Advertisement

Mycorrhizosphere: Microbial Interactions for Sustainable Agricultural Production

  • Biplab Dash
  • Ravindra Soni
  • Vinay Kumar
  • Deep Chandra Suyal
  • Diptimayee Dash
  • Reeta Goel
Chapter

Abstract

Gradual adverse impact of high input fertiliser and pesticides on agro-ecosystem has tilted our focus towards sustainable agriculture which is rather eco-friendly and cost effective in nature. For achieving full potential in agricultural output, it is imperative to have a better understanding regarding soil microbial diversity and their interactions going on in rhizosphere and mycorrhizosphere. However, Mycorrhizosphere is like a perfect abode for tripartite interaction between plant, mycorrhiza and soil microbes, thereby acting like communication centre. Mycorrhizal fungi which is nearly an indispensable part of rhizosphere, has in it, immense potential for bringing sustainability and stability in crop production.

References

  1. Abbasi, H., Akhtar, A., & Sharf, R. (2015). Vesicular Arbuscular mycorrhizal (VAM) Fungi: A tool for sustainable Agriculture. American Journal of Plant Nutrition and Fertilization Technology, 5, 40–49.CrossRefGoogle Scholar
  2. Alban, R., Guerrero, R., & Toro, M. (2013). Interactions between a root knot nematode (Meloidogyne exigua) and Arbuscular Mycorrhizae in Coffee Plant Development (Coffea arabica). American Journal of Plant Sciences, 4(7B), 19–23.CrossRefGoogle Scholar
  3. Alsamowal, M. M., Hadad, M. A., & Sharif, Z. (2016). Response of sesame (Sesasum indicum L.) to Vesicular Arbuscular Mycorrhiza (VAM) and Mineral phosphorus Additions at different moisture regimes under greenhouse conditions in Sudan. International Journal of Scientific and Research Publications (IJSRP), 6(8), 82–83.Google Scholar
  4. Andrade, G., Mihara, K., Linderman, R., & Bethlenfalvay, G. J. (1997). Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant and Soil, 192, 71.  https://doi.org/10.1023/A:1004249629643.CrossRefGoogle Scholar
  5. Andrade, G., Mihara, K., Linderman, R., & Bethlenfalvay, G. J. (1998). Bacterial associations with the mycorrhizosphere and hyphosphere of the arbuscular mycorrhizal fungus Glomus mosseae. Plant and Soil, 202, 79–87.CrossRefGoogle Scholar
  6. Andrade, M. M. M., Stamford, N. P., Santos, C. E. R. S., Freitas, A. D. S., Sousa, C. A., & Junior, M. A. L. (2013). Effects of biofertilizer with diazotrophic bacteria and mycorrhizal fungi in soil attribute, cowpea nodulation yield and nutrient uptake in field conditions. Scientia Horticulturae, 162, 374–379.CrossRefGoogle Scholar
  7. Anjos, E. C. T. D., Cavalcante, U. M. T., Gonçalves, D. M. C., Pedrosa, E. M. R., Santos, V. F. D., & Maia, L. C. (2010). Interactions between an Arbuscular mycorrhizal Fungus (Scutellospora heterogama) and the Root-knot nematode (Meloidogyne incognita) on Sweet passion fruit (Passiflora alata). Brazilian Archives of Biology and Technology, 53(4), 801–809.CrossRefGoogle Scholar
  8. Antoniolli, Z. I., Schachtman, D. P., Ophel, K. K., & Smith, S. E. (2000). Variation in rDNA its sequences in Glomus mosseae and Gigaspora margarita spores from a permanent pasture. Mycological Research, 104, 708–715.CrossRefGoogle Scholar
  9. Arabi, M. I. E., Ayoubi, S. K. Z., & Jawhar, M. (2013). Mycorrhizal application as a biocontrol agent against common root rot of barley. Research in Biotechnology, 4(4), 07–12.Google Scholar
  10. Arriola, L. L., Hausbeck, M. K., Rogers, J., & Safir, G. R. (2000). The effect of Trichoderma harzianum and Arbuscular mycorrhizae on Fusarium root rot in Asparagus. Hort Technology, 10(1), 141–144.Google Scholar
  11. Askar, A. A. A., & Rashad, Y. M. (2010). Arbuscular mycorrhizal fungi: A biocontrol agent against common bean Fusarium rot disease. Plant Pathology Journal, 9(1), 31–38.CrossRefGoogle Scholar
  12. Audet, P., & Charest, C. (2010). Determining the impact of the AM-Mycorrhizosphere on “Dwarf” sunflower Zn uptake and soil-Zn bioavailability. Journal of Botany, Article ID 268540, 1–11.  https://doi.org/10.1155/2010/268540.Google Scholar
  13. Augé, R. M., Toler, H. D., & Saxton, A. M. (2015). Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: A meta-analysis. Mycorrhiza, 25, 13.  https://doi.org/10.1007/s00572-014-0585-4.CrossRefGoogle Scholar
  14. Azcon-Aguilar, C., & Barea, J. (1996). Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – An overview of the mechanisms involved. Mycorrhiza, 6, 457–464.  https://doi.org/10.1007/s005720050147.CrossRefGoogle Scholar
  15. Azcon-Aguilar, C., & Barea, J. M. (2015). Nutrient cycling in the mycorrhizosphere. Journal of Soil Science and Plant Nutrition, 15(2), 372–396.Google Scholar
  16. Bago, B., Bentivenga, S. P., Brenec, V., Dodd, J. C., Piche, Y., & Simon, L. (1998). Molecular analysis of Gigaspora, Glomales, Gigasporaceae. The New Phytologist, 139, 581–588.CrossRefGoogle Scholar
  17. Bagyaraj, D. J. (2014). Mycorrhizal fungi. Proceedings of the Indian National Science Academy, 80(2), 415–428.CrossRefGoogle Scholar
  18. Bagyaraj, D. J., Sharma, M. P., & Maiti, D. (2015). Phosphorus nutrition of crops through arbuscular mycorrhizal fungi. Current Science, 108(7), 1288–1293.Google Scholar
  19. Balaes, T., & Catalin, T. (2011). Interrelations between the mycorrhizal systems and soil organisms. Journal of Plant Development, 18, 55–69.Google Scholar
  20. Banuelos, J., Alarcón, A., Larsen, J., Cruz-Sánchez, S., & Trejo, D. (2014). Interactions between arbuscular mycorrhizal fungi and Meloidogyne incognita in the ornamental plant Impatiens balsamina. Journal of Soil Science and Plant Nutrition, 14(1), 63–74.  https://doi.org/10.4067/S0718-95162014005000005.CrossRefGoogle Scholar
  21. Barea, J. M., Azcón, R., & Azcón-Aguilar, C. (2002). Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek, 81, 343.  https://doi.org/10.1023/A:1020588701325.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Bellgard, S. E., & Williams, S. E. (2011). Response of mycorrhizal diversity to current climatic changes. Diversity, 3, 8–90.CrossRefGoogle Scholar
  23. Berruti, A., Lumini, E., Balestrini, R., & Bianciotto, V. (2016). Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Frontiers in Microbiology, 6(1559), 1–13.  https://doi.org/10.3389/fmicb.2015.01559.CrossRefGoogle Scholar
  24. Bethlenfalvay, G. J., Mihara, K., Schreiner, R. P., & McDaniel, H. (1996). Mycorrhizae, biocides and biocontrol. 1. Herbicide – Mycorrhiza interaction in soybean and cocklebur treated with bentazon. Applied Soil Ecology, 3, 197–204.CrossRefGoogle Scholar
  25. Bharti, N., & Kumar, A. (2016). Response of mycorrhiza on physiological and biochemical parameters of black gram Vigna mungo (l.) hepper. IJPRBS, 5(2), 143–157.Google Scholar
  26. Bianciotto, V., & Bonfante, P. (2002). Arbuscular mycorrhizal fungi: A specialised niche for rhizospheric and endocellular bacteria. Antonie Van Leeuwenhoek, 81, 365.  https://doi.org/10.1023/A:1020544919072.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Bianciotto, V., Perotto, S., Ruiz-Lozano, J. M., & Bonfante, P. (2002). Arbuscular mycorrhizal fungi and soil bacteria: From cellular investigations to biotechnological perspectives. In S. Gianinazzi, H. Schüepp, J. M. Barea, & K. Haselwandter (Eds.), Mycorrhizal technology in agriculture. Basel: Birkhäuser.Google Scholar
  28. Birhane, E., Sterck, F. J., Fetene, M., et al. (2012). Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia, 169, 895–904.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Brundrett, M. C. (2009). Mycorrhizal associations and other means of nutrition of vascular plants: Understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil, 320, 37.  https://doi.org/10.1007/s11104-008-9877-9.CrossRefGoogle Scholar
  30. Caron, M. (2009). Potential use of mycorrhizae in control of soil-borne diseases. Canadian Journal of Plant Pathology, 11(2), 177–179.  https://doi.org/10.1080/07060668909501135.CrossRefGoogle Scholar
  31. Cekic, O. F., Unyayar, S., & Ortas, I. (2012). Effects of arbuscular mycorrhizal inoculation on biochemical parameters in Capsicum annuum grown under long term salt stress. Turkish Journal of Botany, 36, 63–72.Google Scholar
  32. Churchland, C., & Grayston, S. J. (2014). Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling. Frontiers in Microbiology, 5(261), 1–20.Google Scholar
  33. Clapp, J. P., Fitter, A. H., & Young, J. P. W. (1999). Ribosomal small subunit sequence variation within spores of an arbuscular mycorrhizal fungus Scutellospora sp. Molecular Ecology, 8, 915–921.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Cordier, C., Gianinazzi, S., & Gianinazzi-Pearson, V. (1996). Colonisation patterns of root tissues by Phytophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato. Plant and Soil, 185(2), 223–232.CrossRefGoogle Scholar
  35. Croll, D., et al. (2009). Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytologist, 181, 924–937.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Crossay, T., Antheaume, C., Redecker, D., Bon, L., Chedri, N., Richert, C., Guentas, L., Cavaloc, Y., & Amir, H. (2017). New method for the identification of arbuscular mycorrhizal fungi by proteomic-based biotyping of spores using MALDI-TOF-MS. Scientific Reports, 7, 14306.  https://doi.org/10.1038/s41598-017-14487-6.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Daniell, T. J., Husband, R., Fitter, A. H., & Young, J. P. W. (2001). Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiology Ecology, 36, 203–209.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Dar, M. H., & Reshi, Z. A. (2017). Vesicular Arbuscular Mycorrhizal (VAM) Fungi- as a major biocontrol agent in modern sustainable agriculture system. Russian Agricultural Sciences, 43(2), 138–143.CrossRefGoogle Scholar
  39. de la Pena, E., Rodriguez-Echeverria, S., van der Putten, W. H., Freitas, H., & Moens, M. (2006). Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New Phytologist, 169, 829–840.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Di Bonito, R., Elliott, M. L., & Des Jardin, E. A. (1995). Detection of an arbuscular mycorrhizal fungus in roots of different plant species with the PCR. Applied and Environmental Microbiology, 61, 2809–2810.PubMedPubMedCentralGoogle Scholar
  41. Duponnois, R., Galiana, A., & Prin, Y. (2008). The Mycorrhizosphere effect: A multitrophic interaction complex improves mycorrhizal symbiosis and plant growth. In Z. A. Siddiqui, M. S. Akhtar, & K. Futai (Eds.), Mycorrhizae: Sustainable agriculture and forestry. Dordrecht: Springer.Google Scholar
  42. Edwards, S. G., Fitter, A. H., & Young, J. P. W. (1997). Quantification of an arbuscular mycorrhizal fungus, Glomus mosseae within plant roots by competitive polymerase chain reaction. Mycological Research, 10, 1440–1444.CrossRefGoogle Scholar
  43. Farahani, A., et al. (2008). Effects of arbuscular mycorrhizal fungi, different levels of phosphorus and drought stress on water use efficiency, relative water content and proline accumulation rate of Coriander (Coriandrum sativum L.). Journal of Medicinal Plant Research, 2(6), 125–131.Google Scholar
  44. Fitter, A. H., & Garbaye, J. (1994). Interactions between mycorrhizal fungi and other soil organisms. Plant Soil, 159, 123–132.  https://doi.org/10.1007/BF00000101.CrossRefGoogle Scholar
  45. Fracchia, S., Mujica, M., García-Romera, I., et al. (1998). Interactions between Glomus mosseae and arbuscular mycorrhizal sporocarp-associated saprophytic fungi. Plant and Soil, 200, 131.  https://doi.org/10.1023/A:1004349426315.CrossRefGoogle Scholar
  46. Frey, P., Frey-Klett, P., Garbaye, J., Berge, O., & Heulin, T. (1997). Metabolic and genotypic fingerprinting of fluorescent pseudomonads associated with the douglas Fir-Laccaria bicolor Mycorrhizosphere. Applied and Environmental Microbiology, 63(5), 1852–1860.PubMedPubMedCentralGoogle Scholar
  47. Frey-Klett, P., Chavatte, M., Clausse, M. L., Courrier, S., Le Roux, C., Raaijmakers, J., Martinotti, M. G., Pierrat, J. C., & Garbaye, J. (2005). Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytologist, 165, 317–328.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Gahan, J., & Schmalenberger, A. (2014). The role of bacteria and mycorrhiza in plant sulfur supply. Frontiers in Plant Science, 5(723), 1–7.Google Scholar
  49. Gamper, H., Walker, C., & Schüßler, A. (2009). Diversispora celata sp. nov.: Molecular ecology and phylotaxonomy of an inconspicuous arbuscular mycorrhizal fungus. New Phytologist, 182, 495–506.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Gardes, M., White, T. J., Fortin, J. A., Bruns, T. D., & Taylor, J. W. (1991). Identification of indigenous and introduced symbiotic fungi in endomycorrhizae by amplification of nuclear and mitochondrial ribosomal DNA. Canadian Journal of Botany, 69, 180.CrossRefGoogle Scholar
  51. Gautier, M., et al. (2014). Matrix-assisted laser desorption ionization time-of-fight mass spectrometry: Revolutionizing clinical laboratory diagnosis of mould infections. Clinical Microbiology and Infection, 20, 1366–1371.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Ghahfarokhy, M. R., Goltapeh, E. M., Purjam, E., Pakdaman, B. S., Modarres Sanavy, S. A. M., & Varma, A. (2011). Potential of mycorrhiza-like fungi and Trichoderma species in biocontrol of take-all disease of wheat under greenhouse condition. Journal of Agricultural Technology, 7, 185–195.Google Scholar
  53. Giovannetti, M., Sbrana, C., Strani, P., Agnolucci, M., Rinaudo, V., & Avio, L. (2003). Genetic diversity of isolates of Glomus mosseae from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis. Applied and Environmental Microbiology, 69, 615–624.CrossRefGoogle Scholar
  54. Green, H., Larsen, J., Olsson, P. A., Jensen, D. F., & Jakobsen, I. (1999). Suppression of the biocontrol agent Trichoderma harzianum by Mycelium of the Arbuscular mycorrhizal fungus Glomus intraradices in Root-free soil. Applied and Environmental Microbiology, 65(4), 1428–1434.PubMedPubMedCentralGoogle Scholar
  55. Hao, Z., Fayolle, L., van Tuinen, D., Chatagnier, O., Li, X., Gianinazzi, S., & Gianinazzi-Pearson, V. (2012). Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine. Journal of Experimental Botany, 63(10), 3657–3672.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Hartmann, A., Rothballer, M., & Schmid, M. (2007). Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil, 312, 7–14.CrossRefGoogle Scholar
  57. Hijri, M., & Sanders, I. R. (2005). Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically diferent nuclei. Nature, 433, 160–163.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Hodge, A. (2014). Chapter two – interactions between Arbuscular mycorrhizal fungi and organic material substrates. In S. Sariaslani & G. M. Gadd (Eds.), Advances in applied microbiology (Vol. 89, pp. 47–99). Saint Louis: Academic.Google Scholar
  59. Hodge, A., Campbell, C. D., & Fitter, A. H. (2001). An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 297–299. ISSN 1476-4687.Google Scholar
  60. Jacquot, E., Van Tuinen, D., Gianinazzi, S., & Gianinazzi Pearson, V. (2000). Monitoring species of arbuscular mycorrhizal fungi in planta and in soil by nested PCR: Amplification to the study of the impact of sewage sludge. Plant and Soil, 226, 179–188.CrossRefGoogle Scholar
  61. Jaderlund, L., Arthurson, V., Granhall, U., & Jansson, J. K. (2008). Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria: As revealed by different combinations. FEMS Microbiology Letters, 287, 174–180.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Jha, S. K., & Kumar, N. (2011). Potential of mycorrhizal fungi in Ecosystem: A Review. International Journal of Research in Botany, 1(1), 1–7.Google Scholar
  63. Jung, S. C., Martinez-Medina, A., Lopez-Raez, J. A., & Pozo, M. J. (2012). Mycorrhiza-induced resistance and priming of plant defenses. Journal of Chemical Ecology, 38, 651–664.  https://doi.org/10.1007/s10886-012-0134-6.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Kahneh, E., Ramezan Pour, H., Haghparast, M., & Shirinfekr, A. (2006). Effects of Arbuscular mycorrhizal fungi and phosphorus supplement on Leaf P, Zn, Cu and Fe concentrations of tea seedlings. Caspian Journal of Environmental Sciences, 4(1), 53–58.Google Scholar
  65. Kamal, R., Gusain, Y. S., & Kumar, V. (2014). Interaction and symbiosis of AM fungi, actinomycetes and plant growth promoting Rhizobacteria with plants: Strategies for the improvement of plants health and defense system. International Journal of Current Microbiology and Applied Sciences, 3(7), 564–585.Google Scholar
  66. Kjφller, R., & Rosendahl, S. (2000). Detection of arbuscular mycorrhizal fungi (Glomales) in roots by nested PCR and SSCP (single stranded conformation polymorphism). Plant and Soil, 226, 189–196.CrossRefGoogle Scholar
  67. Kjφller, R., & Rosendahl, S. (2003). Molecular diversity of Glomalean (arbuscular mycorrhizal) fungi determined as distinct Glomus specific DNA sequences from roots of field-grown peas. Mycological Research, 105, 1027–1032.CrossRefGoogle Scholar
  68. Kohn, L. M. (1992). Developing new characters for fungal systematics: An experimental approach for determining the rank of resolution. Mycologia, 84, 139.CrossRefGoogle Scholar
  69. Krüger, M., Krüger, C., Walker, C., Stockinger, H., & Schüßler, A. (2012). Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytologist, 193, 970–984.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Lanfranco, L., Delpero, M., & Bonfante, P. (1999). Intrasporal variability of ribosomal sequences in the endomycorrhizal fungus Gigaspora margarita. Molecular Ecology, 8, 37–45.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Larsen, J., Cornejo, P., & Barea, J. M. (2009). Interactions between the arbuscular mycorrhizal fungus Glomus intraradices and the plant growth promoting rhizobacteria Paenibacillus polymyxa and P. macerans in the mycorrhizosphere of Cucumis sativus. Soil Biology and Biochemistry, 41(2), 286–292.CrossRefGoogle Scholar
  72. Lax, P., Becerra, A. G., Soteras, F., Cabello, M., & Doucet, M. E. (2011). Effect of the arbuscular mycorrhizal fungus Glomus intraradices on the false Root-knot nematode Nacobbus aberrans in tomato plants. Biology and Fertility of Soils, 47, 591–597.CrossRefGoogle Scholar
  73. Lee, J., Lee, S., & Young, J. P. W. (2008). Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology, 65, 339–349.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Lehmann, A., & Rillig, M. (2015). Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops – A meta-analysis. Soil Biology and Biochemistry, 81, 147–158.  https://doi.org/10.1016/j.soilbio.2014.11.013.CrossRefGoogle Scholar
  75. Leta, A., & Selvaraj, T. (2013). Evaluation of Arbuscular mycorrhizal fungi and Trichoderma species for the control of onion white rot (Sclerotium cepivorum Berk). Journal of Plant Pathology & Microbiology, 4(1), 1–6.  https://doi.org/10.4172/2157-7471.1000159.CrossRefGoogle Scholar
  76. Li, H., Nishida, I., Shu, H., Yang, G., Yang, Y., Ye, B., & Zheng, C. (2006). Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the Root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3. Plant & Cell Physiology, 47(1), 154–163.CrossRefGoogle Scholar
  77. Linderman, R. G. (1988). Mycorrhizal interaction with the rhizosphere microflora: The Mycorrhizosphere Effect. Phytopathology, 78, 366–371.Google Scholar
  78. Lioussanne, L. (2013). The role of the arbuscular mycorrhiza-associated rhizobacteria in the biocontrol of soilborne phytopathogens: A review. Spanish Journal of Agricultural Research, 8(S1), 51–61.CrossRefGoogle Scholar
  79. Mansfeld-Giese, K., Larsen, J., & Bodker, L. (2002). Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microbiology Ecology, 41, 133–140.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Marro, N., Lax, P., Cabello, M., Doucet, M. E., & Becerra, A. G. (2014). Use of the arbuscular mycorrhizal fungus Glomus intraradices as biological control agent of the nematode Nacobbus aberrans parasitizing tomato. Brazilian Archives of Biology and Technology, 57(5), 668–674.  https://doi.org/10.1590/S1516-8913201402200.CrossRefGoogle Scholar
  81. Martin, F., et al. (2008). Te long hard road to a completed Glomus intraradices genome. New Phytologist, 180, 747–750.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Matsumoto, L. S., Martines, A. M., Avanzi, M. A., et al. (2005). Interactions among functional groups in the cycling of, carbon, nitrogen and phosphorus in the rhizosphere of three successional species of tropical woody trees. Applied Soil Ecology, 28(1), 57–65.CrossRefGoogle Scholar
  83. Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634–663.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Miransari, M. (2011). Interactions between arbuscular mycorrhizal fungi and soil bacteria. Applied Microbiology and Biotechnology, 89, 917.  https://doi.org/10.1007/s00253-010-3004-6.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Mirzakhani, M., Ardakani, M. R., Band, A. A., Rad, A. H. S., & Rejali, F. (2009). Effects of dual inoculation of azotobacter and mycorrhiza with nitrogen and phosphorus fertilizer rates on grain yield and some of characteristics of spring safflower. International Journal of Civil and Environmental Engineering, 1(1), 39–43.Google Scholar
  86. Mobasser, H. R., & Moradgholi, A. (2012). Mycorrhizal bio-fertilizer applications on yield seed corn varieties in Iran. Annals of Biological Research, 3(2), 1109–1116.Google Scholar
  87. Muhsen, T. A. A., Al-Attabi, M. S. Y., & Ali, B. Z. (2015). Effect of arbuscular mycorrhizal fungi as a biocontrol agent and organic matter against fusarium wilt in tomato. Journal of Genetic and Environmental Resources Conservation, 3(3), 237–245.Google Scholar
  88. Naghashzadeh, M. (2014). Response of relative water content and cell membrane stability to mycorrhizal biofertilizer in maize. Electronic Journal of Biology, 10(3), 68–72.Google Scholar
  89. Nurbaity, A., Sofyan, E. T., & Hamdani, J. S. (2016). Application of Glomus sp. and Pseudomonas diminuta reduce the use of chemical fertilizers in production of potato grown on different soil types. IOP Conference Series: Earth and Environmental Science, 41, 012004.  https://doi.org/10.1088/1755-1315/41/1/012004.CrossRefGoogle Scholar
  90. Odeyemi, I., Afolami, S., & Sosanya, O. (2010). Effect of Glomus mosseae (Arbuscular Mycorrhizal Fungus) On host – parasite relationship of Meloidogyne incognita (Southern Root-knot nematode) on four improved Cowpea varieties. Journal of Plant Protection Research, 50(3), 321–325.CrossRefGoogle Scholar
  91. Orona-Castro, F., Lozano-Contreras, M., Tucuch-Cauich, M., Grageda-Cabrera, O., Medina-Mendez, J., Díaz-Franco, A., Ruiz-Sánchez, E., & Soto-Rocha, J. (2013). Response of rice cultivation to biofertilizers in Campeche, Mexico. Agricultural Sciences, 4, 715–720.  https://doi.org/10.4236/as.2013.412097.CrossRefGoogle Scholar
  92. Osillos, P. L., & Nagpal, A. L. (2014). The effects of Arbuscular Mycorrhizal Fungi (AMF) as biofertilizer on the growth, yield and nutrient uptake of tomato (Lycopersicon esculentum Mill). International Journal of Scientific and Engineering Research, 3(11), 49–65.Google Scholar
  93. Ozgonen, H., Akgul, D. S., & Erkilic, A. (2010). The effects of arbuscular mycorrhizal fungi on yield and stem rot caused by Sclerotium rolfsii Sacc. in peanut. African Journal of Agricultural Research, 5(2), 128–132.Google Scholar
  94. Paulilz, T. C., & Lindennan, R. G. (1991). Mycorrhizal inieractions wilh soil organisms. In D. K. Aurora, B. Rai, K. G. Mukerji, & G. Knudsen (Eds.), Handbook of applied mycology. Vol. 1: Soils and plants (pp. 77–129). New York: Marcel Dekker.Google Scholar
  95. Pinochet, J., Calvet, C., Camprubí, A., & Fernández, C. (1996). Interactions between migratory endoparasitic nematodes and arbuscular mycorrhizal fungi in perennial crops: A review. Plant and Soil, 185(2), 183–190.CrossRefGoogle Scholar
  96. Priyadharsini, P., Rojamala, K., Ravi, R. K., Muthuraja, R., Nagaraj, K., & Muthukumar, T. (2016). Mycorrhizosphere: The extended rhizosphere and its significance. In D. Choudhary, A. Varma, & N. Tuteja (Eds.), Plant-microbe interaction: An approach to sustainable agriculture. Singapore: Springer.Google Scholar
  97. Rambelli, A. (1973). The rhizosphere of mycorrhizae. In A. C. Marks & T. T. Kozlowski (Eds.), Ectomycorrhizae: Their ecology and physiology (pp. 229–249). London: Academic.Google Scholar
  98. Redecker, D. (2002). Molecular identification and phylogeny of arbuscular mycorrhizal fungi. Plant and Soil, 244, 67–73.CrossRefGoogle Scholar
  99. Redecker, D., Thierfelder, H., Walker, C., & Werner, D. (1997). Restriction analysis of PCR-amplified internal transcribed spacer of ribosomal DNA as a tool for species identification in different genera of the order Glomales. Applied and Environmental Microbiology, 63, 1756–1761.PubMedPubMedCentralGoogle Scholar
  100. Renker, C., Heinrichs, J., Kaldorf, M., & Buscot, F. (2003). Combining nested PCR and restriction digest of the internal transcribed spacer region to characterize arbuscular mycorrhizal fungi on roots from the field. Mycorrhiza, 13, 191–198.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Rigamonte, T. A., Pylro, V. S., & Duarte, G. F. (2010). The role of mycorrhization helper bacteria in the establishment and action of ectomycorrhizae associations. Brazilian Journal of Microbiology, 41, 832–840.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Sadhana, B. (2014). Arbuscular mycorrhizal fungi (AMF) as a biofertilizer – A review. International Journal of Current Microbiology and Applied Sciences, 3(4), 384–400.Google Scholar
  103. Salih, S. H., Hamd, S. A. M., & Dagash, Y. M. I. (2015). The Effects of rhizobium, mycorrhizal inoculations and Diammonium Phosphate (DAP) on nodulation, growth, and yield of soybean. Universal Journal of Agricultural Research, 3(1), 11–14.CrossRefGoogle Scholar
  104. Schouteden, N., Waele, D. D., Panis, B., & Vos, C. M. (2015). Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: A review of the mechanisms involved. Frontiers in Microbiology, 6(1280), 1–12.Google Scholar
  105. Schreiner, R. P., & Bethlenfalvay, G. J. (1995). Mycorrhizal interactions in sustainable agriculture. Critical Reviews in Biotechnology, 15(3/4), 271–285.CrossRefGoogle Scholar
  106. Schubler, A., Schwarzott, D., & Walker, C. (2001). A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycological Research, 105(12), 1413–1421.CrossRefGoogle Scholar
  107. Sharma, I. P., & Sharma, A. K. (2015). Root–knot Nematodes (Meloidogyne incognita) suppression through Pre-colonized Arbuscular Mycorrhiza (Glomus intraradices) in Tomato-PT3. Science in Agriculture, 12(1), 52–57.Google Scholar
  108. Sheng, M., Tang, M., Chen, H., et al. (2008). Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18, 287.  https://doi.org/10.1007/s00572-008-0180-7.CrossRefPubMedPubMedCentralGoogle Scholar
  109. Shreenivasa, K. R., Krishnappa, K., & Ravichandra, N. G. (2007). Interaction effects of Arbuscular mycorrhizal fungus Glomus fasciculatum and Root –knot nematode, Meloidogyne incognita on growth and phosphorous uptake of tomato. Karnataka Journal of Agricultural Sciences, 20(1), 57–61.Google Scholar
  110. Simon, L., Lalonde, M., & Bruns, T. D. (1992a). Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Applied and Environmental Microbiology, 58, 291–295.PubMedPubMedCentralGoogle Scholar
  111. Simon, L., Levesque, R. C., & Lalonde, M. (1992b). Identification of endomycorrhizal fungi colonizing roots by fluorescent single-strand conformation polymorphism–polymerase chain reaction. Applied and Environmental Microbiology, 59, 4211–4215.Google Scholar
  112. Singh, S. R., Singh, U., Chaubey, A. K., & Bhat, M. I. (2010). Mycorrhizal fungi For sustainable agriculture-a review. Agricultural Reviews, 31(2), 93–104.Google Scholar
  113. Siviero, M. A., Motta, A. M., Lima, D. S., Birolli, R. R., Huh, S. Y., Santinoni, I. A., Murate, L. S., Castro, C. M. A., Miyauchi, M. Y. H., Zangaro, W., Nogueira, M. A., & Andrade, G. (2008). Interaction among N-fixing bacteria and AM fungi in Amazonian legume tree (Schizolobium amazonicum) in field conditions. Applied Soil Ecology, 39, 144–152.CrossRefGoogle Scholar
  114. Staddon, P., Heinemeyer, A., & Fitter, A. (2002). Mycorrhizas and global environmental change: Research at different scales. Plant and Soil, 244(1/2), 253–261.CrossRefGoogle Scholar
  115. Subhashini, D. V. (2016). Effect of NPK fertilizers and Co-inoculation with phosphate-solubilizing Arbuscular mycorrhizal fungus and potassium-mobilizing bacteria on growth, yield, nutrient acquisition, and quality of tobacco (Nicotiana tabacum L.). Communications in Soil Science and Plant Analysis, 47(3), 328–337.  https://doi.org/10.1080/00103624.2015.1123724.CrossRefGoogle Scholar
  116. Svenningsen, N. B., Watts-Williams, S. J., Joner, E. J., Battini, F., Efthymiou, A., Cruz-Paredes, C., Nybroe, O., & Jakobsen, I. (2018). Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota. The ISME Journal, 12, 1–12.CrossRefGoogle Scholar
  117. Syafruddin, S., Syakur, S., & Arabia, T. (2016). Propagation techniques of mycorrhizal bio-fertilizer with different types of mycorrhiza inoculant and host plant in Entisol Aceh. International Journal of Agricultural Research, 11, 69–76.CrossRefGoogle Scholar
  118. Tahat, M. M., Kamaruzaman, S., & Othman, R. (2010). Mycorrhizal fungi as a biocontrol agent. Plant Pathology Journal, 9(4), 198–207.CrossRefGoogle Scholar
  119. Tamayo, E., Gómez-Gallego, T., Azcón-Aguilar, C., & Ferrol, N. (2014). Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis. Frontiers in Plant Science, 5(547), 1–13.Google Scholar
  120. Thamsurakul, S., & Charoensook, S. (2006, October 16–20). Mycorrhizal fungi as biofertilizer for fruit tree production in Thailand. Paper presented at international workshop on sustained management of the soil-Rhizosphere system for efficient crop production and fertilizer use.Google Scholar
  121. Tian, C., He, X., Zhong, Y., et al. (2003). Effect of inoculation with ecto- and arbuscular mycorrhizae and Rhizobium on the growth and nitrogen fixation by black locust, Robinia pseudoacacia. New Forests, 25, 125.CrossRefGoogle Scholar
  122. Timonen, S., & Marschner, P. (2006). Mycorrhizosphere concept. In K. G. Mukerji, C. Manoharachary, & J. Singh (Eds.), Microbial activity in the rhizoshere (Soil biology) (Vol. 7). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  123. Tobar, R. M., Azcon-Aguilar, C., Sanjuan, J., & Barea, J. M. (1996). Impact of a genetically modified Rhizobium strain with improved nodulation competitiveness on the early stages of arbuscular mycorrhiza formation. Applied Soil Ecology, 4, 15–21.CrossRefGoogle Scholar
  124. Tran, A., Alby, K., Kerr, A., Jones, M., & Gilligan, P. H. (2015). Cost savings realized by implementation of routine microbiological identification by matrix-assisted laser desorption ionization–time of flight mass spectrometry. Journal of Clinical Microbiology, 53, 2473–2479.PubMedCrossRefPubMedCentralGoogle Scholar
  125. Uroz, S., Calvaruso, C., Turpault, M. P., Pierrat, J. C., Mustin, C., & Frey-Klett, P. (2007). Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Applied and Environmental Microbiology, 73(9), 3019–3027.  https://doi.org/10.1128/AEM.00121-07.CrossRefPubMedPubMedCentralGoogle Scholar
  126. Veerabhadraswamy, A. L., & Garampalli, R. H. (2011). Effect of Arbuscular mycorrhizal fungi in the management of black bundle disease of maize caused by Cephalosporium acremonium. Science Research Reporter, 1(2), 96–100.Google Scholar
  127. Walker, C., Vestberg, M., Demircik, F., Stockinger, H., Saito, M., Sawaki, H., Nishmura, I., & Schüßler, A. (2007). Molecular phylogeny and new taxa in the Archaeosporales (Glomeromycota): Ambispora fennica gen. sp nov., Ambisporaceae fam. nov., and emendation of Archaeospora and Archaeosporaceae. Mycological Research, 111, 137–153.PubMedCrossRefPubMedCentralGoogle Scholar
  128. Waschkies, C., Schropp, A., & Marschner, H. (1994). Relations between grapevine replant disease and root colonization of grapevine (Vitis sp.) by fluorescent pseudomonads and endomycorrhizal fungi. Plant and Soil, 162(2), 219–227.CrossRefGoogle Scholar
  129. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocol – A guide to methods and applications (p. 315). New York: Academic.Google Scholar
  130. Wyss, P., & Bonfante, P. (1993). Amplification of genomic DNA of arbuscular mycorrhizal (AM) fungi by PCR using short arbitrary primers. Mycological Research, 97, 1351–1357.CrossRefGoogle Scholar
  131. Xavier, L. J. C., & Boyetchko, S. M. (2004). Arbuscular mycorrhizal fungi in plant disease control. In D. K. Arora (Ed.), Fungal biotechnology in agricultural, food, and environmental applications (pp. 183–194). New York: Dekker.Google Scholar
  132. Zhang, L. D., Zhang, J. L., Christie, P., & Li, X. L. (2008). Pre-inoculation with arbuscular mycorrhizal fungi suppresses root knot nematode (Meloidogyne incognita) on cucumber (Cucumis sativus). Biology and Fertility of Soils, 45(2), 205–211.  https://doi.org/10.1007/s00374-008-0329-8.CrossRefGoogle Scholar
  133. Zhu, Y.-G., & Miller, R. M. (2003). Carbon cycling by arbuscular mycorrhizal fungi in soil–plant systems. Trends in Plant Science, 8(9), 407–409.CrossRefGoogle Scholar
  134. Zhu, Y. G., Smith, A. F., & Smith, S. E. (2003). Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil. Mycorrhiza, 13, 93.  https://doi.org/10.1007/s00572-002-0205-6.CrossRefPubMedPubMedCentralGoogle Scholar
  135. Ziedan, E., Elewa, I., Mostafa, M., et al. (2011). Application of mycorrhizae for controlling root diseases of sesame. Journal of Plant Protection Research, 51(4), 355–361.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Biplab Dash
    • 1
  • Ravindra Soni
    • 1
  • Vinay Kumar
    • 2
  • Deep Chandra Suyal
    • 3
  • Diptimayee Dash
    • 1
  • Reeta Goel
    • 3
  1. 1.Department of Agricultural Microbiology, College of AgricultureIndira Gandhi Krishi VishwavidyalayaRaipurIndia
  2. 2.National Institute of Biotic Stress ManagementRaipurIndia
  3. 3.Department of Microbiology, CBSHG.B. Pant University of Agriculture and TechnologyPantnagarIndia

Personalised recommendations