution and genetic adaptations in ectomycorrhizal fungi. In S. Avery, M. Stratford, & P. van West (Eds.), Stress in yeasts and filamentous fungi (pp. 157–173). Amsterdam: Elsevier.CrossRefGoogle Scholar
  10. Daei, G., Ardekani, M., Rejali, F., Teimuri, S., & Miransari, M. (2009). Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. Journal of Plant Physiology, 166, 617–625.CrossRefGoogle Scholar
  11. Del Maria Alguacil, M., Torrecillas, E., Lozano, Z., & Roldan, A. (2011). Evidence of differences between the communities of arbuscular mycorrhizal fungi colonizing galls and roots of Prunus persica infected by the root-knot nematode Meloidogyne incognita. Applied and Environmental Microbiology, 77, 8656–8661.  https://doi.org/10.1128/AEM.05577-11.CrossRefPubMedPubMedCentralGoogle Scholar
  12. DosAnjos, É. C. T., Cavalcante, U. M. T., Gonçalves, D. M. C., Pedrosa, E. M. R., dosSantos, V. F., & Maia, L. C. (2010). Interactions between an arbuscular mycorrhizal fungus (Scutellospora heterogama) and the root-knot nematode (Meloidogyne incognita) on sweet passion fruit (Passiflora alata). Brazilian Archives of Biology and Technology, 53, 801–809.  https://doi.org/10.1590/S1516-89132010000400008.CrossRefGoogle Scholar
  13. Fileccia, V., Ruisi, P., Ingraffia, R., Giambalvo, D., Frenda, A. S., & Martinelli, F. (2017). Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat. PLoS One, 12(9), e0184158.  https://doi.org/10.1371/journal.pone.0184158.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Finlay, R. D. (2004). Mycorrhizal fungi and their multifunctional roles. Mycologist, 18, 91–96.CrossRefGoogle Scholar
  15. Fitter, A. H., Heinemeyer, A., & Staddon, P. L. (2000). The impact of elevated CO2 and global climate change on arbuscular mycorrhizas: Amycocentric approach. New Phytologist, 147, 179–187.CrossRefGoogle Scholar
  16. Fomina, M. A., Alexander, I. J., Colpaert, J. V., & Gadd, G. M. (2005). Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biology and Biochemistry, 37, 851–866.CrossRefGoogle Scholar
  17. Frank, A. B. (1885). Uber die auf Wurzelsymbiose beruhende Emahrung gewisser Baume durch Uniterirdische Pilze. Ber.Dent. Bot. Gesell., 3, 128–145.Google Scholar
  18. French, K. E. (2017). Engineering mycorrhizal symbioses to alter plant metabolism and improve crop health. Frontiers in Microbiology, 8, 1–8.  https://doi.org/10.3389/fmicb.2017.01403.CrossRefGoogle Scholar
  19. Garcia, K., & Zimmermann, S. D. (2014). The role of mycorrhizal associations in plant potassium nutrition. Frontiers in Plant Science, 5, 337.  https://doi.org/10.3389/fpls.2014.00337.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gholamhoseini, M., Ghalavand, A., Dolatabadian, A., & Jamshidi, E. (2013). Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agricultural Water Management, 117, 106–114.CrossRefGoogle Scholar
  21. Gilbert, L., & Johnson, D. (2015). Plant-mediated ‘apparent effects’ between mycorrhiza and insect herbivores. Current Opinion in Plant Biology, 26, 100–105.CrossRefGoogle Scholar
  22. Giovannetti, M., Tolosano, M., Volpe, V., Kopriva, S., & Bonfante, P. (2014). Identification and functional characterization of a sulfate transporter induced by both sulfur starvation and mycorrhizal formation in Lotus japonicus. The New Phytologist, 204, 609–619.CrossRefGoogle Scholar
  23. Hart, M. M., & Forsythe, J. A. (2012). Using arbuscular mycorrhizal fungi to improve the nutrient quality of crops; nutritional benefits in addition to phosphorus. Scientia Horticulturae, 148, 206–214.CrossRefGoogle Scholar
  24. Heijden, M. G., Martin, F. M., Selosse, M. A., & Sanders, I. R. (2015). Mycorrhizal ecology and evolution: The past, the present, and the future. The New Phytologist, 205, 1406–1423.CrossRefGoogle Scholar
  25. Hildebrandt, U., Regvar, M., & Bothe, H. (2007). Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry, 68, 139–146.CrossRefGoogle Scholar
  26. Hu, J., Chan, P. T., Wu, F., Wu, S., Zang, J., Lin, X., & Wong, M. H. (2013). Arbuscular mycorrhizal fungi induce differential Cd and P acquisation by Alfred stonecrop (Sedum alfredii Hance) and upland kangkong (Ipomoea aquactica Forsk.) in an intercropping system. Applied Soil Ecology, 63, 29–35.CrossRefGoogle Scholar
  27. Karaki, G. N. (2017). Effects of mycorrhizal fungi inoculation on green pepper yield and mineral uptake under irrigation with saline water. Advances in Plants & Agriculture Research, 6(5), 00231.  https://doi.org/10.15406/apar.2017.06.00231.CrossRefGoogle Scholar
  28. Khalil, A. S., & Collins, J. J. (2010). Synthetic biology: Applications come of age. Nature Reviews. Genetics, 11, 367–379.CrossRefGoogle Scholar
  29. Koegel, S., AitLahmidi, N., Arnould, C., Chatagnier, O., Walder, F., & Ineichen, K. (2013). The family of ammonium transporters (AMT) in Sorghum bicolor: Two AMT members are induced locally, but not systemically in roots colonized by arbuscular mycorrhizal fungi. The New Phytologist, 198, 853–865.CrossRefGoogle Scholar
  30. Lanfranco, L., Novero, M., & Bonfante, P. (2005). The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxide dismutase that is up-regulated during symbiosis with legumehosts. Plant Physiology, 137, 1319–1330.CrossRefGoogle Scholar
  31. Lehmann, A., & Rillig, M. C. (2015). Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops – A metaanalysis. Soil Biology and Biochemistry, 81, 147–158.CrossRefGoogle Scholar
  32. Lehmann, R. M., Taheri, W. I., Osborne, S. L., Buyer, J. S., & Douds, D. D., Jr. (2012). Fall cover cropping can increase arbuscular mycorrhizal in soils supporting intensive agricultural production. Agriculture, Ecosystems & Environment, Applied Soil Ecology, 61, 300–304.CrossRefGoogle Scholar
  33. Li, J., Maldonado-Mendoza, I., Lopez-Meyer, M., Cheung, F., Town, C. D., & Harrison, M. J. (2007). Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. The Plant Journal, 50, 529–544.CrossRefGoogle Scholar
  34. Liu, X., Li, Y., Han, B., Zhang, Q., Zhou, K., Zhang, X., & Hashemi, M. (2012). Yield response of continuous soybean to one-season crop disturbance in a previous continuous soybean field in Northeast China. Field Crops Research, 138, 52–56.CrossRefGoogle Scholar
  35. Lopez-Raez, J. A., Verhage, A., Fernandez, I., Garcia, J. M., Azcon-Aguilar, C., & Flors, V. (2010). Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. Journal of Experimental Botany, 61, 2589–2601.CrossRefGoogle Scholar
  36. Manchanda, G., & Garg, N. (2007). Endomycorrhizal and rhizobial symbiosis: How much do they share? Journal of Plant Interactions, 2, 79–88.CrossRefGoogle Scholar
  37. Marulanda, A., Azcón, R., & Ruiz-Lozano, J. M. (2003). Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa L. plants under drought stress. Physiologia Plantarum, 119, 526–533.CrossRefGoogle Scholar
  38. Meddich, A., Jaiti, F., Bourzik, W., Asli, A. E., & Hafidi, M. (2015). Use of mycorrhizal fungi as a strategy for improving the drought tolerance in date palm (Phoenix dactylifera). Scientia Horticulturae, 192, 468–471.CrossRefGoogle Scholar
  39. Nouri, E., Breuillin-Sessoms, F., Feller, U., & Reinhardt, D. (2014). Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS One, 9, e90841.  https://doi.org/10.1371/journal.pone.0090841.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Oehl, F., Da Silva, G. A., Goto, B. T., Maia, L. C., & Sieverding, E. (2011a). Glomeromycota: Two new classes and a new order. Mycotaxon, 116, 365–379.CrossRefGoogle Scholar
  41. Oehl, F., Sieverding, E., Palenzuela, J., Ineichen, K., & da Silva, G. A. (2011b). Advances in Glomeromycota taxonomy and classification. IMA Fungus, 2(2), 191–199.CrossRefGoogle Scholar
  42. Oehl, F., Sánchez-Castro, I., Palenzuela, J., & Silva, G. A. (2015). Palaeospora spainii, a new arbuscular mycorrhizal fungus from Swiss agricultural soils. Nova Hedwigia, 101, 89–102.CrossRefGoogle Scholar
  43. Olsson, P. A., Hammer, E. C., Pallon, J., van Aarle, I. M., & Wallander, H. (2011). Elemental composition in vesicles of an arbuscular mycorrhizal fungus, as revealed by PIXE analysis. Fungal Biology, 115, 643–648.  https://doi.org/10.1016/j.funbio.2011.03.008.CrossRefPubMedGoogle Scholar
  44. Ortas, I., Sari, N., Akpinar, C., & Yetisir, H. (2013). Selection of arbuscular mycorrhizal fungi species for tomato seedling growth, mycorrhizal dependency and nutrient uptake. European Journal of Horticultural Science, 78, 209–218.Google Scholar
  45. Pawlowska, T. E. (2005). Genetic processes in arbuscular mycorrhizal fungi. FEMS Microbiology Letters, 251, 185–192.  https://doi.org/10.1016/j.femsle.2005.08.007.CrossRefPubMedGoogle Scholar
  46. Pieterse, C. M. J., Van der Does, D., Zamioudis, C., Leon-Reyes, A., & Van Wees, S. C. M. (2012). Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 28, 489–521.CrossRefGoogle Scholar
  47. Porcel, R., Aroca, R., Azcon, R., & Ruiz-Lozano, J. M. (2006). PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Molecular Biology, 60, 389–404.CrossRefGoogle Scholar
  48. Pozo, M. J., Cardier, C., Dumas-Gaudot, E., Gianinazzi, S., Barea, J. M., & Azcan-Aguilar, C. (2002). Localized vs systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. Journal of Experimental Botany, 53, 525–534.CrossRefGoogle Scholar
  49. Redecker, D., Kodner, R., & Graham, L. E. (2000). Glomalean fungi from the Ordovician. Science, 289, 1920–1921.CrossRefGoogle Scholar
  50. Rodriguez, A., & Sanders, I. R. (2015). The role of community and population ecology in applying mycorrhizal fungi for improved food security. The ISME Journal, 9, 1053–1061.CrossRefGoogle Scholar
  51. Ronco, M., Ruscitti, M., Arango, M., & Beltrano, J. (2008). Glyphosate and micorrización induce changes in plant growth and in root morphology and architecture in pepper plants (Capsicum annum L.). Journal of Horticultural Science and Biotechnology, 83, 497–505.CrossRefGoogle Scholar
  52. Ruiz-Lozano, J. M., Porcel, R., & Aroca, R. (2006). Does the enhanced tolerance of arbuscular mycorrhizal plants to water deficit involve modulation of drought. Induced plant genes? The New Phytologist, 171, 693–698.CrossRefGoogle Scholar
  53. Sadhana, B. (2014). Arbuscular mycorrhizal fungi (AMF) as a biofertilizer. A review. International Journal of Current Microbiology and Applied Sciences, 3, 384–400.Google Scholar
  54. Sanchez-Romera, B., Ruiz-Lozano, J. M., Zamarreño, Á. M., García-Mina, J. M., & Aroca, R. (2016). Arbuscular mycorrhizal symbiosis and methyl jasmonate avoid the inhibition of root hydraulic conductivity caused by drought. Mycorrhiza, 26, 111–122.  https://doi.org/10.1007/s00572-015-0650-7.CrossRefPubMedGoogle Scholar
  55. Santos-Gonzalez, J. C., Finlay, R. D., & Tehler, A. (2007). Seasonal dynamics of arbuscular mycorrhizal root colonization in a semi natural grassland. Applied and Environmental Microbiology, 73, 5613–5623.CrossRefGoogle Scholar
  56. Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis (3rd ed.). London: Academic.Google Scholar
  57. Smith, S. E., & Smith, F. A. (2011). Roles of arbuscular mycorrhiza in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 62, 227–250.CrossRefGoogle Scholar
  58. Stahl, P. D., Williams, S. E., & Christensen, M. (1988). Efficacy of native vesicular arbuscular mycorrhizal fungi after severe soil disturbance. The New Phytologist, 110, 347–354.  https://doi.org/10.1111/j.1469-8137.CrossRefGoogle Scholar
  59. Symanczik, S., Błaszkowski, J., Chwat, G., Boller, T., Wiemken, A., & Al-Yahyaei, M. N. (2014). Three new species of arbuscular mycorrhizal fungi discovered at one location in a desert of Oman: Diversispora omaniana, Septoglomus nakheelum and Rhizophagus arabicus. Mycologia, 106, 243–259.CrossRefGoogle Scholar
  60. Symanczik, G., Thonar, S., Van der Heijden, Kahmen, Boller, & Mäder. (2017). Application of mycorrhiza and soil from a permaculture system improved phosphorus acquisition in Naranjilla. Frontiers in Plant Science, 8, 1–12.CrossRefGoogle Scholar
  61. Tian, H., Drijber, R., Zhang, J., & Li, X. (2013). Impact of long-term nitrogen fertilization and rotation with soybean on the diversity and phosphorus metabolism of indigenous arbuscular mycorrhizal fungi within the roots of maize (Zea mays L.). Agriculture, Ecosystems and Environment, 164, 53–61.CrossRefGoogle Scholar
  62. Volpe, V., Giovannetti, M., Sun, X. G., Fiorilli, V., & Bonfante, P. (2015). The phosphate transporters LjPT4 and MtPT4 mediate early root responses to phosphate status in non mycorrhizal roots. Plant, Cell & Environment, 39, 660–670.CrossRefGoogle Scholar
  63. Vos, C., Claerhout, S., Mkandawire, R., Panis, B., Waele, D. D., & Elsen, A. (2012). Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant and Soil, 354, 335–345.CrossRefGoogle Scholar
  64. Vosátka, M., Látr, A., Gianinazzi, S., & Albrechtová, J. (2012). Development of arbuscular mycorrhizal biotechnology and industry: Current achievement sand bottlenecks. Symbiosis, 58, 29–37.CrossRefGoogle Scholar
  65. Walder, F., Brulé, D., Koegel, S., Wiemken, A., Boller, T., & Courty, P. E. (2015). Plant phosphorus acquisition in a common mycorrhizal network: Regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. The New Phytologist, 205, 1632–1645.CrossRefGoogle Scholar
  66. Watts-Williams, S. J., Turney, T. W., Patti, A. F., & Cavagnaro, T. R. (2014). Uptake of zinc and phosphorus by plants is affected by zinc fertiliser material and arbuscular mycorrhizas. Plant and Soil, 376, 165–175.CrossRefGoogle Scholar
  67. Westphal, A., Snyder, N. L., Xing, L., & Camberato, J. J. (2008). Effects of inoculations with mycorrhizal fungi of soilless potting mixes during transplant production on watermelon growth and early fruit yield. Horticultural Science, 43, 354–360.Google Scholar
  68. Xie, X., Huang, W., Liu, F., Tang, N., Liu, Y., & Lin, H. (2013). Functional analysis of the novel mycorrhiza-specific phosphate transporter AsPT1 and PHT1 family from Astragalus sinicus during the arbuscular mycorrhizal symbiosis. The New Phytologist, 198, 836–852.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Monika
    • 1
  • S. Devi
    • 2
  • S. S. Arya
    • 3
  • N. Kumar
    • 3
  • S. Kumar
    • 4
  1. 1.Department of MicrobiologyCCS Haryana Agricultural UniversityHisarIndia
  2. 2.Department of Botany and Plant PhysiologyCCS HAUHisarIndia
  3. 3.Department of BotanyMaharshi Dayanand UniversityRohtakIndia
  4. 4.Department of Environmental ScienceMaharshi Dayanand UniversityRohtakIndia

Personalised recommendations