Advertisement

Mycorrhizal Mediated Micronutrients Transportation in Food Based Plants: A Biofortification Strategy

  • Viabhav K. Upadhayay
  • Jyoti Singh
  • Amir Khan
  • Swati Lohani
  • Ajay Veer Singh
Chapter

Abstract

Food based crops with enhanced micronutrients concentrations are required globally for eradicating hidden hunger. Mycorrhizal fungi have mutualistic association with roots of plant and commence enhance uptake of macro and as well micro nutrients for plants vitality. Micronutrients deficiencies cause a number of ailments in humans due the malnutrition of important micro elements such as zinc, iron, selenium, etc. Mycorrhizal fungal partner is efficient for depicting several traits for nutrient acquisition such as enhanced mycelia growth for exploring nutrients in soils, production of organic acids and metals chelating compounds (particularly siderophores), and hence provide host plants with elevated levels of essential micronutrients (Zn, Fe, Cu and Mn) in edible portion of plants such as grains and fruits. In the present chapter, the main prominence is given to mycorrhizal fungi and their prominent role in nutrient transfer into host plants, and presenting view on application of mycorrhiza for crop biofortification.

References

  1. Alloway, B. J. (2008). Micronutrients and crop production: An introduction. In B. J. Alloway (Ed.), Micronutrient deficiencies in global crop production (pp. 1–39). Dordrecht: Springer.CrossRefGoogle Scholar
  2. Ames, B. N. (2001). DNA damage from micronutrient deficiencies is likely to be a major cause of cancer. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 475(1–2), 7–20.  https://doi.org/10.1016/s0027-5107(01)00070-7.CrossRefPubMedGoogle Scholar
  3. Biari, A., Gholami, A., & Rahmani, H. (2008). Growth promotion and enhanced nutrient uptake of maize (Zea mays L.) by application of plant growth promoting rhizobacteria in arid region of Iran. Journal of Biological Sciences, 8(6), 1015–1020.  https://doi.org/10.3923/jbs.2008.1015.1020.CrossRefGoogle Scholar
  4. Bolan, N. S. (1991). A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and Soil, 134(2), 189–207.  https://doi.org/10.1007/bf00012037.CrossRefGoogle Scholar
  5. Bouis, H. (1996). Enrichment of food staples through plant breeding: A new strategy for fighting micronutrient malnutrition. Nutrition Reviews, 54(5), 131–137.  https://doi.org/10.1111/j.1753-4887.1996.tb03915.x.CrossRefPubMedGoogle Scholar
  6. Bouis, H. E. (2003). Micronutrient fortification of plants through plant breeding: Can it improve nutrition in man at low cost? Proceedings of the Nutrition Society, 62(2), 403–411.  https://doi.org/10.1079/pns2003262.CrossRefPubMedGoogle Scholar
  7. Bouis, H. E., Hotz, C., McClafferty, B., Meenakshi, J. V., & Pfeiffer, W. H. (2011). Biofortification: A new tool to reduce micronutrient malnutrition. Food and Nutrition Bulletin, 32(1_suppl1), S31–S40.  https://doi.org/10.1177/15648265110321s105.CrossRefPubMedGoogle Scholar
  8. Bücking, H., & Heyser, W. (2003). Uptake and transfer of nutrients in ectomycorrhizal associations: Interactions between photosynthesis and phosphate nutrition. Mycorrhiza, 13(2), 59–68.  https://doi.org/10.1007/s00572-002-0196-3.CrossRefPubMedGoogle Scholar
  9. Bücking, H., Liepold, E., & Ambilwade, P. (2012). The role of the mycorrhizal symbiosis in nutrient uptake of plants and the regulatory mechanisms underlying these transport processes. In N. K. Dhal & S. C. Sahu (Eds.), Plant science (pp. 107–539). Rijeka: Intech.Google Scholar
  10. Burkert, B., & Robson, A. (1994). 65Zn uptake in subterranean clover (Trifolium subterraneum L.) by three vesicular-arbuscular mycorrhizal fungi in a root-free sandy soil. Soil Biology and Biochemistry, 26(9), 1117–1124.  https://doi.org/10.1016/0038-0717(94)90133-3.CrossRefGoogle Scholar
  11. Cakmak, I., & Kutman, U. B. (2017). Agronomic biofortification of cereals with zinc: A review. European Journal of Soil Science, 69(1), 172–180.  https://doi.org/10.1111/ejss.12437.CrossRefGoogle Scholar
  12. Cakmak, I., Kalaycı, M., Ekiz, H., Braun, H., Kılınç, Y., & Yılmaz, A. (1999). Zinc deficiency as a practical problem in plant and human nutrition in Turkey: A NATO-science for stability project. Field Crops Research, 60(1–2), 175–188.  https://doi.org/10.1016/s0378-4290(98)00139-7.CrossRefGoogle Scholar
  13. Caris, C., Hördt, W., Hawkins, H., Römheld, V., & George, E. (1998). Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Mycorrhiza, 8(1), 35–39.  https://doi.org/10.1007/s005720050208.CrossRefGoogle Scholar
  14. Cartes, P., Gianfreda, L., & Mora, M. (2005). Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms. Plant and Soil, 276(1–2), 359–367.  https://doi.org/10.1007/s11104-005-5691-9.CrossRefGoogle Scholar
  15. CGIAR (Consultative Group on International Agricultural Research Science Council). (2007). Report of the first external review of the HarvestPlus Challenge Program (p. 2008). Rome: Science Council Secretariat.Google Scholar
  16. Davidson, A. L., & Nikaido, H. (1991). Purification and characterization of the membrane-associated components of the maltose transport system from Escherichia coli. Journal of Biological Chemistry, 266(14), 8946–8951.PubMedGoogle Scholar
  17. de Valença, A. W., Bake, A., Brouwer, I. D., & Giller, K. E. (2017). Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Global Food Security, 12, 8–14.  https://doi.org/10.1016/j.gfs.2016.12.001.CrossRefGoogle Scholar
  18. Di Simine, C. D., Sayer, J. A., & Gadd, G. M. (1998). Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biology and Fertility of Soils, 28(1), 87–94.  https://doi.org/10.1007/s003740050467.CrossRefGoogle Scholar
  19. Durán, P., Acuña, J., Jorquera, M., Azcón, R., Borie, F., Cornejo, P., & Mora, M. (2013). Enhanced selenium content in wheat grain by co-inoculation of selenobacteria and arbuscular mycorrhizal fungi: A preliminary study as a potential Se biofortification strategy. Journal of Cereal Science, 57(3), 275–280.  https://doi.org/10.1016/j.jcs.2012.11.012.CrossRefGoogle Scholar
  20. Ercoli, L., Schüßler, A., Arduini, I., & Pellegrino, E. (2017). Strong increase of durum wheat iron and zinc content by field-inoculation with arbuscular mycorrhizal fungi at different soil nitrogen availabilities. Plant and Soil, 419(1–2), 153–167.  https://doi.org/10.1007/s11104-017-3319-5.CrossRefGoogle Scholar
  21. Fasim, F., Ahmed, N., Parsons, R., & Gadd, G. M. (2002). Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiology Letters, 213(1), 1–6.  https://doi.org/10.1111/j.1574-6968.2002.tb11277.x.CrossRefPubMedGoogle Scholar
  22. Field, S. J., Tsai, F. Y., Kuo, F., Zubiaga, A. M., Kaelin, W. G., Livingston, D. M., Okrin, S. H., & Greenberg, M. E. (1996). E2F-1 Functions in mice to promote apoptosis and suppress proliferation. Cell, 85(4), 549–561.  https://doi.org/10.1016/s0092-8674(00)81255-6.CrossRefPubMedGoogle Scholar
  23. Finlay, R. D., EK, H., Odham, G., & Soderstrom, B. (1988). Mycelial uptake, translocation and assimilation of nitrogen from 15N-labelled ammonium by Pinus sylvestris plants infected with four different ectomycorrhizal fungi. New Phytologist, 110(1), 59–66.  https://doi.org/10.1111/j.1469-8137.1988.tb00237.x.CrossRefGoogle Scholar
  24. Fomina, M., Alexander, I. J., Hillier, S., & Gadd, G. M. (2004). Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiology Journal, 21(5), 351–366.  https://doi.org/10.1080/01490450490462066.CrossRefGoogle Scholar
  25. Garcia-Casal, M. N., Peña-Rosas, J. P., Pachón, H., De-Regil, L. M., Centeno Tablante, E., & Flores-Urrutia, M. C. (2016). Staple crops biofortified with increased micronutrient content: Effects on vitamin and mineral status, as well as health and cognitive function in the general population. Cochrane Database of Systematic Reviews.  https://doi.org/10.1002/14651858.cd012311.
  26. Gibson, R. S. (2006). Zinc: The missing link in combating micronutrient malnutrition in developing countries. Proceedings of the Nutrition Society, 65(01), 51–60.  https://doi.org/10.1079/pns2005474.CrossRefPubMedGoogle Scholar
  27. Glick, B. R., Patten, C. L., Holguin, G., & Penrose, D. M. (1999). Biochemical and genetic mechanisms used by plant growth promoting bacteria. London: Imperial College Press.  https://doi.org/10.1142/p130.CrossRefGoogle Scholar
  28. Govasmark, E., & Salbu, B. (2011). Translocation and re-translocation of selenium taken up from nutrient solution during vegetative growth in spring wheat. Journal of the Science of Food and Agriculture, 91(8), 1367–1372.  https://doi.org/10.1002/jsfa.4387.CrossRefPubMedGoogle Scholar
  29. Graham, R., Senadhira, D., Beebe, S., Iglesias, C., & Monasterio, I. (1999). Breeding for micronutrient density in edible portions of staple food crops: Conventional approaches. Field Crops Research, 60(1–2), 57–80.  https://doi.org/10.1016/s0378-4290(98)00133-6.CrossRefGoogle Scholar
  30. Graham, R. D., Welch, R. M., & Bouis, H. E. (2001). Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: Principles, perspectives and knowledge gaps. Advances in Agronomy, 70, 77–142.  https://doi.org/10.1016/s0065-2113(01)70004-1.CrossRefGoogle Scholar
  31. Grunwald, U., Guo, W., Fischer, K., Isayenkov, S., Ludwig-Müller, J., Hause, B., Yan, X., Küster, H., & Franken, P. (2009). Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots. Planta, 229(5), 1023–1034.  https://doi.org/10.1007/s00425-008-0877-z.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gyaneshwar, P., Kumar, G. N., Parekh, L. J., & Poole, P. S. (2002). Role of soil microorganisms in improving P nutrition of plants. In J. J. Adu-Gyamfi (Ed.), Food security in nutrient-stressed environments: Exploiting plants’ genetic capabilities (Developments in plant and soil sciences, Vol. 95). Dordrecht: Springer.  https://doi.org/10.1007/978-94-017-1570-6_15.CrossRefGoogle Scholar
  33. Hart, M., Ehret, D. L., Krumbein, A., Leung, C., Murch, S., Turi, C., & Franken, P. (2015). Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza, 25(5), 359–376.  https://doi.org/10.1007/s00572-014-0617-0.CrossRefGoogle Scholar
  34. Haselwandter, K., Dobernigg, B., Beck, W., Jung, G., Cansier, A., & Winkelmann, G. (1992). Isolation and identification of hydroxamate siderophores of ericoid mycorrhizal fungi. Biometals, 5(1), 51–56.  https://doi.org/10.1007/bf01079698.CrossRefGoogle Scholar
  35. Hatfield, D. L., Tsuji, P. A., Carlson, B. A., & Gladyshev, V. N. (2014). Selenium and selenocysteine: Roles in cancer, health, and development. Trends in Biochemical Sciences, 39(3), 112–120.  https://doi.org/10.1016/j.tibs.2013.12.007.CrossRefPubMedPubMedCentralGoogle Scholar
  36. He, X., & Nara, K. (2007). Element biofortification: Can mycorrhizas potentially offer a more effective and sustainable pathway to curb human malnutrition? Trends in Plant Science, 12(8), 331–333.  https://doi.org/10.1016/j.tplants.2007.06.008.CrossRefPubMedGoogle Scholar
  37. Hotz, C., & Brown, K. H. (2004). International Zinc Nutrition Consultative Group (IZiNCG) technical document no. 1. Assessment of the risk of zinc deficiency in populations and options for its control. Food and Nutrition Bulletin, 25, S94–S203.CrossRefGoogle Scholar
  38. Humbert, P. O., Rogers, C., Ganiatsas, S., Landsberg, R. L., Trimarchi, J. M., Dandapani, S., Brugnara, C., Erdman, S., Schrenzel, M., Bronson, R. T., & Lees, J. A. (2000). E2F4 is essential for normal erythrocyte maturation and neonatal viability. Molecular Cell, 6(2), 281–291.  https://doi.org/10.1016/s1097-2765(00)00029-0.CrossRefPubMedGoogle Scholar
  39. Jansa, J., Mozafar, A., & Frossard, E. (2003). Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie, 23(5–6), 481–488.  https://doi.org/10.1051/agro:2003013.CrossRefGoogle Scholar
  40. Javelle, A., Morel, M., Rodríguez-Pastrana, B., Botton, B., André, B., Marini, A. M., & Chalot, M. (2003). Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum. Molecular Microbiology, 47(2), 411–430.  https://doi.org/10.1046/j.1365-2958.2003.03303.x.CrossRefPubMedGoogle Scholar
  41. Jin, H., Pfeffer, P. E., Douds, D. D., Piotrowski, E., Lammers, P. J., & Shachar-Hill, Y. (2005). The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytologist, 168(3), 687–696.  https://doi.org/10.1111/j.1469-8137.2005.01536.x.CrossRefPubMedGoogle Scholar
  42. Jones, M. D., Durall, D. M., & Tinker, P. B. (1998). A comparison of arbuscular and ectomycorrhizal Eucalyptus coccifera: Growth response, phosphorus uptake efficiency and external hyphal production. New Phytologist, 140(1), 125–134.  https://doi.org/10.1046/j.1469-8137.1998.00253.x.CrossRefGoogle Scholar
  43. Joshi, S., Singh, A. V., & Prasad, B. (2018). Enzymatic activity and plant growth promoting potential of endophytic bacteria isolated from Ocimum sanctum and Aloe vera. International Journal of Current Microbiology and Applied Sciences, 7(06), 2314–2326.CrossRefGoogle Scholar
  44. Khush, G. (2003). Productivity improvements in rice. Nutrition Reviews, 61(suppl_6), S114–S116.  https://doi.org/10.1301/nr.2003.jun.s114-s116.CrossRefPubMedGoogle Scholar
  45. Koide, R. T., & Kabir, Z. (2000). Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytologist, 148(3), 511–517.  https://doi.org/10.1046/j.1469-8137.2000.00776.x.CrossRefGoogle Scholar
  46. Lee, Y. J., & George, E. (2005). Contribution of mycorrhizal hyphae to the uptake of metal cations by cucumber plants at two levels of phosphorus supply. Plant and Soil, 278(1–2), 361–370.  https://doi.org/10.1007/s11104-005-0373-1.CrossRefGoogle Scholar
  47. Leone, G., Sears, R., Huang, E., Rempel, R., Nuckolls, F., Park, C. H., Giangrande, P., Wu, L., Saavedra, H. I., Field, S. J., Thompson, M. A., Yang, H., Fujiwara, Y., Greenberg, M. E., Orkin, S., Smith, C., & Nevins, J. R. (2001). Myc requires distinct E2F activities to induce S phase and apoptosis. Molecular Cell, 8(1), 105–113.  https://doi.org/10.1016/s1097-2765(01)00275-1.CrossRefPubMedGoogle Scholar
  48. Li, X. L., Marschner, H., & George, E. (1991). Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover. Plant and Soil, 136(1), 49–57.  https://doi.org/10.1007/BF02465219.CrossRefGoogle Scholar
  49. López-Millán, A., Grusak, M. A., Abadía, A., & Abadía, J. (2013). Iron deficiency in plants: An insight from proteomic approaches. Frontiers in Plant Science, 4, 254.  https://doi.org/10.3389/fpls.2013.00254.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lynch, J. P., & Brown, K. M. (2008). Root strategies for phosphorus acquisition. In P. J. White & J. P. Hammond (Eds.), The ecophysiology of plant–phosphorus interactions (Vol. 7, pp. 83–116). Dordrecht: Springer.CrossRefGoogle Scholar
  51. Mäder, P., Kaiser, F., Adholeya, A., Singh, R., Uppal, H. S., Sharma, A. K., Srivastava, R., Sahai, V., Aragno, M., Wiemken, A., Johri, B. N., & Fried, P. M. (2011). Inoculation of root microorganisms for sustainable wheat–rice and wheat–black gram rotations in India. Soil Biology and Biochemistry, 43(3), 609–619.CrossRefGoogle Scholar
  52. Malagoli, M., Schiavon, M., Dall’Acqua, S., & Pilon-Smits, E. A. (2015). Effects of selenium biofortification on crop nutritional quality. Frontiers in Plant Science, 6, 280.  https://doi.org/10.3389/fpls.2015.00280.CrossRefPubMedGoogle Scholar
  53. Marschner, H. (1993). Zinc uptake from soils. In A. D. Robson (Ed.), Zinc in soils and plants (Developments in plant and soil sciences, Vol. 55, pp. 59–77). Dordrecht: Springer.Google Scholar
  54. Marschner, H. (1995). Functions of mineral nutrients. Mineral Nutrition of Higher Plants, 229–312.  https://doi.org/10.1016/b978-012473542-2/50010-9.CrossRefGoogle Scholar
  55. Marschner, H., & Dell, B. (1994). Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 159(1), 89–102.  https://doi.org/10.1007/bf00000098.CrossRefGoogle Scholar
  56. Martino, E., Perotto, S., Parsons, R., & Gadd, G. M. (2003). Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biology and Biochemistry, 35(1), 133–141.  https://doi.org/10.1016/s0038-0717(02)00247-x.CrossRefGoogle Scholar
  57. Mayer, J. E., Pfeiffer, W. H., & Beyer, P. (2008). Biofortified crops to alleviate micronutrient malnutrition. Current Opinion in Plant Biology, 11(2), 166–170.  https://doi.org/10.1016/j.pbi.2008.01.007.CrossRefPubMedGoogle Scholar
  58. Milagres, A. M., Machuca, A., & Napoleão, D. (1999). Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. Journal of Microbiological Methods, 37(1), 1–6.  https://doi.org/10.1016/s0167-7012(99)00028-7.CrossRefPubMedGoogle Scholar
  59. Miller, G. W., Huang, I. J., Welkie, G. W., & Pushnik, J. C. (1995). Function of iron in plants with special emphasis on chloroplasts and photosynthetic activity. In J. Abadía (Ed.), Iron nutrition in soils and plants (Developments in plant and soil sciences, Vol. 59, pp. 19–28). Dordrecht: Springer.Google Scholar
  60. MoHFW. (2013). Government of India. Guidelines for control of iron deficiency anemia. Available at http://www.unicef.org/india/10._National_Iron_Plus_Initiative_Guidelines_for_Control_of_IDA.pdf. Accessed 29 Mar 2013.
  61. Mora, M. L., Pinilla, L., Rosas, A., & Cartes, P. (2008). Selenium uptake and its influence on the antioxidative system of white clover as affected by lime and phosphorus fertilization. Plant and Soil, 303(1–2), 139–149.  https://doi.org/10.1007/s11104-007-9494-z.CrossRefGoogle Scholar
  62. Murray-Kolb, L. E. (2013). Iron and brain functions. Current Opinion in Clinical Nutrition and Metabolic Care, 16(6), 703–707.  https://doi.org/10.1097/mco.0b013e3283653ef8.CrossRefPubMedGoogle Scholar
  63. O’Keefe, D. M., & Sylvia, D. M. (1991). Mechanisms of vesicular-arbuscular mycorrhizal plant growth response. In D. K. Arora, B. Rai, K. G. Mukerji, & G. R. Knudsen (Eds.), Handbook of applied mycology (Soil and plants, Vol. 1, pp. 35–53). New York: Marcel Dekker, Inc.Google Scholar
  64. Parniske, M. (2008). Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nature Reviews. Microbiology, 6(10), 763–775.  https://doi.org/10.1038/nrmicro1987.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Pellegrino, E., & Bedini, S. (2014). Enhancing ecosystem services in sustainable agriculture: Biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 68, 429–439.  https://doi.org/10.1016/j.soilbio.2013.09.030.CrossRefGoogle Scholar
  66. Pellegrino, E., Öpik, M., Bonari, E., & Ercoli, L. (2015). Responses of wheat to arbuscular mycorrhizal fungi: A meta-analysis of field studies from 1975 to 2013. Soil Biology and Biochemistry, 84, 210–217.  https://doi.org/10.1016/j.soilbio.2015.02.020.CrossRefGoogle Scholar
  67. Plenchette, C., Clermont-Dauphin, C., Meynard, J. M., & Fortin, J. A. (2005). Managing arbuscular mycorrhizal fungi in cropping systems. Canadian Journal of Plant Science, 85(1), 31–40.  https://doi.org/10.4141/p03-159.CrossRefGoogle Scholar
  68. Prasad, A. S. (2007). Zinc: Mechanisms of host defense. The Journal of Nutrition., 137(5), 1345–1349.  https://doi.org/10.1093/jn/137.5.1345.CrossRefPubMedGoogle Scholar
  69. Prasad, B., Kumar, A., Singh, A. V., & Kumar, A. (2016). Plant growth and seed yield attributes as influenced by bacterial isolates under glass house. Progressive Research, 11(IV), 2573–2576.Google Scholar
  70. Rana, A., Saharan, B., Nain, L., Prasanna, R., & Shivay, Y. S. (2012). Enhancing micronutrient uptake and yield of wheat through bacterial PGPR consortia. Soil Science and Plant Nutrition, 58(5), 573–582.  https://doi.org/10.1080/00380768.2012.716750.CrossRefGoogle Scholar
  71. Rausch, C., Daram, P., Brunner, S., Jansa, J., Laloi, M., Leggewie, G., Nikolaus Amrhein, N., & Bucher, M. (2001). A phosphate transporter expressed in arbuscule-containing cells in potato. Nature, 414, 462–470.  https://doi.org/10.1038/35106601.CrossRefPubMedGoogle Scholar
  72. Rayman, M. P. (2012). Selenium and human health. The Lancet., 379(9822), 1256–1268.  https://doi.org/10.1016/s0140-6736(11)61452-9.CrossRefGoogle Scholar
  73. Royzman, I., Whittaker, A. J., & Orr-Weaver, T. L. (1997). Mutations in Drosophila DP and E2F distinguish G1-S progression from an associated transcriptional program. Genes & Development, 11(15), 1999–2011.  https://doi.org/10.1101/gad.11.15.1999.CrossRefGoogle Scholar
  74. Ruel, M. T., & Alderman, H. (2013). Nutrition-sensitive interventions and programmes: How can they help to accelerate progress in improving maternal and child nutrition? The Lancet, 382(9891), 536–551.  https://doi.org/10.1016/s0140-6736(13)60843-0.CrossRefGoogle Scholar
  75. Salgueiro, M. J., Zubillaga, M., Lysionek, A., Cremaschi, G., Goldman, C. G., Caro, R., De Paoli, T., Hager, A., Weill, R., & Boccio, J. (2000). Zinc status and immune system relationship: A review. Biological Trace Element Research, 76(3), 193–205.  https://doi.org/10.1385/bter:76:3:193.CrossRefPubMedGoogle Scholar
  76. Saravanan, V. S., Subramoniam, S. R., & Raj, S. A. (2003). Assessing in vitro solubilization potential of different zinc solubilizing bacterial (zsb) isolates. Brazilian Journal of Microbiology, 34, 121–125.CrossRefGoogle Scholar
  77. Schachtman, D. P., Reid, R. J., & Ayling, S. (1998). Phosphorus uptake by plants: From soil to cell. Plant Physiology, 116(2), 447–453.  https://doi.org/10.1104/pp.116.2.447.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Schwartz, M. W., Hoeksema, J. D., Gehring, C. A., Johnson, N. C., Klironomos, J. N., Abbott, L. K., & Pringle, A. (2006). The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecology Letters, 9(5), 501–515.  https://doi.org/10.1111/j.1461-0248.2006.00910.x.CrossRefPubMedGoogle Scholar
  79. Shiferaw, B., Prasanna, B. M., Hellin, J., & Bänziger, M. (2011). Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security, 3(3), 307–327.  https://doi.org/10.1007/s12571-011-0140-5.CrossRefGoogle Scholar
  80. Singh, A. V., & Goel, R. (2015). Plant growth promoting efficiency of Chryseobacterium sp. PSR10 on finger millet (Eleusine coracana). Journal of Global Biosciences., 4(6), 2569–2575.Google Scholar
  81. Singh, A. V., & Prasad, B. (2014). Enhancement of plant growth, nodulation and seed yield through Plant Growth Promoting Rhizobacteria in Lentil (Lens culinaris Medik cv. VL125). International Journal of Current Microbiology and Applied Sciences, 3(6), 614–622.Google Scholar
  82. Singh, A. V., Shah, S., & Prasad, B. (2010). Effect of phosphate solubilizing bacteria on plant growth promotion and nodulation in soybean (Glycine max (L.) Merr). Journal of Hill Agriculture, 1(1), 35–39.Google Scholar
  83. Singh, A. V., Prasad, B., & Shah, S. (2011). Influence of phosphate solubilizing bacteria for enhancement of plant growth and seed yield in lentil. Journal of Crop and Weed, 7(1), 1–4.Google Scholar
  84. Singh, A. V., Chandra, R., & Reeta, G. (2013). Phosphate solubilization by Chryseobacterium sp. and their combined effect with N and P fertilizers on plant growth promotion. Archives of Agronomy and Soil Science, 59(5), 641–651.CrossRefGoogle Scholar
  85. Singh, J., Singh, A. V., Prasad, B., & Shah, S. (2017). Sustainable agriculture strategies of wheat biofortification through microorganisms. In A. Kumar, A. Kumar, & B. Prasad (Eds.), Wheat a premier food crop. New Delhi: Kalyani Publishers.Google Scholar
  86. Singh, A. V., Prasad, B., & Goel, R. (2018). Plant Growth Promoting Efficiency of Phosphate Solubilizing Chryseobacterium sp. PSR 10 with Different Doses of N and P Fertilizers on Lentil (Lens culinaris var. PL-5) Growth and Yield. International Journal of Current Microbiology and Applied Sciences, 7(05), 2280–2289.CrossRefGoogle Scholar
  87. Smith, S. E., & Read, D. J. (1997). Mycorrhizal symbiosis (2nd ed., ix + 605 pp). San Diego: Academic.Google Scholar
  88. Smith, S. E., & Read, D. J. (2008). Growth and carbon economy of arbuscular mycorrhizal symbionts. In S. E. Smith & D. J. Read (Eds.), Mycorrhizal symbiosis (pp. 117–144). London: Academic.  https://doi.org/10.1016/B978-012370526-6.50006-4.CrossRefGoogle Scholar
  89. Smith, S. E., Smith, F. A., & Jakobsen, I. (2003). Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology, 133(1), 16–20.  https://doi.org/10.1104/pp.103.024380.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Srivastava, M. P., Tewari, R., & Sharma, N. (2013). Effect of different cultural variables on siderophores produced by Trichoderma spp. International Journal of Advanced Research, 1, 1–6.Google Scholar
  91. Stoltzfus, R. J., & Dreyfuss, M. L. (1998). Micronutrient deficiency disorders. In Guidelines for the use of iron supplements to prevent and treat iron deficiency anemia (pp. 1–39). Washington, DC: ILSI Press.Google Scholar
  92. Stonor, R. N., Smith, S. E., Manjarrez, M., Facelli, E., & Smith, F. A. (2014). Mycorrhizal responses in wheat: Shading decreases growth but does not lower the contribution of the fungal phosphate uptake pathway. Mycorrhiza, 24(6), 465–472.  https://doi.org/10.1007/s00572-014-0556-9.CrossRefPubMedGoogle Scholar
  93. Subramanian, K. S., Bharathi, C., & Jegan, A. (2008). Response of maize to mycorrhizal colonization at varying levels of zinc and phosphorus. Biology and Fertility of Soils, 45(2), 133–144.  https://doi.org/10.1007/s00374-008-0317-z.CrossRefGoogle Scholar
  94. Subramanian, K. S., Tenshia, V., Jayalakshmi, K., & Ramachandran, V. (2009). Biochemical changes and zinc fractions in arbuscular mycorrhizal fungus (Glomus intraradices) inoculated and uninoculated soils under differential zinc fertilization. Applied Soil Ecology, 43(1), 32–39.  https://doi.org/10.1016/j.apsoil.2009.05.009.CrossRefGoogle Scholar
  95. Subramanian, K. S., Balakrishnan, N., & Senthil, N. (2013). Mycorrhizal symbiosis to increase the grain micronutrient content in maize. Australian Journal of Crop Science, 7(7), 900–910.Google Scholar
  96. Taktek, S., St-Arnaud, M., Piché, Y., Fortin, J. A., & Antoun, H. (2016). Igneous phosphate rock solubilization by biofilm-forming mycorrhizobacteria and hyphobacteria associated with Rhizoglomus irregulare DAOM 197198. Mycorrhiza, 27(1), 13–22.  https://doi.org/10.1007/s00572-016-0726-z.CrossRefPubMedGoogle Scholar
  97. Tarkalson, D. D., Jolley, V. D., Robbins, C. W., & Terry, R. E. (1998). Mycorrhizal colonization and nutrient uptake of dry bean in manure and compost manure treated subsoil and untreated topsoil and subsoil. Journal of Plant Nutrition, 21(9), 1867–1878.  https://doi.org/10.1080/01904169809365529.CrossRefGoogle Scholar
  98. Tatry, M., El Kassis, E., Lambilliotte, R., Corratgé, C., Van Aarle, I., Amenc, L. K., Alary, R., Zimmermann, S., Sentenac, H., & Plassard, C. (2009). Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaster. The Plant Journal., 57(6), 1092–1102.  https://doi.org/10.1111/j.1365-313x.2008.03749.x.CrossRefPubMedGoogle Scholar
  99. Thompson, J. P., Clewett, T. G., & Fiske, M. L. (2013). Field inoculation with arbuscular-mycorrhizal fungi overcomes phosphorus and zinc deficiencies of linseed (Linum usitatissimum) in a vertisol subject to long-fallow disorder. Plant and Soil, 371(1–2), 117–137.  https://doi.org/10.1007/s11104-013-1679-z.CrossRefGoogle Scholar
  100. Toussaint, J., St-Arnaud, M., & Charest, C. (2004). Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. Canadian Journal of Microbiology, 50(4), 251–260.  https://doi.org/10.1139/w04-009.CrossRefPubMedGoogle Scholar
  101. Upadhayay, V. K., Singh, A. V., & Pareek, N. (2018). An insight in decoding the multifarious and splendid role of microorganisms in crop biofortification. International Journal of Current Microbiology and Applied Sciences, 7(06), 2407–2418.  https://doi.org/10.20546/ijcmas.2018.706.286.CrossRefGoogle Scholar
  102. van der Heijden, M. G. A., Martin, F. M., Selosse, M., & Sanders, I. R. (2015). Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytologist, 205(4), 1406–1423.  https://doi.org/10.1111/nph.13288.CrossRefPubMedGoogle Scholar
  103. Vance, C. P. (2010). Quantitative trait loci, epigenetics, sugars, and microRNAs: Quaternaries in phosphate acquisition and use. Plant Physiology, 154(2), 582–588.  https://doi.org/10.1104/pp.110.161067.CrossRefPubMedPubMedCentralGoogle Scholar
  104. von Grebmer, K., Saltzman, A., Birol, E., Wiesmann, D., Prasai, N., Yin, S., Yohannes, Y., Menon, P., Thompson, J., & Sonntag, A. (2014). 2014 Global hunger index: The challenge of hidden hunger. Bonn/Washington, DC/Dublin: Welthungerhilfe/International Food Policy Research Institute/Concern Worldwide.  https://doi.org/10.2499/9780896299580.CrossRefGoogle Scholar
  105. White, P. J., & Broadley, M. R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets - iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, 182(1), 49–84.  https://doi.org/10.1111/j.1469-8137.2008.02738.x.CrossRefPubMedGoogle Scholar
  106. Whiting, S. N., De Souza, M. P., & Terry, N. (2001). Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspica erulescens. Environmental Science & Technology, 35(15), 3144–3150.  https://doi.org/10.1021/es001938v.CrossRefGoogle Scholar
  107. WHO (World Health Organization). (2002). The world health report 2002 – Reducing risks, promoting healthy life. Geneva: World Health Organization.Google Scholar
  108. Willmann, M., Gerlach, N., Buer, B., Polatajko, A., Nagy, R., Koebke, E., Jansa, J., Flisch, R., & Bucher, M. (2013). Mycorrhizal phosphate uptake pathway in maize: Vital for growth and cob development on nutrient poor agricultural and greenhouse soils. Frontiers in Plant Science, 4, 533.  https://doi.org/10.3389/fpls.2013.00533.CrossRefPubMedPubMedCentralGoogle Scholar
  109. Wright, D. P., Read, D. J., & Scholes, J. D. (1998). Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. Plant, Cell and Environment, 21(9), 881–891.  https://doi.org/10.1046/j.1365-3040.1998.00351.x.CrossRefGoogle Scholar
  110. Wu, S., Cheung, K., Luo, Y., & Wong, M. (2006). Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environmental Pollution, 140(1), 124–135.  https://doi.org/10.1016/j.envpol.2005.06.023.CrossRefPubMedGoogle Scholar
  111. Yadav, R., Singh, A. V., Kumar, M., & Yadav, S. (2016). Phytochemical analysis and plant growth promoting properties of endophytic fungi isolated from tulsi and Aloe vera. International Journal of Agricultural and Statistical Sciences, 12(1), 239–248.Google Scholar
  112. Zeng, H., & Combs, G. F. (2008). Selenium as an anticancer nutrient: Roles in cell proliferation and tumor cell invasion. The Journal of Nutritional Biochemistry., 19(1), 1–7.  https://doi.org/10.1016/j.jnutbio.2007.02.005.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Viabhav K. Upadhayay
    • 1
  • Jyoti Singh
    • 1
  • Amir Khan
    • 1
  • Swati Lohani
    • 1
  • Ajay Veer Singh
    • 1
  1. 1.Department of Microbiology, College of Basic Sciences and HumanitiesGBPUA&TPantnagarIndia

Personalised recommendations