Advertisement

A Binary Particle Swarm Optimization for Solving the Bounded Knapsack Problem

  • Ya Li
  • Yichao HeEmail author
  • Huanzhe Li
  • Xiaohu Guo
  • Zewen Li
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 986)

Abstract

Bounded knapsack problem (BKP) is a classical knapsack problem. At present, methods for solving the BKP are mainly deterministic algorithms. The literature that using evolutionary algorithms solve this problem has not been reported. Therefore, this paper uses a binary particle swarm optimization (BPSO) to solve the BKP. On the basis of using the repair and optimization method to deal with the infeasible solutions, an effective method of using BPSO to solve the BKP is given. For three kinds of large-scale BKP instances, the feasibility and efficiency of BPSO are verified by comparing the results with whale optimization algorithm and genetic algorithm. The experimental results show that BPSO is not only more stable, but also can obtain the approximation ratio closer to 1.

Keywords

Bounded knapsack problem Evolutionary algorithm Binary particle swarm optimization Repair and optimization method 

Notes

Acknowledgments

This work was supported by the Scientific Research Project Program of Colleges and Universities in Hebei Province (ZD2016005), and the Natural Science Foundation of Hebei Province (F2016403055).

References

  1. 1.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Proceedings of the Complexity of Computer Computations, pp. 110–137. Plenum Press, New York (1972)Google Scholar
  2. 2.
    Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, New York (1990)zbMATHGoogle Scholar
  3. 3.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems, pp. 55–75. Springer, Berlin (2004).  https://doi.org/10.1007/978-3-540-24777-7CrossRefzbMATHGoogle Scholar
  4. 4.
    Mathews, G.B.: On the partition of numbers. Proc. Lond. Math. Soc. 28, 486–490 (1897).  https://doi.org/10.1112/plms/s1-28.1.486CrossRefzbMATHGoogle Scholar
  5. 5.
    Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack problem. J. Heuristics 4(1), 63–86 (1998)CrossRefGoogle Scholar
  6. 6.
    Khuri, S.L.: The zero/one multiple knapsack problem and genetic algorithms. In: Proceedings of the 1994 ACM Symposium of Applied Computing, pp. 188–193 (1994)Google Scholar
  7. 7.
    Pisinger, D.: A minimal algorithm for the bounded knapsack problem. In: Balas, E., Clausen, J. (eds.) IPCO 1995. LNCS, vol. 920, pp. 95–109. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-59408-6_44CrossRefGoogle Scholar
  8. 8.
    Martello, S., Toth, P.: An exact algorithm for large unbounded knapsack problems. Oper. Res. Lett. 9(1), 15–20 (1990)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Caprara, A., Pisinger, D., Toth, P.: Exact solution of the quadratic knapsack problem. Informs J. Comput. 11(2), 125–137 (1999)MathSciNetCrossRefGoogle Scholar
  10. 10.
    He, Y.C., Wang, X.Z., Li, W.B., Zhao, S.L.: Exact algorithms and evolutionary algorithms for randomized time-varying knapsack problem. Ruan Jian Xue Bao/J. Softw. (2016). (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4937.htm.  https://doi.org/10.13328/j.cnki.jos.004937
  11. 11.
    He, Y., Xie, H., Wong, T.-L., Wang, X.: A novel binary artificial bee colony algorithm for the set-union knapsack problem. Future Gener. Comput. Syst. 87(1), 77–86 (2018)CrossRefGoogle Scholar
  12. 12.
    Wang, X.Z., He, Y.-C.: Evolutionary algorithms for knapsack problems. J. Softw. 28, 1–16 (2017)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Goldberg, D.E.: Genetic Algorithm in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  14. 14.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: 1995 Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  15. 15.
    Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2007)CrossRefGoogle Scholar
  17. 17.
    Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)CrossRefGoogle Scholar
  19. 19.
    Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: Proceedings 1997 Conference on Systems, Man, and Cybernetics, pp. 4104–4109. IEEE Service Center, Piscataway (1997)Google Scholar
  20. 20.
    Clerc, M.: Discrete particle swarm optimization, illustrated by the traveling salesman problem. In: Clerc, M. (ed.) New Optimization Techniques in Engineering. STUDFUZZ, vol. 141, pp. 219–239. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-39930-8_8CrossRefzbMATHGoogle Scholar
  21. 21.
    Van Den Bergh, F.: An analysis of particle swarm optimizers. Ph.D. thesis (2007)Google Scholar
  22. 22.
    Liu, B., Wang, L., Jin, Y.H.: An effective PSO-based memetic algorithm for flow shop scheduling. IEEE Trans. Syst. Man Cybern. Part B Cybern. 37(1), 18 (2007). A Publication of the IEEE Systems Man & Cybernetics SocietyCrossRefGoogle Scholar
  23. 23.
    Li, Z., Li, N.: A novel multi-mutation binary particle swarm optimization for 0/1 knapsack problem. In: 2009 Chinese Control and Decision Conference, no. 2, pp. 3090–3095 (2009)Google Scholar
  24. 24.
    Bansal, J.C., Deep, K.: A modified binary particle swarm optimization for knapsack problems. Appl. Math. Comput. 218(22), 11042–11061 (2012)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Hussien, A.G., Houssein, E.H., Hassanien, A.E.: A binary whale optimization algorithm with hyperbolic tangent fitness function for feature selection. In: Eighth International Conference on Intelligent Computing and Information Systems. IEEE (2018)Google Scholar
  26. 26.
    Michalewicz, Z.: Genetic Algorithm + Data Structure = Evolution Programs, pp. 13–103. Springer, Berlin (1996).  https://doi.org/10.1007/978-3-662-03315-9CrossRefzbMATHGoogle Scholar
  27. 27.
    Zou, D.X., Gao, L.Q., Li, S., Wu, J.H.: Solving 0-1 knapsack problem by a novel global harmony search algorithm. Appl. Soft Comput. 11, 1556–1564 (2011).  https://doi.org/10.1016/j.asoc.2010.07.019CrossRefGoogle Scholar
  28. 28.
    He, Y.C., Zhang, X.L., Li, X., Wu, W.L., Gao, S.G.: Algorithms for randomized time-varying knapsack problems. J. Comb. Optim. 31(1), 95–117 (2016).  https://doi.org/10.1007/s10878-014-9717-1MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    He, Y.C., Wang, X.Z., Li, W.B., Zhao, S.L.: Exact algorithms and evolutionary algorithms for randomized time-varying knapsack problem. Ruan Jian Xue Bao/J. Softw. (2016). (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4937.htm.  https://doi.org/10.13328/j.cnki.jos.004937
  30. 30.
    He, Y.-C., Song, J.-M., Zhang, J.-M., et al.: Research on genetic algorithm for solving static and dynamic knapsack problems. Appl. Res. Comput. 32(4), 1011–1015 (2015). (in Chinese)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ya Li
    • 1
  • Yichao He
    • 1
    Email author
  • Huanzhe Li
    • 1
  • Xiaohu Guo
    • 1
  • Zewen Li
    • 1
  1. 1.College of Information and EngineeringHebei GEO UniversityShijiazhuangChina

Personalised recommendations