Advertisement

Role of Bacteria in Pedogenesis

  • Palika Sharma
  • Gaurav Bhakri
Chapter

Abstract

Most commonly microorganisms are known as disease causing agents amongst common people but when we turn towards their positive aspects they do wonderful things. Microbes have remained an integral part of soil since ever earth originated. They are capable of turning soil into waste land and further into productive soil. A teaspoon of soil contains millions of bacteria which functions to increase soil fertility and plant growth by providing air, minerals and organic compounds. These microbes are primary decomposers of organic matter. The physical and chemical composition of soil varies throughout the earth. The soil bearing high number of microorganisms considered as most fertile soil. These tiny creatures ensure the permanent existence of nutrients in soil. Due to their role in pedogenesis and improvement of soil fertility these minute entities have become major subject of investigation in recent past. Nutrient development in soil is carried out via biological transformation through action of microorganism. Without microbes, soil would be a virtually inert (lifeless) body but with them, soil is truly a living, dynamic system. Microbes and the humus produced by them work as a glue to hold soil particles together in aggregates hence improves soil tilth and decrease soil depletion or erosion. Well aggregated soil provides the rightful combination of air and water to plant roots.

References

  1. Aislabie, J., & Deslippe, J. R. (2013). Soil microbes and their contribution to soil services. In J. R. Dymond (Ed.), Ecosystem services in New Zealand – conditions and trends. Lincoln: Manaaki Whenua Press.Google Scholar
  2. Aislabie, J., Davison, A. D., Boul, H. L., Franzmann, P. D., Jardine, D. R., & Karuso, P. (1999). Isolation of Terrabacter sp. strain DDE-1 which metabolises DDE when induced with biphenyl. Applied and Environmental Microbiology, 65, 5607–5611.PubMedPubMedCentralGoogle Scholar
  3. Aislabie, J., Bej, A. K., Ryburn, J., Lloyd, N., & Wilkins, A. (2005). Characterization of Arthrobacter nicotinovorans HIM, an atrazine-degrading bacterium, from agricultural soil New Zealand. FEMS Microbiology Ecology, 52, 279–286.CrossRefGoogle Scholar
  4. Almario, J., et al. (2013). Effect of clay mineralogy on iron bioavailability and rhizosphere transcription of 2,4-diacetylphloroglucinol biosynthetic genes in biocontrol Pseudomonas protegens. Molecular Plant-Microbe Interactions, 26, 566–574.CrossRefGoogle Scholar
  5. Antoun, H., & Kloepper, J. W. (2001). Plant growth promoting rhizobacteria. In S. Brenner & J. H. Miller (Eds.), Encyclopedia of genetics (pp. 1477–1480). New York: Academic.CrossRefGoogle Scholar
  6. Banfield, J. F., et al. (1999). Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proceedings of the National Academy of Sciences of the United States of America, 96, 3404–3411.CrossRefGoogle Scholar
  7. Bin, L., Ye, C., & Yuan, T. (2010). Microbes on carbonate rocks and pedogenesis in karst regions. Journal of Earth Science, 21, 293–296.CrossRefGoogle Scholar
  8. Buol, S. W., Hole, F. D., & McCracken, R. J. (1973). Soil genesis and classification (1st ed.). Ames: Iowa State University Press. ISBN 978-0-8138-1460-5.Google Scholar
  9. Burford, E. P., Hillier, S., & Gadd, G. M. (2006). Biomineralization of fungal hyphae with calcite (CaCO3) and calcium oxalate mono- and dihydrate in carboniferous limestone microcosms. Geomicrobiology Journal, 23(8), 599–611.CrossRefGoogle Scholar
  10. Calvaruso, C., et al. (2007). Impact of ectomycorrhizosphere on the functional diversity of soil bacterial and fungal communities from a forest stand in relation to nutrient mobilization processes. Microbiol Ecology, 54, 567–577.CrossRefGoogle Scholar
  11. Carson, J. K., et al. (2007). Altering the mineral composition of soil causes a shift in microbial community structure. FEMS Microbiology Ecology, 61, 414–423.CrossRefGoogle Scholar
  12. Chen, S., Lian, B., & Liu, C. Q. (2008). Effect of Bacillus mucilaginosus on weathering of phosphorite and a preliminary analysis of bacterial proteins. Chinese Journal of Geochemistry, 27(2), 209–216.CrossRefGoogle Scholar
  13. De Boer, W., Leveau, J. H. J., Kowalchuk, G. A., Klein Gunnewiek, P. J. A., Abeln, E. C. A., Figgge, M. J., et al. (2004). Collimonas fungivorans gen. nov., sp. nov., a chitinolytic soil bacterium with the ability to grow on living fungal hyphae. International Journal of Systematic and Evolutionary Microbiology, 54, 857–864.CrossRefGoogle Scholar
  14. Dou, C. W., & Lian, B. (2009). Microbial weathering of calcite by rock fungi. Acta Mineralogical Sinica, 29(3), 387–391.Google Scholar
  15. Eilers, K. G., Lauber, C. L., Knight, R., & Fierer, N. (2010). Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biology and Biochemistry, 42, 896–903.CrossRefGoogle Scholar
  16. Fierer, N., Bradford, M. A., & Jackson, R. B. (2007). Towards an ecological classification of soil bacteria. Ecol, 88, 1354–1364.CrossRefGoogle Scholar
  17. Frey, B., et al. (2010). Weathering-associated bacteria from the Damma glacier for efield: Physiologica lcapabilities and impact on granite dissolution. Applied and Environmental Microbiology, 76, 4788–4796.CrossRefGoogle Scholar
  18. Gleeson, D. B., et al. (2006). Characterization of bacterial community structure on a weathered pegmatitic granite. Microbial Ecology, 51, 526–534.CrossRefGoogle Scholar
  19. Gorbushina, A. A. (2007). Life on the rocks. Environmental Microbiology, 9, 1613–1631.CrossRefGoogle Scholar
  20. Gorbushina, A. A., Whitehead, K., Dornieden, T., et al. (2003). Black fungal colonies as units of survival: Hyphal mycosporines synthesized by rock dwelling microcolonial fungi. Canadian Journal of Botany, 81(2), 131–138.CrossRefGoogle Scholar
  21. Hiltner, L. (1904). Über neuere erfahrungen und probleme auf dem gebiete der bodenbakteriologie unter besonderer berücksichtigung der gründüngung und brache. Arb Landwirt Dtsch Ges, 98, 59–78.Google Scholar
  22. Huddleston, J. H., & Kling, G. F. (1984). Manual for judging oregon soils. Corvallis: Oregon State University Extension Service.Google Scholar
  23. Ingham, E. R. (2009). Soil biology primer, Chapter 4: Soil fungus (pp. 22–23). Ankeny: Soil & Water Conservation Society. soils.usda.gov/sqi/concepts/soil_biology.Google Scholar
  24. Khatoon, H., Solanki, P., Narayan, M., Tewari, L., & Rai, J. P. N. (2017). Role of microbes in organic carbon decomposition and maintenance of soil ecosystem. International Journal of Chemical Studies, 5(6), 1648–1656.Google Scholar
  25. Kuráň, P., Trögl, J., Nováková, J. et al. (2014). Biodegradation of spilled diesel fuel in agricultural soil: Effect of humates, zeolite, and bioaugmentation. Scientific W J, Article ID 642427, 8 pages.  https://doi.org/10.1155/2014/642427.CrossRefGoogle Scholar
  26. Lang, F. S., Tarayre, C., Destain, J., Delvigne, F., Druart, P., Ongena, M., & Thonart, P. (2016). The effect of nutrients on the degradation of hydrocarbons in mangrove ecosystems by microorganisms semboung. International Journal of Environmental Research, 10(4), 583–592.Google Scholar
  27. Lepleux, C., et al. (2012). Correlation of the abundance of beta- proteobacteria on mineral surfaces with mineral weathering in forest soils. Applied and Environmental Microbiology, 78, 7114–7119.CrossRefGoogle Scholar
  28. Lian, B., Chen, Y., Zhu, L. J., et al. (2008). Progress in the study of the weathering of carbonate rock by microbes. Earth Science Frontiers, 15(6), 90–99.CrossRefGoogle Scholar
  29. Löhnis, F., & Fred, E. B. (1923). Textbook of agricultural bacteriology. New York: McGraw–Hill.Google Scholar
  30. McNamara, C. J., et al. (2006). Epilithic and endolithic bacterial communities in limestone from a Maya archaeological site. Microbial Ecology, 51, 51–64.CrossRefGoogle Scholar
  31. Mosier, A. R., Syers, J. K., & Freney, J. R. (Eds.). (2004). Agriculture and the Nitrogen Cycle: Assessing the Impacts of Fertilizer Use on Food Production and the Environment (SCOPE Series 65). Washington, DC: Island Press.Google Scholar
  32. Olsso-Francis, K., et al. (2010). Microarray analysis of a microbe– mineral interaction. Geobiology, 8, 446–456.CrossRefGoogle Scholar
  33. Prasad, J. K., Gupta, S. K., & Raghuwanshi, R. (2017). Screening multifunctional plant growth promoting rhizobacteria strains for enhancing seed germination in wheat (Triticum aestivum L.). International Journal of Agricultural Research, 12, 64–72.CrossRefGoogle Scholar
  34. Seneviratne, G., & Indrasena, I. K. (2006). Nitrogen fixation in lichens is important for improved rock weathering. Journal of Biosciences, 31, 639–643.CrossRefGoogle Scholar
  35. Shelobolina, E. S., Xu, H., Konishi, H., Kukkadapu, R. K., Wu, T., Blothe, M., & Roden, E. E. (2012). Microbial Lithotrophic Oxidation of Structural Fe(II) in Biotite. Applied and Environmental Microbiology, 78(16), 5746–5752.CrossRefGoogle Scholar
  36. Thompson, L. M., & Troeh, F. R. (1973). Soils and soil fertility (3rd ed.). New York: McGraw-Hill.Google Scholar
  37. Treseder, K. K., Kivlin, S. N., & Hawkes, C. V. (2011). Evolutionary trade-offs among decomposers determine responses to nitrogen enrichment. Ecology Letters, 14, 933–938.CrossRefGoogle Scholar
  38. Uroz, S., et al. (2007). Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Applied and Environmental Microbiology, 73, 3019–3027.CrossRefGoogle Scholar
  39. Uroz, S., Calvaruso, C., Turpault, M. P., & Frey-Klett, P. (2009). Mineral weathering by bacteria: ecology, actors and mechanisms. Trends in Microbiology, 17(8), 378–387.CrossRefGoogle Scholar
  40. Vera, M., et al. (2013). Shotgun proteomics study of early biofilm formation process of Acidithiobacillus ferrooxidans ATCC 23270 on pyrite. Proteomics, 13, 1133–1144.CrossRefGoogle Scholar
  41. Vessey, J. K., & Buss, T. J. (2002). Bacillus cereus UW85 inoculation effects on growth, nodulation and N accumulation in grain legumes. Controlled-environment studies. Canadian Journal of Plant Science, 82, 282–290.CrossRefGoogle Scholar
  42. Viles, H. A., & Gorbushina, A. A. (2003). Soiling and Microbial Colonisation on Urban Roadside Limestone: A Three Year Study in Oxford England. Building and Environment, 38(9–10), 1217–1224.CrossRefGoogle Scholar
  43. Walker, T. S., Bais, H. P., Grotewold, E., & Vivanco, J. M. (2003). Root exudation and rhizosphere biology. Plant Physiology, 132, 44–51.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Palika Sharma
    • 1
  • Gaurav Bhakri
    • 2
  1. 1.Department of MicrobiologyPunjab Agricultural UniversityLudhianaIndia
  2. 2.Department of BiotechnologyNational Bureau of Animal Genetic ResourcesKarnalIndia

Personalised recommendations