Advertisement

Recent Trends to Study the Functional Analysis of Mycorrhizosphere

  • Pankaj Bhatt
  • Divya Joshi
  • Nitin Kumar
  • Narendra Kumar
Chapter

Abstract

Mycorrhizosphere describes the region created by the fungus in soil with or without plant. This group of fungi colonizes the host plants root tissues (intracellularly or extracellularly). Mycorrhiza group of fungi are important because it plays a critical role to transfer of nutrients like Zinc, Phosphate, Iron etc., from soil to plant and act as plant growth promontory agent. Due to their importance in nature these group of fungi are valuable for research. Recent tools developed by scientific community are meaningful for exploration of behavior, morphology, stress, PGPR activities of mycorrhizosphere. Omics technologies are amongst the most used for the study of microorganisms and fungi also. Genomics, Transcriptomics and Proteomics based approaches are recently developed for living organisms and found more suitable/ correct as compared to traditional one. This chapter mainly focuses on the recent advancement towards mycorrhizosphere.

Keywords

Mycorrhizosphere Genomics Proteomics Transcriptomics 

References

  1. Agnolucci, M., Battini, F., Cristani, C., & Giovannetti, M. (2015). Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates. Biology and Ferility of Soils, 51, 379–389.  https://doi.org/10.1007/s00374-014-0989-5.CrossRefGoogle Scholar
  2. Aira, M., Gómez-Brandón, M., Lazcano, C., Bååth, E., & Domïnguez, J. (2010). Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biology and Biochemistry, 42, 2276–2281.  https://doi.org/10.1016/j.soilbio.2010.08.029.CrossRefGoogle Scholar
  3. Badri, D. V., Weir, T. L., van der Lelie, D., & Vivanco, J. M. (2009). Rhizosphere chemical dialogues: Plant-microbe interactions. Current Opinion in Biotechnology, 20, 642–650.  https://doi.org/10.1016/j.copbio.2009.09.014.CrossRefPubMedGoogle Scholar
  4. Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266.  https://doi.org/10.1146/annurev.arplant.57.032905.105159.CrossRefPubMedGoogle Scholar
  5. Barea, J. M., Pozo, M. J., Azcón, R., & Azcón-Aguilar, C. (2005). Microbial co-operation in the rhizosphere. Journal of Experimental Botany, 56, 1761–1778.  https://doi.org/10.1093/jxb/eri197.CrossRefPubMedGoogle Scholar
  6. Battini, F., et al. (2016). Dual inoculation with AMF and associated bacteria improves nutraceutical value of sweet basil grown under commercial conditions. Agrochimica, 60, 81–99.Google Scholar
  7. Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68, 1–13.  https://doi.org/10.1111/j.1574-6941.2009.00654.x.CrossRefPubMedGoogle Scholar
  8. Bhatt, P., & Barh, A. (2018). Bioinformatic tools to study the soil microorganisms: An in silico approach for sustainable agriculture. In D. K. Choudhary et al. (Eds.), In silico approach for sustainable agriculture (pp. 169–182).  https://doi.org/10.1007/978-981-13-0347-0_10.CrossRefGoogle Scholar
  9. Bhatt, P., & Nailwal, T. K. (2018). Crop improvement through microbial technology: A step toward sustainable agriculture. In R. Prasad, S. S. Gill, & N. Tuteja (Eds.), Crop improvement through microbial biotechnology (pp. 245–253).  https://doi.org/10.1016/B978-0-444-63987-5.00011-6.CrossRefGoogle Scholar
  10. Bouffaud, M. L., Kyselkova, M., Gouesnard, B., Grundmann, G., Muller, D., & Mënne-Loccoz, Y. (2012). Is diversification history of maize influencing selection of soil bacteria by roots? Molecular Ecology, 21, 195–206.  https://doi.org/10.1111/j.1365-294X.2011.05359.x.CrossRefPubMedGoogle Scholar
  11. Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807–838.  https://doi.org/10.1146/annurev-arplant-050312-120106.CrossRefPubMedGoogle Scholar
  12. Chaparro, J. M., Badri, D. V., Bakker, M. G., Sugiyama, A., Manter, D. K., & Vivanco, J. M. (2013). Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS ONE, 8, e55731.  https://doi.org/10.1371/journal.pone.0055731.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Charpentier, M., Sun, J., Martins, T. V., Radhakrishnan, G. V., Findlay, K., Soumpourou, E., Thouin, J., Very, A. A., Sanders, D., Morris, R. J., & Oldroyd, G. E. D. (2016). Nuclear-localized cyclic nucleotide–gated channels mediate symbiotic calcium oscillations. Science, 352(6289), 1102–1105.  https://doi.org/10.1126/science.aae0109.CrossRefPubMedGoogle Scholar
  14. Cjaza, L. F., Hogekamp, C., Lamm, P., Maillet, F., Martinez, E. A., Samain, E., Denarie, J., Kuster, H., & Hohnjec, N. (2012). Transcriptional responses towards diffusible signals from symbiotic microbes reveal MtNFP and MtDMI3-dependent reprogramming of host gene expression by AM fungal LCOs. Plant Physiology Preview, 159, 1–35.  https://doi.org/10.1104/pp.112.195990.CrossRefGoogle Scholar
  15. Compant, S., Clément, C., & Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42, 669–678.  https://doi.org/10.1016/j.soilbio.2009.11.024.CrossRefGoogle Scholar
  16. Couillerot, O., Prigent-Combaret, C., Caballero-Mellado, J., & Mënne-Loccoz, Y. (2009). Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Letters in Applied Microbiology, 48, 505–512.  https://doi.org/10.1111/j.1472-765X.2009.02566.x.CrossRefPubMedGoogle Scholar
  17. Desirò, A., Salvioli, A., Ngonkeu, E. L., Mondo, S. J., Epis, S., Facio, A., Kaech, A., Pawlowska, T. A., & Bonfante, P. (2014). Detection of a novel intracellular microbiome hosted in arbuscular mycorrhizal fungi. The ISME Journal, 8, 257–270.  https://doi.org/10.1038/ismej.2013.151.CrossRefPubMedGoogle Scholar
  18. Doornbos, R. F., van Loon, L. C., & Bakker, P. A. H. M. (2012). Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agronomy for Sustainable Development, 32, 227–243.  https://doi.org/10.1007/s13593-011-0028-y.CrossRefGoogle Scholar
  19. Drogue, B., Dore, H., Borland, S., Wisniewski-Dyé, F., & Prigent-Combaret, C. (2012). Which specificity in cooperation between phytostimulating rhizobacteria and plants? Research in Microbiology, 163, 500–510.  https://doi.org/10.1016/j.resmic.2012.08.006.CrossRefPubMedGoogle Scholar
  20. Drogue, B., Combes-Meynet, E., Mënne-Loccoz, Y., Wisniewski-Dyé, F., & Prigent-Combaret, C. (2013). Control of the cooperation between plant growth-promoting rhizobacteria and crops by rhizosphere signals. In F. J. de Bruijn (Ed.), Vol. 1 and 2 Molecular microbial ecology of the rhizosphere (pp. 281–294). Hoboken: Wiley.  https://doi.org/10.1002/9781118297674.ch27.CrossRefGoogle Scholar
  21. Dutta, S., & Podile, A. R. (2010). Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Critical Reviews in Microbiology, 36, 232–244.  https://doi.org/10.3109/10408411003766806.CrossRefPubMedGoogle Scholar
  22. Fiorilli, V., Catoni, M., Miozzi, L., Novero, M., Accotto, G. P., & Lanfranco, L. (2009). Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. New Phytologist Journal., 184, 975–987.  https://doi.org/10.1111/j.1469-8137.2009.03031.x.CrossRefGoogle Scholar
  23. Fiorilli, V., et al. (2015). Host and non-host roots in rice: Cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi. Frontiers in Plant Science, 6, 636.  https://doi.org/10.3389/fpls.2015.00636.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gallou, A., Declerck, S., & Cranenbrouck, S. (2012). Transcriptional regulation of defence genes and involvement of the WRKY transcription factor in arbuscular mycorrhizal potato root colonization. Functional & Integrative Genomics, 12, 183–198.  https://doi.org/10.1007/s10142-011-0241-4.CrossRefGoogle Scholar
  25. Gans, J., Wolinsky, M., & Dunbar, J. (2005). Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science, 309, 1387–1390.  https://doi.org/10.1126/science.1112665.CrossRefPubMedGoogle Scholar
  26. Genre, A., Chabaud, M., Balzergue, C., Puech-Pagès, V., Novero, M., Rey, T., et al. (2013). Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytologist Journal., 198, 190–202.  https://doi.org/10.1111/nph.12146.CrossRefGoogle Scholar
  27. Gianinazzi, S., & Schuepp, H. (1994). Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems (p. 226). Basel: Birkhauser Verlag.CrossRefGoogle Scholar
  28. Gomes, N. C. M., Cleary, D. F. R., Pinto, F. N., Egas, C., Almeida, A., Cunha, A., et al. (2010). Taking root: Enduring effect of rhizosphere bacterial colonization in mangroves. PLoS ONE, 5, e14065.  https://doi.org/10.1371/journal.pone.0014065.CrossRefPubMedPubMedCentralGoogle Scholar
  29. González-Guerrero, M., Escudero, V., Saéz, Á., & Tejada-Jiménez, M. (2016). Transition metal transport in plants and associated endosymbionts: Arbuscular mycorrhizal fungi and rhizobia. Frontiers in Plant Science, 7, 1088.  https://doi.org/10.3389/fpls.2016.01088.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Grunwald, U., et al. (2004). Identification of mycorrhiza-regulated genes with arbuscule development-related expression profile. Plant Molecular Biology, 55, 553–566.  https://doi.org/10.1007/s11103-004-1303-y.CrossRefPubMedGoogle Scholar
  31. Handa, Y., Nishide, H., Takeda, N., Suzuki, Y., Kawaguchi, M., & Saito, K. (2015). RNA-seq transcriptional profiling of an arbuscular mycorrhiza provides insights into regulated and coordinated gene expression in Lotus japonicus and Rhizophagus irregularis. Plant and Cell Physiology, 56, 1490–1511.  https://doi.org/10.1093/pcp/pcv071.CrossRefPubMedGoogle Scholar
  32. Hartman, A., Schmid, M., Tuinen, D., & Berg, G. (2009). Plant-driven selection of microbes. Plant and Soil, 321, 235–257.  https://doi.org/10.1007/s11104-008-9814-y.CrossRefGoogle Scholar
  33. Hiltner, L. (1904). Uber neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie unter besonderer Ber uksichtigung der Ground ungung und Brache [On recent insights and problems in the area of soil bacteriology under special consideration of the use of green manure and fallowing]. Arb Dtsch Landwirt Ges, 98, 59–78.Google Scholar
  34. Hogekamp, C., & Küster, H. (2013). A roadmap of cell-type specific gene expression during sequential stages of the arbuscular mycorrhiza symbiosis. BMC Genomics, 14, 306.  https://doi.org/10.1186/1471-2164-14-306.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hrdlickova, R., Toloue, M., & Tian, B. (2016). RNA-Seq methods for transcriptome analysis. Wiley Interdisciplinary Reviews: RNA, 8(1), 1364.  https://doi.org/10.1002/wrna.1364.CrossRefGoogle Scholar
  36. Johansson, J. F., Paul, L. R., & Finlay, R. D. (2004). Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiology Ecology, 48, 1–13.CrossRefGoogle Scholar
  37. Krishna, P., Reddy, M. S., & Satyanarayana, T. (2006). Molecular Techniques for understanding the microbial community structure in mycorrhizosphere. In K. G. Mukerji, C. Manoharachary, & J. Singh (Eds.), Microbial activity in the rhizosphere (Soil Biology, Vol. 7). Berlin/Heidelberg: Springer.  https://doi.org/10.1007/3-540-29420-1_10.CrossRefGoogle Scholar
  38. Kuo, A., Kohler, A., Martin, F. M., & Grigoriev, I. V. (2014). Expanding genomics of mycorrhizal symbiosis. Frontiers in Microbiology, 5, 1–7.  https://doi.org/10.3389/fmicb.2014.00582.CrossRefGoogle Scholar
  39. Kyselková, M., Kopecký, J., Frapolli, M., Défago, G., Ságová-Marečková, M., Grundmann, G. L., et al. (2009). Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease. The ISME Journal, 3, 1127–1138.  https://doi.org/10.1038/ismej.2009.61.CrossRefPubMedGoogle Scholar
  40. Lopez-Raez, J. A., Verhage, A., Fernandez, I., Garcia, J. M., zcon-Aguilar, C., Flors, V., & Pozo, M. J. (2010). Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. Journal of Experimental Botany, 61, 2589–2601.  https://doi.org/10.1093/jxb/erq089.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lugtenberg, B. J., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556.  https://doi.org/10.1146/annurev.micro.62.081307.162918.CrossRefPubMedGoogle Scholar
  42. Masson-Boivin, C., Giraud, E., Perret, X., & Batut, J. (2009). Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends in Microbiology, 17, 458–466.  https://doi.org/10.1016/j.tim.2009.07.004.CrossRefPubMedGoogle Scholar
  43. Odum, E. P., & Barrett, G. W. (2005). Fundamentals of ecology (5th ed.). Belmont: Thomson Brooks/Cole.Google Scholar
  44. Pankaj, Nailwal, T. K., Singh, L., & Panwar, A. (2014). Isolation and Characterization of rhizobial isolates from the rhizospheric soil of an endangered plant Meizotropis pellita. Asian Journal of Microbiology Biotechnology Environmental Sciences, 16(2), 301–306.Google Scholar
  45. Pankaj, Negi, G., Gangola, S., Khati, P., Kumar, G., Srivastava, A., & Sharma, A. (2016). Differential expression and characterization of cypermethrin-degrading potential proteins in Bacillus thuringiensis strain, SG4. 3 Biotech, 6(2), 225.CrossRefGoogle Scholar
  46. Parniske, M. (2008). Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nature Reviews. Microbiology, 6, 763–775.  https://doi.org/10.1038/nrmicro1987.CrossRefPubMedGoogle Scholar
  47. Pothier, J. F., Wisniewski-Dyé, F., Weiss-Gayet, M., Mënne-Loccoz, Y., & Prigent-Combaret, C. (2007). Promoter-trap identification of wheat seed extract-induced genes in the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp245. Microbiology, 153, 3608–3622.  https://doi.org/10.1099/mic.0.2007/009381-0.CrossRefPubMedGoogle Scholar
  48. Rambelli, A. (1973). The rhizosphere of mycorrhizae. In G. L. Marks & T. T. Koslowski (Eds.), Ectomycorrhizae (pp. 299–343). New York: Academic Press.CrossRefGoogle Scholar
  49. Raynaud, X., Jaillard, B., & Leadley, P. W. (2008). Plants may alter competition by modifying nutrient bioavailability in rhizosphere: A modeling approach. The American Naturalist, 171, 44–58.  https://doi.org/10.1086/523951.CrossRefPubMedGoogle Scholar
  50. Richardson, A. E., Baréa, J. M., McNeill, A. M., & Prigent-Combaret, C. (2009). Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, 321, 305–339.  https://doi.org/10.1007/s11104-009-9895-2.CrossRefGoogle Scholar
  51. Roesch, L. F. W., Camargo, F. A. O., Bento, F. M., & Triplett, E. W. (2007). Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant and Soil, 302, 91–104.  https://doi.org/10.1007/s11104-007-9458-3.CrossRefGoogle Scholar
  52. Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., & Agnolucci, M. (2015). Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae, 196, 91–108.CrossRefGoogle Scholar
  53. Schaarschmidt, S., Gresshoff, P. M., & Hause, B. (2013). Analyzing the soybean transcriptome during autoregulation of mycorrhization identifies the transcription factors GmNF-YA1a/b as positive regulators of arbuscular mycorrhization. Genome Biology, 14, R62.  https://doi.org/10.1186/gb-2013-14-6-r62.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Shu, B., Li, W., Liu, L., Wei, Y., & Shi, S. (2016). Transcriptomes of arbuscular mycorrhizal fungi and litchi host interaction after tree girdling. Frontiers in Microbiology, 7, 408.  https://doi.org/10.3389/fmicb.2016.00408.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Shukla, K. P., Sharma, S., Singh, N. K., Singh, V., Tiwari, K., & Singh, S. (2011). Nature and role of root exudates: Efficacy in bioremediation. African Journal of Biotechnology, 10, 9717–9724.Google Scholar
  56. Singh, S., Katzer, K., Lambert, J., Cerri, M., & Parniske, M. (2014). CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development. Cell Host & Microbe, 15, 139–152.  https://doi.org/10.1016/j.chom.2014.01.011.CrossRefGoogle Scholar
  57. Sugimura, Y., & Saito, K. (2017). Transcriptional profiling of arbuscular mycorrhizal roots exposed to high levels of phosphate reveals the repression of cell cycle-related genes and secreted protein genes in Rhizophagus irregularis. Mycorrhiza, 27, 139–146.  https://doi.org/10.1007/s00572-016-0735-y.CrossRefPubMedGoogle Scholar
  58. Symanczik, S., Michelle, M., Thonar, C., Schlaeppi, K., Heijden, M. V., Kahmen, A., Boller, T., & Mader, P. (2017). Application of mycorrhiza and soil from a permaculture system improved phosphorus acquisition in Naranjilla. Frontiers in Plant Science, 8, 1263.  https://doi.org/10.3389/fpls.2017.01263.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tedersoo, L., May, T. W., & Smith, M. E. (2010). Ectomycorrhizal lifestyle in fungi: Global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza, 20, 217–263.  https://doi.org/10.1007/s00572-009-0274-x.CrossRefPubMedGoogle Scholar
  60. Tedersoo, L., Liiv, I., Kivistik, P. A., Anslan, S., Koljalg, U., & Bahram, M. (2016). Genomics and metagenomics technologies to recover ribosomal DNA and single-copy genes from old fruit-body and ectomycorrhiza specimens. MycoKeys, 13, 1–20.  https://doi.org/10.3897/mycokeys.13.8140.CrossRefGoogle Scholar
  61. Vangelisti, A., Natali, L., Bernardi, R., Sbrana, C., Turrini, A., Hassani-Pak, K., Hughes, D., Cavallini, A., Giovanetti, A., & Giordani, T. (2018). Transcriptome changes induced by arbuscular mycorrhizal fungi in sunflower (Helianthus annuus L.) roots. Scientific Reports, 8(4), 1–14.  https://doi.org/10.1038/s41598-017-18445-0.CrossRefGoogle Scholar
  62. Zouari, I., Salvioli, A., Chialva, M., Novero, M., Miozzi, L., Tenore, G. C., Bagnaresi, P., & Bonfante, P. (2014). From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism. BMC Genomics, 15(1), 221.  https://doi.org/10.1186/1471-2164-15-221.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Pankaj Bhatt
    • 1
  • Divya Joshi
    • 2
  • Nitin Kumar
    • 3
  • Narendra Kumar
    • 4
  1. 1.Department of MicrobiologyDolphin (P.G) Institute of Biomedical and Natural SciencesDehradunIndia
  2. 2.Department of MicrobiologyG.B.P.U.A&TPantnagarIndia
  3. 3.Department of Plant PhysiologyG.B.P.U.A&TPantnagarIndia
  4. 4.Department of Crop PhysiologyUttaranchal UniversityDehradunIndia

Personalised recommendations