Advertisement

Metagenomics as a Tool to Explore Mycorrhizal Fungal Communities

  • Prachi BhargavaEmail author
  • Siddharth Vats
  • Neeraj Gupta
Chapter

Abstract

Fungi are important inhabitants of soil communities and help in providing nutrition to plants in symbiont form, act as decomposers and also harm the plants playing the role of monstrous pathogens. Arbuscular mycorrhizal fungus (AMF) is a heterogeneous group of fungal species associated with the roots of over 90% of higher plant species. The exploration and study of AMF diversity in ecosystems is carried out for many different reasons. The most fundamental reason is to find out more about the basic ecology of AMF. New knowledge about AMF ecology has being successfully uncovered with the application of metagenomics and has added to our knowledge of the vast pool of microbes. Metagenomics assess the total genetic pool of all the microbes in a particular environment, in a culture-independent manner. It has revealed unprecedented diversity in microbial community composition, which is further reflected in the encoded functional diversity of the genomes, a large proportion of which consists of novel genes. DNA pyrosequencing along with metabarcoding is being extensively used in investigating the prokaryotic and eukaryotic assemblages in soil ecosystems. The aim of this chapter is to focus on the role of metagenomic analysis in exploring the AMF which is the most widespread symbionts in agri ecosystems worldwide.

Keywords

Mycorrhizosphere AMF diversity Shotgun sequencing Metagenomics Pyrosequencing Metabarcoding 

Notes

Acknowledgements

PB thanks DST-SERB: SB/YS/LS-213/2013 for the financial support.

References

  1. Alguacil, M. M., Roldán, A., & Torres, M. P. (2009). Complexity of semiarid gypsophilous shrub communities mediates the AMF biodiversity at the plant species level. Microbial Ecology, 57(4), 718–727.Google Scholar
  2. Balestrini, R., Magurno, F., Walker, C., Lumini, E., & Bianciotto, V. (2010). Cohorts of arbuscular mycorrhizal fungi (AMF) in Vitis vinifera, a typical Mediterranean fruit crop. Environmental Microbiology Reports, 2(4), 594–604.CrossRefGoogle Scholar
  3. Bhargava, P., Gupta, N., Vats, S., & Goel, R. (2017a). Health issues and heavy metals. Austin Journal of Environmental Toxicology, 3(1), 3018.Google Scholar
  4. Bhargava, P., Singh, A. K., & Goel, R. (2017b). Microbes: Bioresource in agriculture and environmental sustainability. In Plant-microbe interactions in agro-ecological perspectives (pp. 361–376). Singapore: Springer.CrossRefGoogle Scholar
  5. Buée, M., Reich, M., Murat, C., Morin, E., Nilsson, R. H., Uroz, S., & Martin, F. (2009). 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytologist, 184(2), 449–456.CrossRefGoogle Scholar
  6. Colombo, R. P., Fernandez Bidondo, L., Silvani, V. A., Carbonetto, M. B., Rascovan, N., Bompadre, M. J., & Godeas, A. M. (2014). Diversity of arbuscular mycorrhizal fungi in soil from the Pampa Ondulada, Argentina, assessed by pyrosequencing and morphological techniques. Canadian Journal of Microbiology, 60(12), 819–827.CrossRefGoogle Scholar
  7. Cristescu, M. E. (2014). From barcoding single individuals to metabarcoding biological communities: Towards an integrative approach to the study of global biodiversity. Trends in Ecology & Evolution, 29(10), 566–571.CrossRefGoogle Scholar
  8. Dai, M., Hamel, C., St. Arnaud, M., He, Y., Grant, C., Lupwayi, N., & Zhou, Z. (2012). Arbuscular mycorrhizal fungi assemblages in Chernozem great groups revealed by massively parallel pyrosequencing. Canadian Journal of Microbiology, 58(1), 81–92.CrossRefGoogle Scholar
  9. Daniell, T. J., Husband, R., Fitter, A. H., & Young, J. P. W. (2001). Molecular diversity of arbuscularmycorrhizal fungi colonising arable crops. FEMS Microbiology Ecology, 36(2–3), 203–209.CrossRefGoogle Scholar
  10. Douhan, G. W., Vincenot, L., Gryta, H., & Selosse, M. A. (2011). Population genetics of ectomycorrhizal fungi: From current knowledge to emerging directions. Fungal Biology, 115(7), 569–597.CrossRefGoogle Scholar
  11. Dumbrell, A. J., Ashton, P. D., Aziz, N., Feng, G., Nelson, M., Dytham, C., & Helgason, T. (2011). Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytologist, 190(3), 794–804.CrossRefGoogle Scholar
  12. Gai, J. P., Christie, P., Feng, G., & Li, X. L. (2006). Twenty years of research on community composition and species distribution of arbuscular mycorrhizal fungi in China: A review. Mycorrhiza, 16(4), 229–239.CrossRefGoogle Scholar
  13. Grant, S., Grant, W. D., Cowan, D. A., Jones, B. E., Ma, Y., Ventosa, A., & Heaphy, S. (2006). Identification of eukaryotic open reading frames in metagenomic cDNA libraries made from environmental samples. Applied and Environmental Microbiology, 72(1), 135–143.CrossRefGoogle Scholar
  14. Helgason, T., Daniell, T. J., Husband, R., Fitter, A. H., & Young, J. P. W. (1998). Ploughing up the wood-wide web? Nature, 394(6692), 431.CrossRefGoogle Scholar
  15. Helgason, T., Fitter, A. H., & Young, J. P. W. (1999). Molecular diversity of arbuscularmycorrhizal fungi colonisingHyacinthoides non-scripta (bluebell) in a seminatural woodland. Molecular Ecology, 8(4), 659–666.CrossRefGoogle Scholar
  16. Hollister, E. B., Schadt, C. W., Palumbo, A. V., Ansley, R. J., & Boutton, T. W. (2010). Structural and functional diversity of soil bacterial and fungal communities following woody plant encroachment in the southern Great Plains. Soil Biology and Biochemistry, 42(10), 1816–1824.CrossRefGoogle Scholar
  17. Husband, R., Herre, E. A., Turner, S. L., Gallery, R., & Young, J. P. (2002). Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Molecular Ecology, 11(12), 2669–2678.CrossRefGoogle Scholar
  18. Jumpponen, A., & Jones, K. L. (2009). Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytologist, 184(2), 438–448.CrossRefGoogle Scholar
  19. Kernaghan, G. (2005). Mycorrhizal diversity: Cause and effect? Pedobiologia, 49(6), 511–520.CrossRefGoogle Scholar
  20. Leal, P. L., Carvalho, T. S., Siqueira, J. O., & Moreira, F. (2017). Assessment of the occurrence and richness of arbuscular mycorrhizal fungal spores by direct analysis of field samples and trap culture-a comparative study. Anais da Academia Brasileira de Ciências, (AHEAD), 0–0.Google Scholar
  21. Lennon, J. T. (2011). Replication, lies and lesser-known truths regarding experimental design in environmental microbiology. Environmental Microbiology, 13(6), 1383–1386.CrossRefGoogle Scholar
  22. Ligrone, R., Carafa, A., Lumini, E., Bianciotto, V., Bonfante, P., & Duckett, J. G. (2007). Glomeromycotean associations in liverworts: A molecular, cellular, and taxonomic analysis. American Journal of Botany, 94(11), 1756–1777.CrossRefGoogle Scholar
  23. Lim, Y. W., Kim, B. K., Kim, C., Jung, H. S., Kim, B. S., Lee, J. H., & Chun, J. (2010). Assessment of soil fungal communities using pyrosequencing. The Journal of Microbiology, 48(3), 284–289.CrossRefGoogle Scholar
  24. Lindahl, B. D., De Boer, W., & Finlay, R. D. (2010). Disruption of root carbon transport into forest humus stimulates fungal opportunists at the expense of mycorrhizal fungi. The ISME Journal, 4(7), 872–881.CrossRefGoogle Scholar
  25. Lumini, E., Orgiazzi, A., Borriello, R., Bonfante, P., & Bianciotto, V. (2010). Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environmental Microbiology, 12(8), 2165–2179.PubMedGoogle Scholar
  26. Mathimaran, N., Ruh, R., Vullioud, P., Frossard, E., & Jansa, J. (2005). Glomus intraradices dominates arbuscular mycorrhizal communities in a heavy textured agricultural soil. Mycorrhiza, 16(1), 61–66.CrossRefGoogle Scholar
  27. Nam, Y. J., Kim, H., Lee, J. H., Yoon, H., & Kim, J. G. (2015). Metagenomic analysis of soil fungal communities on Ulleungdo and Dokdo Islands. The Journal of General and Applied Microbiology, 61(3), 67–74.CrossRefGoogle Scholar
  28. Öpik, M., Metsis, M., Daniell, T. J., Zobel, M., & Moora, M. (2009). Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytologist, 184(2), 424–437.CrossRefGoogle Scholar
  29. Parniske, M. (2008). Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nature Reviews Microbiology, 6(10), 763–775.CrossRefGoogle Scholar
  30. Peay, K. G., Baraloto, C., & Fine, P. V. (2013). Strong coupling of plant and fungal community structure across western Amazonian rainforests. The ISME Journal, 7(9), 1852–1861.CrossRefGoogle Scholar
  31. Prosser, J. I. (2010). Replicate or lie. Environmental Microbiology, 12(7), 1806–1810.CrossRefGoogle Scholar
  32. Read, D. J. (1996). The structure and function of the ericoid mycorrhizal root. Annals of Botany, 77(4), 365–374.CrossRefGoogle Scholar
  33. Reigstad, L. J., Bartossek, R., & Schleper, C. (2011). Preparation of high-molecular weight DNA and metagenomic libraries from soils and hot springs. In Methods in enzymology (Vol. 496, pp. 319–344). San Diego: Academic.Google Scholar
  34. Säle, V., Aguilera, P., Laczko, E., Mäder, P., Berner, A., Zihlmann, U., & Oehl, F. (2015). Impact of conservation tillage and organic farming on the diversity of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 84, 38–52.CrossRefGoogle Scholar
  35. Schechter, S. P., & Bruns, T. D. (2008). Serpentine and non-serpentine ecotypes of Collinsia sparsiflora associate with distinct arbuscular mycorrhizal fungal assemblages. Molecular Ecology, 17(13), 3198–3210.CrossRefGoogle Scholar
  36. Vallino, M., Massa, N., Lumini, E., Bianciotto, V., Berta, G., & Bonfante, P. (2006). Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in Northern Italy. Environmental Microbiology, 8(6), 971–983.CrossRefGoogle Scholar
  37. Wang, B., & Qiu, Y. L. (2006). Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16(5), 299–363.CrossRefGoogle Scholar
  38. Wang, C., Gu, Z., Cui, H., Zhu, H., Fu, S., & Yao, Q. (2015). Differences in arbuscular mycorrhizal fungal community composition in soils of three land use types in subtropical hilly area of southern China. PLoS One, 10(6), e0130983.CrossRefGoogle Scholar
  39. Wirsel, S. G. (2004). Homogenous stands of a wetland grass harbour diverse consortia of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology, 48(2), 129–138.CrossRefGoogle Scholar
  40. Wu, B., Hogetsu, T., Isobe, K., & Ishii, R. (2007). Community structure of arbuscular mycorrhizal fungi in a primary successional volcanic desert on the southeast slope of Mount Fuji. Mycorrhiza, 17, 495–506.CrossRefGoogle Scholar
  41. Zak, D. R., Holmes, W. E., White, D. C., Peacock, A. D., & Tilman, D. (2003). Plant diversity, soil microbial communities, and ecosystem function: Are there any links? Ecology, 84(8), 2042–2050.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Biosciences and TechnologyShri Ramswaroop Memorial UniversityBarabankiIndia

Personalised recommendations