Advertisement

Approximate Backbone Subsection Optimization Algorithm for the Traveling Salesman Problem

  • Feipeng WangEmail author
  • Hu Peng
  • Changshou DengEmail author
  • Xujie Tan
  • Likun Zheng
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 986)

Abstract

Approximate backbone subsection optimization algorithm is proposed to solve the traveling salesman problem, for the precision accuracy of the basic ant colony algorithm for solving the larger traveling salesman problem is low. First, traveling salesman problem approximate backbone is obtained by the ant colony algorithm, and then the original traveling salesman problem is sectioned based on the approximate backbone. Then the ant colony optimization algorithm is applied to solve the subsections to improve the precision accuracy of the global optimal solution. The experimental results show that the algorithm is more precision accuracy than the basic ant colony algorithms in the solution of the typical traveling salesman problem.

Keywords

Traveling salesman problem Approximate backbone Subsection Ant colony optimization 

Notes

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 61763019), the Natural Science Foundation of Heilongjiang Province (General Program:F2017019), the “Thirteenth Five-Year Plan” of Education Science in Jiangxi Province for 2017 (No.17YB211), and the Science and Technology Plan Projects of Jiangxi Provincial Education Department (No. GJJ161072, No. GJJ161076, No. GJJ170 953).

References

  1. 1.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  2. 2.
    Colorni, A., Dorigo, M.: Heuristics from nature for hard combinatorial optimization problems. Int. Trans. Oper. Res. 3(1), 1–21 (1996)CrossRefGoogle Scholar
  3. 3.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)CrossRefGoogle Scholar
  4. 4.
    Jiang, H., Qiu, T., Hu, Y., Li, M.-C., Luo, Z.-X.: Backbone analysis and applications in heuristic algorithm design. Acta Autom. Sin. 37(3), 257–269 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Zhang, W.X., Looks, M.: A novel local search algorithm for the traveling salesman problem that exploits backbones. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, pp. 343–348. Morgan Kaufmann Publishers, San Francisco (2005)Google Scholar
  7. 7.
    Helsgaun, K.: General k-opt submoves for the Lin-Kernighan TSP heuristic. Math. Program. Comput. 1(2–3), 119–163 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Schneider, J., Froschhammer, C., Morgenstern, I., Husslein, T., Singer, J.M.: Searching for backbones-an efficient parallel algorithm for the traveling salesman problem. Comput. Phys. Commun. 96(2–3), 173–188 (1996)CrossRefGoogle Scholar
  9. 9.
    Schneider, J.: Searching for backbones - a high-performance parallel algorithm for solving combinatorial optimization problems. Future Gener. Comput. Syst. 19(1), 121–131 (2003)CrossRefGoogle Scholar
  10. 10.
    Qi, Y.-T., Liu, F., Jiao, L.-C.: Immune algorithm with self-adaptive reduction for large-scale TSP. J. Softw. 19(6), 1265–1273 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fischer, T., Merz, P.: Reducing the size of traveling salesman problem instances by fixing edges. In: Cotta, C., van Hemert, J. (eds.) EvoCOP 2007. LNCS, vol. 4446, pp. 72–83. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71615-0_7CrossRefGoogle Scholar
  12. 12.
    Dong, C., Jäger, G., Richter, D., Molitor, P.: Effective tour searching for TSP by contraction of pseudo backbone edges. In: Goldberg, A.V., Zhou, Y. (eds.) AAIM 2009. LNCS, vol. 5564, pp. 175–187. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02158-9_16CrossRefGoogle Scholar
  13. 13.
    Zou, P., Zhou, Z., Chen, G.L., Gu, J.: A multilevel reduction algorithm to TSP. J. Softw. 14(1), 35–42 (2003). http://www.jos.org.cn/1000-9825/14/35.pdf. (in Chinese with English abstract)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern.-Part B 26(1), 29–41 (1996)CrossRefGoogle Scholar
  15. 15.
    Xu, K., Lu, H., Cheng, B., Huang, Y.: Ant colony optimization algorithm based on improved pheromones double updating and local optimization for solving TSP. J. Comput. Appl. 37(6), 1686–1691 (2017)Google Scholar
  16. 16.
    Zhang, C., Tu, L., Wang, J.: Application of self-adaptive ant colony optimization in TSP. J. Central South Univ. (Sci. Technol.) 46(8), 2944–2949 (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Information Science and TechnologyJiujiang UniversityJiujiangChina
  2. 2.School of Computer and Information EngineeringHaerbin Commerce UniversityHaerbinChina

Personalised recommendations