Advertisement

Reliability Analysis of CNG Dispensing Unit by Lambda-Tau Approach

  • Priyank SrivastavaEmail author
  • Dinesh Khanduja
  • G. Aditya Narayanan
  • Mohit Agarwal
  • Mridul Tulsian
Conference paper
Part of the Lecture Notes on Multidisciplinary Industrial Engineering book series (LNMUINEN)

Abstract

CNG is considered a low maintenance cost and environment friendly fuel. Its use as an alternative fuel has surged in cities having CNG stations. Due to limited number of CNG stations, there is a substantial gap between demand and supply of CNG fuel. CNG dispensing unit is an important system of CNG station. Extended operation of dispensing unit is required for delineating this gap. For this, availability and reliability of CNG dispensing unit should be high. The present study reviews and exemplifies the fuzzy reliability analysis approach for behavioural analysis of CNG dispensing unit. The reliability block diagram and fuzzy Lambda-Tau approach have been used for evaluating reliability parameters. Fuzzy methodology has been used for representing failure rate and repair time. In present research work a comparative study of conventional fuzzy theory and vague theory has been expounded. The crisp reliability input and output data have been fuzzified using extension principle and alpha-cut approach. The fuzzy output has been defuzzified for assessing the system behaviour. The results of the study were communicated to system analyst and maintenance engineer.

Keywords

CNG Reliability Fuzzy methodology Lambda-Tau approach Triangular fuzzy number Vague theory Alpha cut 

List of Abbreviations

FMEA

Failure mode and effect analysis

RPN

Risk Priority Number

FRPN

Fuzzy Risk Priority Number

GRA

Grey Relational Analysis

FIS

Fuzzy Inference System

CNG

Compressed Natural Gas

PM

Particulate Matter

ISO

International Standards Organization

IS

Indian Standard

NASA

National Aeronautics and Space Administration

References

  1. 1.
    Adamyan, A., He, D.: System failure analysis through counters of petri net models. Qual. Reliab. Eng. Int. 20(4), 317–335 (2004).  https://doi.org/10.1002/qre.545CrossRefGoogle Scholar
  2. 2.
    Amuthakkannan, R., Kannan, S.M., Selladurai, V., Vijayalakshmi, K.: Software quality measurement and improvement for real-time systems using quality tools and techniques: a case study. Int. J. Ind. Syst. Eng. 3(2), 229–256 (2008)Google Scholar
  3. 3.
    El-Metwally, M., El-Shimy, M., Mohamed, A., Elshahed, M., Sayed, A.: Reliability assessment of wind turbine operating concepts using reliability block diagrams (RBDs). In: 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), IEEE, pp. 430–436 (2017)  https://doi.org/10.1109/MEPCON.2017.8301216
  4. 4.
    Garg, H.: Performance and behavior analysis of repairable industrial systems using vague Lambda-Tau methodology. Appl. Soft Comput. J. 22, 323–338 (2014).  https://doi.org/10.1016/j.asoc.2014.05.027CrossRefGoogle Scholar
  5. 5.
    Guimaraes, A.C., Lapa, C.M.F.: Effects analysis fuzzy inference system in nuclear problems using approximate reasoning. Ann. Nucl. Energy 31(1), 107–115 (2004)CrossRefGoogle Scholar
  6. 6.
    Hyun, K.-C., Min, S., Choi, H., Park, J., Lee, I.-M.: Risk analysis using fault-tree analysis (FTA) and analytic hierarchy process (AHP) applicable to shield TBM tunnels. Tunn. Undergr. Space Technol. 49, 121–129 (2015).  https://doi.org/10.1016/j.tust.2015.04.007CrossRefGoogle Scholar
  7. 7.
    Jin, Q., Sugasawa, Y.: Representation and analysis of behavior for multiprocess systems by using stochastic petri nets. Math. Comput. Model. 22(10–12), 109–118 (1995).  https://doi.org/10.1016/0895-7177(95)00187-7CrossRefzbMATHGoogle Scholar
  8. 8.
    Kaminski, M.M.: Reliability Engineering and Risk Analysis. Marcel Dekker (1999)Google Scholar
  9. 9.
    Knezevic, J., Odoom, E.R.: Reliability modelling of repairable systems using petri nets and fuzzy Lambda ± Tau methodology, 73 (2001)Google Scholar
  10. 10.
    Komal Sharma, S.P., Kumar, D.: Stochastic behavior analysis of the press unit in a paper mill using GABLT technique. Int. J. Intell. Comput. Cybern. 2(3), 574–593 (2009)  https://doi.org/10.1108/17563780910982734MathSciNetCrossRefGoogle Scholar
  11. 11.
    Komal Sharma, S.P., Kumar, D.: Stochastic behavior analysis of the forming unit in a paper mill using NGABLT technique. J. Qual. Maint. Eng. 16(1), 107–122 (2010)  https://doi.org/10.1108/13552511011030354CrossRefGoogle Scholar
  12. 12.
    Konstandinidou, M., Nivolianitou, Z., Kiranoudis, C., Markatos, N.: A fuzzy modeling application of CREAM methodology for human reliability analysis. Reliab. Eng. Syst. Saf. 91(6), 706–716 (2006).  https://doi.org/10.1016/j.ress.2005.06.002CrossRefGoogle Scholar
  13. 13.
    Kumar, A., Sharma, S.P., Kumar, D.: Robot reliability using petri nets and fuzzy Lambda-Tau methodology. Reliab. Eng. (Mm), 7 (2009). Retrieved from http://arxiv.org/abs/0907.3371
  14. 14.
    Lavasani, S.M., Zendegani, A., Celik, M.: An extension to fuzzy fault tree analysis (FFTA) application in petrochemical process industry. Process Saf. Environ. Prot. 93, 75–88 (2015).  https://doi.org/10.1016/j.psep.2014.05.001CrossRefGoogle Scholar
  15. 15.
    Mustapha, F., Sapuan, S.M., Ismail, N., Mokhtar, A.S.: A computer-based intelligent system for fault diagnosis of an aircraft engine. Eng. Comput. 21(1), 78–90 (2004).  https://doi.org/10.1108/02644400410511855CrossRefzbMATHGoogle Scholar
  16. 16.
    Olson, D.L., Wu, D.: Simulation of fuzzy multiattribute models for grey relationships. Eur. J. Oper. Res. 175(1), 111–120 (2006)CrossRefGoogle Scholar
  17. 17.
    Panchal, D., Jamwal, U., Srivastava, P., Kamboj, K., Sharma, R., Panchal, D., Jamwal, U.: Fuzzy methodology application for failure analysis of transmission system. Int. J. Math. Oper. Res. 12(2), 220–237 (2018)Google Scholar
  18. 18.
    Panchal, D., Kumar, D.: Integrated framework for behaviour analysis in a process plant. J. Loss Prev. Process Ind. 40, 147–161 (2016).  https://doi.org/10.1016/j.jlp.2015.12.021CrossRefGoogle Scholar
  19. 19.
    Panchal, D., Kumar, D.: Stochastic behaviour analysis of power generating unit in thermal power plant using fuzzy methodology. OPSEARCH 53(1), 16–40 (2016).  https://doi.org/10.1007/s12597-015-0219-4CrossRefzbMATHGoogle Scholar
  20. 20.
    Rani, M., Garg, H., Sharma, S.P.: Cost minimization of butter-oil processing plant using artificial bee colony technique. Math. Comput. Simul. 97, 94–107 (2014).  https://doi.org/10.1016/j.matcom.2013.07.004MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sharma, R.K., Kumar, D., Kumar, P.: Fuzzy modeling of system behavior for risk and reliability analysis. Int. J. Syst. Sci. 39(6), 563–581 (2008).  https://doi.org/10.1080/00207720701717708MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Singer, D.: A fuzzy set approach to fault tree and reliability analysis. Fuzzy Sets Syst. 34(2), 145–155 (1990).  https://doi.org/10.1016/0165-0114(90)90154-XCrossRefGoogle Scholar
  23. 23.
    Srivastava, P., Khanduja, D., Agrawal, V.P.: A framework of fuzzy integrated MADM and GMA for maintenance strategy selection based on agile enabler attributes. Math. Ind. Case Stud. 8(1), 5 (2017)CrossRefGoogle Scholar
  24. 24.
    Srivastava, P., Khanduja, D., Agrawal, V.P.: Integrating agile thinking into maintenance strategy performance analysis. Int. J. Process Manag. Benchmarking 8(2), 228–245 (2018)CrossRefGoogle Scholar
  25. 25.
    Taheriyoun, M., Moradinejad, S.: Reliability analysis of a wastewater treatment plant using fault tree analysis and Monte Carlo simulation. Environ. Monit. Assess. 187(1), 4186 (2015).  https://doi.org/10.1007/s10661-014-4186-7CrossRefGoogle Scholar
  26. 26.
    Wang, W.-L., Pan, D., Chen, M.-H.: Architecture-based software reliability modeling. J. Syst. Softw. 79(1), 132–146 (2006).  https://doi.org/10.1016/j.jss.2005.09.004CrossRefGoogle Scholar
  27. 27.
    Wu, J., Yan, S., Xie, L.: Reliability analysis method of a solar array by using fault tree analysis and fuzzy reasoning petri net. Acta Astronaut. 69(11–12), 960–968 (2011).  https://doi.org/10.1016/j.actaastro.2011.07.012CrossRefGoogle Scholar
  28. 28.
    Xu, K., Tang, L.C., Xie, M., Ho, L., Zhu, M.L.: Fuzzy assessment of FMEA for engine systems. Reliab. Eng. Syst. Saf. 75(17–29) (2002)CrossRefGoogle Scholar
  29. 29.
    Yager, R.R.: A characterization of the extension principle. Fuzzy Sets Syst. 18(3), 205–217 (1986).  https://doi.org/10.1016/0165-0114(86)90002-3MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—II. Inf. Sci. 8(4), 301–357 (1975).  https://doi.org/10.1016/0020-0255(75)90046-8MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Priyank Srivastava
    • 1
    • 2
    Email author
  • Dinesh Khanduja
    • 1
  • G. Aditya Narayanan
    • 2
  • Mohit Agarwal
    • 2
  • Mridul Tulsian
    • 2
  1. 1.Department of Mechanical EngineeringNational Institute of Technology KurukshetraKurukshetraIndia
  2. 2.Amity University NoidaNoidaIndia

Personalised recommendations