Advertisement

Overview of Therapeutic Efficacy of Mushrooms

  • Sindhu Ramesh
  • Mohammed Majrashi
  • Mohammed Almaghrabi
  • Manoj Govindarajulu
  • Eddie Fahoury
  • Maali Fadan
  • Manal Buabeid
  • Jack Deruiter
  • Randall Clark
  • Vanisree Mulabagal
  • Dinesh Chandra AgrawalEmail author
  • Timothy Moore
  • Muralikrishnan DhanasekaranEmail author
Chapter

Abstract

Mushrooms have been used globally for various nutritional and medicinal values and now are gaining worldwide recognition due to its various health benefits and potent and unique pharmaceutical properties. Researchers in different parts of the world have demonstrated different species of mushrooms possessing immunomodulatory, antitumor, anticancer, antibacterial, antiviral, anti-inflammatory, anti-atherosclerotic, neuroprotective, antioxidant, and anti-hypoglycemic properties. The chapter presents an overview of the research on the therapeutic efficacy of mushrooms.

Keywords

Ganoderma lucidum Hericium erinaceus Medicinal mushrooms Neurodegenerative diseases Therapeutic value 

Abbreviations

AD

Alzheimer’s disease

APP

Amyloid precursor protein

BACE1

Beta-secretase 1

BDNF

Brain-derived neurotrophic factor

CA3

Cornu amonis

CAT

Catalase

CCL4

Carbon tetrachloride

CNS

Central nervous system

COMT

Catechol-O-methyltransferase

EMM

Ectomycorrhizal mushrooms

GDNF

Glia-derived neurotrophic factor

GIT

Gastrointestinal tract

GSH

Glutathione

HCC

Hepatocellular carcinoma

HDL

High-density lipoprotein

HFD

High-fat diet

HIV

Human immunodeficiency virus

HMG-CoA

Hydroxymethylglutaryl-CoA

IFN-γ

Interferon-gamma

iNOS

Inducible nitric oxide synthase

JNK

c-Jun N-terminal kinases

LDL

Low-density lipoprotein

LPS

Lipopolysaccharide

MAPK

Mitogen-activated protein kinase

MPTP

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MRSA

Methicillin-resistant Staphylococcus aureus

NDC

Non-digestible carbohydrates

NF-κB

Nuclear factor-κB

NGF

Nerve growth factor

NK

Natural killer cells

NO

Nitric oxide

NPC

Neural progenitor cells

PI3K

Phosphatidylinositol-4,5-bisphosphate 3-kinase

PKC

Protein kinase C

RFA

Radio frequency ablation

RNA

Ribonucleic acid

ROS

Reactive oxygen species

SOD

Superoxide dismutase

TC

Total cholesterol

TD1

Type 1 diabetes mellitus

TD2

Type 2 diabetes mellitus

Th1/Th2

T-helper cells

TNF-α

Tumor necrosis factor-alpha

UDP

Uridine diphosphate

VEGF

Vascular endothelial growth factor

Notes

Acknowledgment

We would like to thank Mrs. Fatimah Almaghrabi and Mrs. Bhavanee Samyuktha for their technical assistance with the manuscript.

References

  1. Alzorqi I, Sudheer S, Lu TJ, Manickam S (2017) Ultrasonically extracted β-d-glucan from artificially cultivated mushroom, characteristic properties and antioxidant activity. Ultrason Sonochem 35:531–540.  https://doi.org/10.1016/j.ultsonch.2016.04.017 CrossRefPubMedGoogle Scholar
  2. Baker JR, Kim JS, Park SY (2008) Composition and proposed structure of a water-soluble glycan from the Keumsa Sangwhang Mushroom (Phellinus linteus). Fitoterapia 79:345–350.  https://doi.org/10.1016/j.fitote.2008.03.002 CrossRefPubMedGoogle Scholar
  3. Barceloux DG (2008) Medical toxicology of natural substances. Wiley, HobokenCrossRefGoogle Scholar
  4. Benedict RG, Brady LR (1972) Antimicrobial activity of mushroom metabolites. J Pharm Sci 61:1820–1822.  https://doi.org/10.1002/jps.2600611130 CrossRefPubMedGoogle Scholar
  5. Bennett L, Sheean P, Zabaras D, Head R (2013) Heat-stable components of wood ear mushroom, Auricularia polytricha (higher Basidiomycetes), inhibit in vitro activity of beta secretase (BACE1). Int J Med Mushrooms 15:233–249CrossRefGoogle Scholar
  6. Bergendiova K, Tibenska E, Majtan J (2011) Pleuran (β-glucan from Pleurotus ostreatus) supplementation, cellular immune response and respiratory tract infections in athletes. Eur J Appl Physiol 111:2033–2040.  https://doi.org/10.1007/s00421-011-1837-z CrossRefPubMedGoogle Scholar
  7. Berven L, Karppinen P, Hetland G, Samuelsen ABC (2015) The polar high molecular weight fraction of the Agaricus blazei Murill extract, AndoSanTM, reduces the activity of the tumor-associated protease, legumain, in RAW 264.7 cells. J Med Food 18:429–438.  https://doi.org/10.1089/jmf.2014.0018 CrossRefPubMedGoogle Scholar
  8. Bharadwaj P, Martins R, Macreadie I (2010) Yeast as a model for studying Alzheimer’s disease. FEMS Yeast Res 10:961–969.  https://doi.org/10.1111/j.1567-1364.2010.00658.x CrossRefPubMedGoogle Scholar
  9. Biasibetti R, Tramontina AC, Costa AP, Dutra MF, Quincozes-Santos A, Nardin P, Bernardi CL, Wartchow KM, Lunardi PS, Gonçalves CA (2013) Green tea (−)epigallocatechin-3-gallate reverses oxidative stress and reduces acetylcholinesterase activity in a streptozotocin-induced model of dementia. Behav Brain Res 236:186–193.  https://doi.org/10.1016/j.bbr.2012.08.039 CrossRefPubMedGoogle Scholar
  10. Bobek P, Galbavý Š (1999) Hypocholesterolemic and antiatherogenic effect of oyster mushroom (Pleurotus ostreatus) in rabbits. Nahrung/Food 43:339–342.  https://doi.org/10.1002/(SICI)1521-3803(19991001)43:5<339::AID-FOOD339>3.0.CO;2-5 CrossRefPubMedGoogle Scholar
  11. Bonnet MS, Basson PW (2002) The toxicology of Amanita phalloides. Homeopathy 91:249–254CrossRefGoogle Scholar
  12. Brandt C, Piraino F (2000) Mushroom antivirals. Recent Res Dev Antimicrob Agents Chemother 4:11–26Google Scholar
  13. Brondz I, Ekeberg D, Høiland K, Bell DS, Annino AR (2007) The real nature of the indole alkaloids in Cortinarius infractus: evaluation of artifact formation through solvent extraction method development. J Chromatogr A 1148:1–7.  https://doi.org/10.1016/j.chroma.2007.02.074 CrossRefGoogle Scholar
  14. Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41:242–247.  https://doi.org/10.1007/s12035-010-8105-9 CrossRefPubMedGoogle Scholar
  15. Cai M, Lin Y, Luo Y, Liang H, Sun P (2015) Extraction, antimicrobial, and antioxidant activities of crude polysaccharides from the wood ear medicinal mushroom Auricularia auricula-judae (higher basidiomycetes). Int J Med Mushrooms 17:591–600CrossRefGoogle Scholar
  16. Calvo MS, Mehrotra A, Beelman RB, Nadkarni G, Wang L, Cai W, Goh BC, Kalaras MD, Uribarri J (2016) A retrospective study in adults with metabolic syndrome: diabetic risk factor response to daily consumption of Agaricus bisporus (white button mushrooms). Plant Foods Hum Nutr 71:245–251.  https://doi.org/10.1007/s11130-016-0552-7 CrossRefPubMedGoogle Scholar
  17. Cardozo FTGS, Camelini CM, Leal PC, Kratz JM, Nunes RJ, de Mendonça MM, Simões CMO (2014) Antiherpetic mechanism of a sulfated derivative of Agaricus brasiliensis fruiting bodies polysaccharide. Intervirology 57:375–383.  https://doi.org/10.1159/000365194 CrossRefPubMedGoogle Scholar
  18. Chan PM, Tan YS, Chua KH, Sabaratnam V, Kuppusamy UR (2015) Attenuation of inflammatory mediators (TNF-α and nitric oxide) and up-regulation of IL-10 by wild and domesticated basidiocarps of Amauroderma rugosum (Blume T. Nees) torrend in LPS-stimulated RAW264.7 cells. PLoS One 10:e0139593.  https://doi.org/10.1371/journal.pone.0139593 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chang ST (2007) Mushrooms and mushroom cultivation. In: Van Nostrand’s scientific encyclopedia. Wiley, HobokenGoogle Scholar
  20. Chen Q (1989) Antilipemic effect of polysaccharides from Auricularia auricular, Tremella fuciformis, and Tremella fuciformis spores. Zhongguo Yaoke Daxue Xuebao 20:344–347Google Scholar
  21. Chen L, Shao H (2006) Extract from Agaricus blazei Murill can enhance immune responses elicited by DNA vaccine against foot-and-mouth disease. Vet Immunol Immunopathol 109:177–182.  https://doi.org/10.1016/j.vetimm.2005.08.028 CrossRefPubMedGoogle Scholar
  22. Chen J, Mao D, Yong Y, Li J, Wei H, Lu L (2012a) Hepatoprotective and hypolipidemic effects of water-soluble polysaccharidic extract of Pleurotus eryngii. Food Chem 130:687–694.  https://doi.org/10.1016/j.foodchem.2011.07.110 CrossRefGoogle Scholar
  23. Chen X, Guo C, Kong J (2012b) Oxidative stress in neurodegenerative diseases. Neural Regen Res 7:376–385.  https://doi.org/10.3969/j.issn.1673-5374.2012.05.009 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Cheng JH, Tsai CL, Lien YY, Lee MS, Sheu SC (2016) High molecular weight of polysaccharides from Hericium erinaceus against amyloid beta-induced neurotoxicity. BMC Complement Altern Med 16:170.  https://doi.org/10.1186/s12906-016-1154-5 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Cheung PCK (1996) Dietary fiber content and composition of some cultivated edible mushroom fruiting bodies and mycelia. J Agric Food Chem 44:468–471.  https://doi.org/10.1021/jf950455l CrossRefGoogle Scholar
  26. Cheung WM, Hui WS, Chu PW, Chiu SW, Ip NY (2000) Ganoderma extract activates MAP kinases and induces the neuronal differentiation of rat pheochromocytoma PC12 cells. FEBS Lett 486:291–296CrossRefGoogle Scholar
  27. Cho EJ, Hwang HJ, Kim SW, Oh JY, Baek YM, Choi JW, Bae SH, Yun JW (2007) Hypoglycemic effects of exopolysaccharides produced by mycelial cultures of two different mushrooms Tremella fuciformis and Phellinus baumii in ob/ob mice. Appl Microbiol Biotechnol 75:1257–1265.  https://doi.org/10.1007/s00253-007-0972-2 CrossRefPubMedGoogle Scholar
  28. Chu QP, Wang LE, Cui XY, Fu HZ, Lin ZB, Lin SQ, Zhang YH (2007) Extract of Ganoderma lucidum potentiates pentobarbital-induced sleep via a GABAergic mechanism. Pharmacol Biochem Behav 86:693–698.  https://doi.org/10.1016/j.pbb.2007.02.015 CrossRefPubMedGoogle Scholar
  29. Chu YF, Chang WH, Black RM, Liu JR, Sompol P, Chen Y, Wei H, Zhao Q, Cheng IH (2012) Crude caffeine reduces memory impairment and amyloid β1–42 levels in an Alzheimer’s mouse model. Food Chem 135:2095–2102.  https://doi.org/10.1016/j.foodchem.2012.04.148 CrossRefPubMedGoogle Scholar
  30. Claeysen S, Cochet M, Donneger R, Dumuis A, Bockaert J, Giannoni P (2012) Alzheimer culprits: cellular crossroads and interplay. Cell Signal 24:1831–1840.  https://doi.org/10.1016/j.cellsig.2012.05.008 CrossRefPubMedGoogle Scholar
  31. Colak A, Kolcuoglu Y, ES AJ of, 2007 U (2009). Biochemical composition of some Turkish fungi. https://search.proquest.com/
  32. Cui HY, Wang CL, Wang YR, Li ZJ, Chen MH, Li FJ, Sun YP (2015) Pleurotus nebrodensis polysaccharide (PN-S) enhances the immunity of immunosuppressed mice. Chin J Nat Med 13:760–766.  https://doi.org/10.1016/S1875-5364(15)30076-5 CrossRefPubMedGoogle Scholar
  33. De Carvalho RSM, Duarte FS, De Lima TCM (2011) Involvement of GABAergic non-benzodiazepine sites in the anxiolytic-like and sedative effects of the flavonoid baicalein in mice. Behav Brain Res 221:75–82.  https://doi.org/10.1016/j.bbr.2011.02.038 CrossRefPubMedGoogle Scholar
  34. El-Mekkawy S, Meselhy MR, Nakamura N, Tezuka Y, Hattori M, Kakiuchi N, Shimotohno K, Kawahata T, Otake T (1998) Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum. Phytochemistry 49:1651–1657CrossRefGoogle Scholar
  35. Elsayed EA, El Enshasy H, Wadaan MAM, Aziz R (2014) Mushrooms: a potential natural source of anti-inflammatory compounds for medical applications. Mediators Inflamm 2014:1–15.  https://doi.org/10.1155/2014/805841 CrossRefGoogle Scholar
  36. Fang L, Zhang Y, Xie J, Wang L, Zhang H, Wei W, Li Y (2016) Royal sun medicinal mushroom, Agaricus brasiliensis (Agaricomycetidae), derived polysaccharides exert immunomodulatory activities in vitro and in vivo. Int J Med Mushrooms 18:123–132.  https://doi.org/10.1615/IntJMedMushrooms.v18.i2.30 CrossRefPubMedGoogle Scholar
  37. Fiorentini A, Rosi MC, Grossi C, Luccarini I, Casamenti F (2010) Lithium improves hippocampal neurogenesis, neuropathology and cognitive functions in APP mutant mice. PLoS One 5:e14382.  https://doi.org/10.1371/journal.pone.0014382 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Fisher RS, Boas W, van E, Blume W, Elger C, Genton P, Lee P, Engel J (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46:470–472.  https://doi.org/10.1111/j.0013-9580.2005.66104.x CrossRefPubMedGoogle Scholar
  39. Folkman J (2004) Endogenous angiogenesis inhibitors. APMIS 112:496–507.  https://doi.org/10.1111/j.1600-0463.2004.apm11207-0809.x CrossRefPubMedGoogle Scholar
  40. Gan D, Ma L, Jiang C, Wang M, Zeng X (2012) Medium optimization and potential hepatoprotective effect of mycelial polysaccharides from Pholiota dinghuensis Bi against carbon tetrachloride-induced acute liver injury in mice. Food Chem Toxicol 50:2681–2688.  https://doi.org/10.1016/j.fct.2012.05.003 CrossRefPubMedGoogle Scholar
  41. Gao Y, Huang M, Lin ZB, Zhou S (2003) Hepatoprotective activity and the mechanisms of action of Ganoderma lucidum (Curt.:Fr.) P. Karst. (Ling Zhi, Reishi Mushroom) (Aphyllophoromycetideae) (Review). Int J Med Mushrooms 5:22.  https://doi.org/10.1615/InterJMedicMush.v5.i2.20 CrossRefGoogle Scholar
  42. Gao L, Sun Y, Chen C, Xi Y, Wang J, Wang Z (2007) Primary mechanism of apoptosis induction in a leukemia cell line by fraction FA-2-b-ss prepared from the mushroom Agaricus blazei Murill. Brazilian J Med Biol Res = Rev Bras Pesqui medicas e Biol 40:1545–1555CrossRefGoogle Scholar
  43. Geissler T, Brandt W, Porzel A, Schlenzig D, Kehlen A, Wessjohann L, Arnold N (2010) Acetylcholinesterase inhibitors from the toadstool Cortinarius infractus. Bioorg Med Chem 18:2173–2177.  https://doi.org/10.1016/j.bmc.2010.01.074 CrossRefGoogle Scholar
  44. Guggenheim AG, Wright KM, Zwickey HL (2014) Immune modulation from five major mushrooms: Application to integrative oncology. Integr Med (Encinitas) 13:32–44Google Scholar
  45. Guillamón E, García Lafuente A, Lozano M, D’Arrigo M, Rostagno MA, Villares A, Martínez JA (2010) Edible mushrooms: role in the prevention of cardiovascular diseases. Fitoterapia 81:715–723.  https://doi.org/10.1016/j.fitote.2010.06.005 CrossRefPubMedGoogle Scholar
  46. Gunawardena D, Shanmugam K, Low M, Bennett L, Govindaraghavan S, Head R, Ooi L, Münch G (2014) Determination of anti-inflammatory activities of standardised preparations of plant- and mushroom-based foods. Eur J Nutr 53:335–343.  https://doi.org/10.1007/s00394-013-0531-9 CrossRefPubMedGoogle Scholar
  47. Gunde-Cimerman N, Friedrich J, Cimerman A, BeniÄki N (1993) Screening fungi for the production of an inhibitor of HMG CoA reductase: production of mevinolin by the fungi of the genus Pleurotus. FEMS Microbiol Lett 111:203–206.  https://doi.org/10.1111/j.1574-6968.1993.tb06386.x CrossRefGoogle Scholar
  48. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science (80-) 297:353–356.  https://doi.org/10.1126/science.1072994 CrossRefGoogle Scholar
  49. Hetland G, Johnson E, Lyberg T, Kvalheim G (2011) The mushroom Agaricus blazei Murill elicits medicinal effects on tumor, infection, allergy, and inflammation through its modulation of innate immunity and amelioration of Th1/Th2 imbalance and inflammation. Adv Pharmacol Sci 2011:1–10.  https://doi.org/10.1155/2011/157015 CrossRefGoogle Scholar
  50. Hobbs C (1995) Medicinal mushrooms: an exploration of tradition, healing, & culture. Book Publishing Company, Christopher Hobbs, p. 251. 9781570671432Google Scholar
  51. Hong L, Xun M, Wutong W (2007) Anti-diabetic effect of an α-glucan from fruit body of maitake (Grifola frondosa) on KK-Ay mice. J Pharm Pharmacol 59:575–582.  https://doi.org/10.1211/jpp.59.4.0013 CrossRefPubMedGoogle Scholar
  52. Hu H, Ahn NS, Yang X, Lee YS, Kang KS (2002) Ganoderma lucidum extract induces cell cycle arrest and apoptosis in MCF-7 human breast cancer cell. Int J Cancer 102:250–253.  https://doi.org/10.1002/ijc.10707 CrossRefPubMedGoogle Scholar
  53. Hu SH, Cheung PCK, Hung RP, Chen YK, Wang JC, Chang SJ (2015) Antitumor and immunomodulating activities of exopolysaccharide produced by big cup culinary- medicinal mushroom Clitocybe maxima (Higher Basidiomycetes) in liquid submerged culture. Int J Med Mushrooms 17:891–901CrossRefGoogle Scholar
  54. Huang X, Nie S (2015) The structure of mushroom polysaccharides and their beneficial role in health. Food Funct 6:3205–3217.  https://doi.org/10.1039/c5fo00678c CrossRefPubMedGoogle Scholar
  55. Ishikawa Y, Morimoto K, Hamasaki T (1984) Flavoglaucin, a metabolite of Eurotium chevalieri, its antioxidation and synergism with tocopherol. J Am Oil Chem Soc 61:1864–1868.  https://doi.org/10.1007/BF02540819 CrossRefGoogle Scholar
  56. Jayasuriya W, Wanigatunge CA, Fernando GH, Abeytunga DTU, Suresh TS (2015) Hypoglycaemic activity of culinary Pleurotus ostreatus and P. cystidiosus mushrooms in healthy volunteers and type 2 diabetic patients on diet control and the possible mechanisms of action. Phyther Res 29:303–309.  https://doi.org/10.1002/ptr.5255 CrossRefGoogle Scholar
  57. Jeong SC, Jeong YT, Yang BK, Islam R, Koyyalamudi SR, Pang G, Cho KY, Song CH (2010) White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutr Res 30:49–56.  https://doi.org/10.1016/j.nutres.2009.12.003 CrossRefPubMedGoogle Scholar
  58. Ji J, Liu J, Liu H, Wang Y (2014) Effects of fermented mushroom of Cordyceps sinensis, rich in selenium, on uterine cervix cancer. Evidence-Based Complement Altern Med 2014:1–7.  https://doi.org/10.1155/2014/173180 CrossRefGoogle Scholar
  59. Jin K, Galvan V, Xie L, Mao XO, Gorostiza OF, Bredesen DE, Greenberg DA (2004a) Enhanced neurogenesis in Alzheimer’s disease transgenic (PDGF-APPSw,Ind) mice. Proc Natl Acad Sci 101:13363–13367.  https://doi.org/10.1073/pnas.0403678101 CrossRefPubMedGoogle Scholar
  60. Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, Greenberg DA (2004b) Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci 101:343–347.  https://doi.org/10.1073/pnas.2634794100 CrossRefPubMedGoogle Scholar
  61. Jin K, Xie L, Mao XO, Greenberg DA (2006) Alzheimer’s disease drugs promote neurogenesis. Brain Res 1085:183–188.  https://doi.org/10.1016/j.brainres.2006.02.081 CrossRefPubMedGoogle Scholar
  62. Kabir Y, Kimura S (1989) Dietary mushrooms reduce blood pressure in spontaneously hypertensive rats (SHR). J Nutr Sci Vitaminol (Tokyo) 35:91–94CrossRefGoogle Scholar
  63. Kalač P (2013) A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J Sci Food Agric 93:209–218.  https://doi.org/10.1002/jsfa.5960 CrossRefPubMedGoogle Scholar
  64. Kanagasabapathy G, Kuppusamy UR, Abd Malek SN, Abdulla MA, Chua KH, Sabaratnam V (2012) Glucan-rich polysaccharides from Pleurotus sajor-caju (Fr.) Singer prevents glucose intolerance, insulin resistance and inflammation in C57BL/6J mice fed a high-fat diet. BMC Complement Altern Med 12:1234.  https://doi.org/10.1186/1472-6882-12-261 CrossRefGoogle Scholar
  65. Kanagasabapathy G, Chua KH, Malek SNA, Vikineswary S, Kuppusamy UR (2014) AMP-activated protein kinase mediates insulin-like and lipo-mobilising effects of β-glucan-rich polysaccharides isolated from Pleurotus sajor-caju (Fr.), Singer mushroom, in 3T3-L1 cells. Food Chem 145:198–204.  https://doi.org/10.1016/j.foodchem.2013.08.051 CrossRefPubMedGoogle Scholar
  66. Kaneda T, Tokuda S (1966) Effect of various mushroom preparations on cholesterol levels in rats. J Nutr 90:371–376CrossRefGoogle Scholar
  67. Karumuthil Melethil S, Gudi R, Johnson BM, Perez N, Vasu C (2014) Fungal β-glucan, a dectin-1 ligand, promotes protection from type 1 diabetes by inducing regulatory innate immune response. J Immunol 193:3308–3321.  https://doi.org/10.4049/jimmunol.1400186 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Kim DH, Shim SB, Kim NJ, Jang IS (1999) Beta-glucuronidase-inhibitory activity and hepatoprotective effect of Ganoderma lucidum. Biol Pharm Bull 22:162–164CrossRefGoogle Scholar
  69. Kim SH, Song YS, Kim SK, Kim BC, Lim CJ, Park EH (2004) Anti-inflammatory and related pharmacological activities of the n-BuOH subfraction of mushroom Phellinus linteus. J Ethnopharmacol 93:141–146.  https://doi.org/10.1016/j.jep.2004.03.048 CrossRefPubMedGoogle Scholar
  70. Kim SP, Moon E, Nam SH, Friedman M (2012) Hericium erinaceus mushroom extracts protect infected mice against Salmonella typhimurium-induced liver damage and mortality by stimulation of innate immune cells. J Agric Food Chem 60:5590–5596.  https://doi.org/10.1021/jf300897w CrossRefPubMedGoogle Scholar
  71. Kim SP, Park SO, Lee SJ, Nam SH, Friedman M (2013) A polysaccharide isolated from the liquid culture of Lentinus edodes (Shiitake) mushroom mycelia containing black rice bran protects mice against a salmonella lipopolysaccharide-induced endotoxemia. J Agric Food Chem 61:10987–10994.  https://doi.org/10.1021/jf403173k CrossRefPubMedGoogle Scholar
  72. Kim SP, Park SO, Lee SJ, Nam SH, Friedman M (2014) A polysaccharide isolated from the liquid culture of Lentinus edodes (Shiitake) mushroom mycelia containing black rice bran protects mice against Salmonellosis through upregulation of the Th1 immune reaction. J Agric Food Chem 62:2384–2391.  https://doi.org/10.1021/jf405223q CrossRefPubMedGoogle Scholar
  73. Kim SP, Lee SJ, Nam SH, Friedman M (2016) Turmeric (Curcuma longa) bioprocessed with mycelia of shiitake (Lentinus edodes) mushrooms: Composition and mechanism of protection against salmonellosis in mice. Int J Med Mushrooms 19(4):363–376CrossRefGoogle Scholar
  74. Kinnally KW, Antonsson B (2007) A tale of two mitochondrial channels, MAC and PTP, in apoptosis. Apoptosis 12:857–868.  https://doi.org/10.1007/s10495-007-0722-z CrossRefPubMedGoogle Scholar
  75. Komoda Y, Shimizu M, Sonoda Y, Sato Y (1989) Ganoderic acid and its derivatives as cholesterol synthesis inhibitors. Chem Pharm Bull (Tokyo) 37:531–533CrossRefGoogle Scholar
  76. Kozarski M, Klaus A, Jakovljevic D, Todorovic N, Vunduk J, Petrović P, Niksic M, Vrvic M, van Griensven L (2015) Antioxidants of edible mushrooms. Molecules 20:19489–19525.  https://doi.org/10.3390/molecules201019489 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Kumar KJS, Chu FH, Hsieh HW, Liao JW, Li WH, Lin JCC, Shaw JF, Wang SY (2011) Antroquinonol from ethanolic extract of mycelium of Antrodia cinnamomea protects hepatic cells from ethanol-induced oxidative stress through Nrf-2 activation. J Ethnopharmacol 136:168–177.  https://doi.org/10.1016/j.jep.2011.04.030 CrossRefPubMedGoogle Scholar
  78. Kundaković T, Kolundžić M (2013) Therapeutic properties of mushrooms in managing adverse effects in the metabolic syndrome. Curr Top Med Chem 13:2734–2744CrossRefGoogle Scholar
  79. Kupka J, Anke T, Oberwinkler F, Schramm G, Steglich W (1979) Antibiotics from basidiomycetes. VII. Crinipellin, a new antibiotic from the basidiomycetous fungus Crinipellis stipitaria (Fr.) Pat. J Antibiot (Tokyo) 32:130–135CrossRefGoogle Scholar
  80. Kurtzman RH (1997) Nutrition from mushrooms, understanding and reconciling available data. Mycoscience 38:247–253.  https://doi.org/10.1007/BF02460860 CrossRefGoogle Scholar
  81. Lai CSW, Yu MS, Yuen WH, So KF, Zee SY, Chang RCC (2008) Antagonizing β-amyloid peptide neurotoxicity of the anti-aging fungus Ganoderma lucidum. Brain Res 1190:215–224.  https://doi.org/10.1016/j.brainres.2007.10.103 CrossRefPubMedGoogle Scholar
  82. Lee JS, Hong EK (2010) Hericium erinaceus enhances doxorubicin-induced apoptosis in human hepatocellular carcinoma cells. Cancer Lett 297:144–154.  https://doi.org/10.1016/j.canlet.2010.05.006 CrossRefPubMedGoogle Scholar
  83. Lee JS, Hong EK (2011) Immunostimulating activity of the polysaccharides isolated from Cordyceps militaris. Int Immunopharmacol 11:1226–1233.  https://doi.org/10.1016/j.intimp.2011.04.001 CrossRefPubMedGoogle Scholar
  84. Lee BR, Lee YP, Kim DW, Song HY, Yoo KY, Won MH, Kang TC, Lee KJ, Kim KH, Joo JH, Ham HJ, Hur JH, Cho S-W, Han KH, Lee KS, Park J, Eum WS, Choi SY (2010a) Amelioration of streptozotocin-induced diabetes by Agrocybe chaxingu polysaccharide. Mol Cells 29:349–354.  https://doi.org/10.1007/s10059-010-0044-9 CrossRefPubMedGoogle Scholar
  85. Lee YS, Kim YH, Shin EK, Kim DH, Lim SS, Lee JY, Kim JK (2010b) Anti-angiogenic activity of methanol extract of Phellinus linteus and its fractions. J Ethnopharmacol 131:56–62.  https://doi.org/10.1016/j.jep.2010.05.064 CrossRefPubMedGoogle Scholar
  86. Lei H, Guo S, Han J, Wang Q, Zhang X, Wu W (2012) Hypoglycemic and hypolipidemic activities of MT-α-glucan and its effect on immune function of diabetic mice. Carbohydr Polym 89:245–250.  https://doi.org/10.1016/j.carbpol.2012.03.003 CrossRefPubMedGoogle Scholar
  87. Li S, Shah NP (2014) Antioxidant and antibacterial activities of sulphated polysaccharides from Pleurotus eryngii and Streptococcus thermophilus ASCC 1275. Food Chem 165:262–270.  https://doi.org/10.1016/j.foodchem.2014.05.110 CrossRefPubMedGoogle Scholar
  88. Li G, Kim DH, Kim TD, Park BJ, Park HD, Park JI, Na MK, Kim HC, Hong ND, Lim K, Hwang BD, Yoon WH (2004) Protein-bound polysaccharide from Phellinus linteus induces G2/M phase arrest and apoptosis in SW480 human colon cancer cells. Cancer Lett 216:175–181.  https://doi.org/10.1016/j.canlet.2004.07.014 CrossRefPubMedGoogle Scholar
  89. Li J, Zou L, Chen W, Zhu B, Shen N, Ke J, Lou J, Song R, Zhong R, Miao X (2014) Dietary mushroom intake may reduce the risk of breast cancer: evidence from a meta-analysis of observational studies. PLoS One 9:e93437.  https://doi.org/10.1371/journal.pone.0093437 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Lima ATM, Santos MN, de Souza LAR, Pinheiro TS, Paiva AAO, Dore CMPG, Costa MSSP, Santos ND, Baseia YG, Araújo RM, Leite EL (2016) Chemical characteristics of a heteropolysaccharide from Tylopilus ballouii mushroom and its antioxidant and anti-inflammatory activities. Carbohydr Polym 144:400–409.  https://doi.org/10.1016/j.carbpol.2016.02.050 CrossRefPubMedGoogle Scholar
  91. Lin Z (2004) Focus on anti-oxidative and free radical scavenging activity of Ganoderma lucidum. J Appl Pharmacol 12:133–137Google Scholar
  92. Lin JY, Jeng TW, Chen CC, Shi GY, Tung TC (1973) Isolation of a new cardiotoxic protein from the edible mushroom, Volvariella volvacea. Nature 246:524–525.  https://doi.org/10.1038/246524a0 CrossRefPubMedGoogle Scholar
  93. Lindequist U, Teuscher E, Narbe G (1990) Neue Wirkstoffe aus Basidiomyceten. Phytotherapie 11:139–149Google Scholar
  94. Liu B (2006) Modulation of microglial pro-inflammatory and neurotoxic activity for the treatment of Parkinson’s disease. AAPS J 8:E606–E621.  https://doi.org/10.1208/aapsj080369 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Liu J, Zheng X, Yin F, Hu Y, Guo L, Deng X, Chen G, Jiajia J, Zhang H (2006) Neurotrophic property of geniposide for inducing the neuronal differentiation of PC12 cells. Int J Dev Neurosci 24:419–424.  https://doi.org/10.1016/J.IJDEVNEU.2006.08.009 CrossRefPubMedGoogle Scholar
  96. Liu F, Luo K, Yu Z, Co N, Wu S, Wu P, Fung K, Kwok T (2009) Suillin from the mushroom Suillus placidus as potent apoptosis inducer in human hepatoma HepG2 cells. Chem Biol Interact 181:168–174.  https://doi.org/10.1016/j.cbi.2009.07.008 CrossRefPubMedGoogle Scholar
  97. Lu MK, Cheng JJ, Lai WL, Lin YJ, Huang NK (2008) Fermented Antrodia cinnamomea extract protects rat PC12 cells from serum deprivation-induced apoptosis: the role of the MAPK family. J Agric Food Chem 56:865–874.  https://doi.org/10.1021/jf072828b CrossRefPubMedGoogle Scholar
  98. Lu TL, Huang GJ, Lu TJ, Wu JB, Wu CH, Yang TC, Iizuka A, Chen YF (2009) Hispolon from Phellinus linteus has antiproliferative effects via MDM2-recruited ERK1/2 activity in breast and bladder cancer cells. Food Chem Toxicol 47:2013–2021.  https://doi.org/10.1016/j.fct.2009.05.023 CrossRefPubMedGoogle Scholar
  99. Manna DK, Nandi AK, Pattanayak M, Maity P, Tripathy S, Mandal AK, Roy S, Tripathy SS, Gupta N, Islam SS (2015) A water soluble β-glucan of an edible mushroom Termitomyces heimii: structural and biological investigation. Carbohydr Polym 134:375–384.  https://doi.org/10.1016/j.carbpol.2015.07.099 CrossRefPubMedGoogle Scholar
  100. Marcotullio M, Pagiott R, Maltese F, Obara Y, Hoshino T, Nakahata N, Curini M (2006) Neurite outgrowth activity of cyathane diterpenes from Sarcodon cyrneus, cyrneines A and B. Planta Med 72:819–823.  https://doi.org/10.1055/s-2006-946681 CrossRefPubMedGoogle Scholar
  101. Martin KR, Brophy SK (2010) Commonly consumed and specialty dietary mushrooms reduce cellular proliferation in MCF-7 human breast cancer cells. Exp Biol Med 235:1306–1314.  https://doi.org/10.1258/ebm.2010.010113 CrossRefGoogle Scholar
  102. Martin KJ, Simon J, Arthur C (2012) Selective kinase inhibitors as tools for neuroscience research. Neuropharmacology 63:1227–1237.  https://doi.org/10.1016/j.neuropharm.2012.07.024 CrossRefPubMedGoogle Scholar
  103. Martorana A, Bulati M, Buffa S, Pellicanò M, Caruso C, Candore G, Colonna-Romano G (2012) Immunosenescence, inflammation and Alzheimer’s disease. Longev Health 1:8.  https://doi.org/10.1186/2046-2395-1-8 CrossRefGoogle Scholar
  104. Matsuzaki H, Shimizu Y, Iwata N, Kamiuchi S, Suzuki F, Iizuka H, Hibino Y, Okazaki M (2013) Antidepressant-like effects of a water-soluble extract from the culture medium of Ganoderma lucidum mycelia in rats. BMC Complement Altern Med 13:370.  https://doi.org/10.1186/1472-6882-13-370 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Minari MC, Rincão VP, Soares SA, Ricardo NM, Nozawa C, Linhares RE (2011) Antiviral properties of polysaccharides from Agaricus brasiliensis in the replication of bovine herpesvirus 1. Acta Virol 55:255–259CrossRefGoogle Scholar
  106. Mishra SK, Kang JH, Kim DK, Oh SH, Kim MK (2012) Orally administered aqueous extract of Inonotus obliquus ameliorates acute inflammation in dextran sulfate sodium (DSS)-induced colitis in mice. J Ethnopharmacol 143:524–532.  https://doi.org/10.1016/j.jep.2012.07.008 CrossRefPubMedGoogle Scholar
  107. Mizuno T (1995) Bioactive biomolecules of mushrooms: food function and medicinal effect of mushroom fungi. Food Rev Int 11:5–21.  https://doi.org/10.1080/87559129509541017 CrossRefGoogle Scholar
  108. Mizuno T (1999) The extraction and development of antitumor-active polysaccharides from medicinal mushrooms in Japan (Review). Int J Med Mushrooms 1:9–29.  https://doi.org/10.1615/IntJMedMushrooms.v1.i1.20 CrossRefGoogle Scholar
  109. Mori K, Inatomi S, Ouchi K, Azumi Y, Tuchida T (2009) Improving effects of the mushroom Yamabushitake (Hericium erinaceus) on mild cognitive impairment: a double-blind placebo-controlled clinical trial. Phyther Res 23:367–372.  https://doi.org/10.1002/ptr.2634 CrossRefGoogle Scholar
  110. Mori K, Obara Y, Moriya T, Inatomi S, Nakahata N (2011) Effects of Hericium erinaceus on amyloid β(25-35) peptide-induced learning and memory deficits in mice. Biomed Res 32:67–72CrossRefGoogle Scholar
  111. Morigiwa A, Kitabatake K, Fujimoto Y, Ikekawa N (1986) Angiotensin converting enzyme-inhibitory triterpenes from Ganoderma lucidum. Chem Pharm Bull (Tokyo) 34:3025–3028CrossRefGoogle Scholar
  112. Mothana RA, Jansen R, Jülich WD, Lindequist U (2000) Ganomycins A and B, new antimicrobial farnesyl hydroquinones from the basidiomycete Ganoderma pfeifferi. J Nat Prod 63:416–418CrossRefGoogle Scholar
  113. Mothana RAA, Awadh Ali NA, Jansen R, Wegner U, Mentel R, Lindequist U (2003) Antiviral lanostanoid triterpenes from the fungus Ganoderma pfeifferi. Fitoterapia 74:177–180CrossRefGoogle Scholar
  114. Mu H, Zhang A, Zhang W, Cui G, Wang S, Duan J (2012) Antioxidative properties of crude polysaccharides from Inonotus obliquus. Int J Mol Sci 13:9194–9206.  https://doi.org/10.3390/ijms13079194 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Nada SA, Omara EA, Abdel Salam OME, Zahran HG (2010) Mushroom insoluble polysaccharides prevent carbon tetrachloride-induced hepatotoxicity in rat. Food Chem Toxicol 48:3184–3188.  https://doi.org/10.1016/j.fct.2010.08.019 CrossRefPubMedGoogle Scholar
  116. Nandi AK, Samanta S, Maity S, Sen IK, Khatua S, Devi KSP, Acharya K, Maiti TK, Islam SS (2014) Antioxidant and immunostimulant β-glucan from edible mushroom Russula albonigra (Krombh.) Fr. Carbohydr Polym 99:774–782.  https://doi.org/10.1016/j.carbpol.2013.09.016 CrossRefPubMedGoogle Scholar
  117. Ng Y (2005) In vitro and in vivo antioxidant activity and hypocholesterolemic effect in extracts of Agrocybe aegerita. The Chinese University of Hong Kong, Hong KongGoogle Scholar
  118. Niidome T, Taniuchi N, Akaike A, Kihara T, Sugimoto H (2008) Differential regulation of neurogenesis in two neurogenic regions of APPswe/PS1dE9 transgenic mice. Neuroreport 19:1361–1364.  https://doi.org/10.1097/WNR.0b013e32830e6dd6 CrossRefPubMedGoogle Scholar
  119. Nishina A, Kimura H, Sekiguchi A, Fukumoto R, Nakajima S, Furukawa S (2006) Lysophosphatidylethanolamine in Grifola frondosa as a neurotrophic activator via activation of MAPK. J Lipid Res 47:1434–1443.  https://doi.org/10.1194/jlr.M600045-JLR200 CrossRefPubMedGoogle Scholar
  120. Okuyama S, Lam NV, Hatakeyama T, Terashima T, Yamagata K, Yokogoshi H (2004) Mycoleptodonoides aitchisonii affects brain nerve growth factor concentration in newborn rats. Nutr Neurosci 7:341–349.  https://doi.org/10.1080/10284150400020490 CrossRefPubMedGoogle Scholar
  121. Okuyama S, Tashiro K, Lam NV, Hatakeyama T, Terashima T, Yokogoshi H (2012) Effect of the edible mushroom Mycoleptodonoides aitchisonii on transient global ischemia-induced monoamine metabolism changes in rat cerebral cortex. J Med Food 15:96–99.  https://doi.org/10.1089/jmf.2011.1636 CrossRefPubMedGoogle Scholar
  122. Ooi VEC (1996) Hepatoprotective effect of some edible mushrooms. Phyther Res 10:536–538.  https://doi.org/10.1002/(SICI)1099-1573(199609)10:6<536::AID-PTR893>3.0.CO;2-Y CrossRefGoogle Scholar
  123. Ooi VE, Liu F (2000) Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr Med Chem 7:715–729CrossRefGoogle Scholar
  124. Park SE, Kim J, Lee YW, Yoo HS, Cho CK (2009) Antitumor activity of water extracts from Cordyceps Militaris in NCI-H460 cell xenografted nude mice. J Acupunct Meridian Stud 2:294–300.  https://doi.org/10.1016/S2005-2901(09)60071-6 CrossRefPubMedGoogle Scholar
  125. Patel S, Goyal A (2012) Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech 2:1–15.  https://doi.org/10.1007/s13205-011-0036-2 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Pinweha S, Wanikiat P, Sanvarinda Y, Supavilai P (2008) The signaling cascades of Ganoderma lucidum extracts in stimulating non-amyloidogenic protein secretion in human neuroblastoma SH-SY5Y cell lines. Neurosci Lett 448:62–66.  https://doi.org/10.1016/j.neulet.2008.10.028 CrossRefPubMedGoogle Scholar
  127. Powell M (2010) Medicinal mushrooms: a clinical guide, 1st edn. Mycology Press, East SussexGoogle Scholar
  128. Rahar S, Swami G, Nagpal N, Nagpal M, Singh G (2011) Preparation, characterization, and biological properties of β-glucans. J Adv Pharm Technol Res 2:94.  https://doi.org/10.4103/2231-4040.82953 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Razumov IA, Kazachinskaia EI, Puchkova LI, Kosogorova TA, Gorbunova IA, Loktev VB, Tepliakova TV (2013) Protective activity of aqueous extracts from higher mushrooms against Herpes simplex virus type-2 on albino mice model. Antibiot i khimioterapiia = Antibiot chemoterapy [sic] 58:8–12Google Scholar
  130. Rincão VP, Yamamoto KA, Ricardo NMPS, Soares SA, Meirelles LDP, Nozawa C, Linhares REC (2012) Polysaccharide and extracts from Lentinula edodes: structural features and antiviral activity. Virol J 9:37.  https://doi.org/10.1186/1743-422X-9-37 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Rodríguez JJ, Jones VC, Tabuchi M, Allan SM, Knight EM, LaFerla FM, Oddo S, Verkhratsky A (2008) Impaired adult neurogenesis in the dentate gyrus of a triple transgenic mouse model of Alzheimer’s disease. PLoS One 3:e2935.  https://doi.org/10.1371/journal.pone.0002935 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Ryong LH, Tertov VV, Vasil’ev AV, Tutel’yan VA, Orekhov AN (1989) Antiatherogenic and antiatherosclerotic effects of mushroom extracts revealed in human aortic intima cell culture. Drug Dev Res 17:109–117.  https://doi.org/10.1002/ddr.430170203 CrossRefGoogle Scholar
  133. Samanta S, Nandi AK, Sen IK, Maity P, Pattanayak M, Devi KSP, Khatua S, Maiti TK, Acharya K, Islam SS (2015) Studies on antioxidative and immunostimulating fucogalactan of the edible mushroom Macrolepiota dolichaula. Carbohydr Res 413:22–29.  https://doi.org/10.1016/j.carres.2015.05.006 CrossRefPubMedGoogle Scholar
  134. Sanodiya BS, Thakur GS, Baghel RK, Prasad GBKS, Bisen PS (2009) Ganoderma lucidum: a potent pharmacological macrofungus. Curr Pharm Biotechnol 10:717–742CrossRefGoogle Scholar
  135. Sen IK, Mandal AK, Chakraborti S, Dey B, Chakraborty R, Islam SS (2013) Green synthesis of silver nanoparticles using glucan from mushroom and study of antibacterial activity. Int J Biol Macromol 62:439–449.  https://doi.org/10.1016/j.ijbiomac.2013.09.019 CrossRefPubMedGoogle Scholar
  136. Seniuk OF, Gorovoj LF, Beketova GV, Savichuk HO, Rytik PG, Kucherov II, Prilutskay AB, Prilutsky AI (2011) Anti-infective properties of the melanin-glucan complex obtained from medicinal tinder bracket mushroom, Fomes fomentarius (L.: Fr.) Fr. (Aphyllophoromycetideae). Int J Med Mushrooms 13:7–18CrossRefGoogle Scholar
  137. Sheng J, Chen Q (1990) Effects of polysaccharides from Auricularia auricula, Tremella fuciformis, and Tremella fuciformis spores on experimental thrombin formation. Zhongguo Yaoke Daxue Xuebae 21:39–42Google Scholar
  138. Shi Y, James AE, Benzie IFF, Buswell JA (2002) Mushroom-derived preparations in the prevention of H2O2-induced oxidative damage to cellular DNA. Teratog Carcinog Mutagen 22:103–111CrossRefGoogle Scholar
  139. Shi JY, Liu GS, Liu LF, Kuo SM, Ton CH, Wen ZH, Tee R, Chen CH, Huang HT, Chen CL, Chao D, Tai MH (2011) Glial cell line–derived neurotrophic factor gene transfer exerts protective effect on axons in sciatic nerve following constriction-induced peripheral nerve injury. Hum Gene Ther 22:721–731.  https://doi.org/10.1089/hum.2010.036 CrossRefPubMedGoogle Scholar
  140. Signoretto C, Marchi A, Bertoncelli A, Burlacchini G, Papetti A, Pruzzo C, Zaura E, Lingström P, Ofek I, Pratten J, Spratt DA, Wilson M, Canepari P (2014) The anti-adhesive mode of action of a purified mushroom (Lentinus edodes) extract with anticaries and antigingivitis properties in two oral bacterial pathogens. BMC Complement Altern Med 14:75.  https://doi.org/10.1186/1472-6882-14-75 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Socala K, Nieoczym D, Grzywnowicz K, Stefaniuk D, Wlaz P (2015) Evaluation of anticonvulsant, antidepressant-, and anxiolytic-like effects of an aqueous extract from cultured mycelia of the lingzhi or reishi medicinal mushroom Ganoderma lucidum (higher basidiomycetes) in mice. Int J Med Mushrooms 17:209–218.  https://doi.org/10.1615/IntJMedMushrooms.v17.i3.10 CrossRefPubMedGoogle Scholar
  142. Soković M, Ćirić A, Glamočlija J, Nikolić M, Van Griensven L (2014) Agaricus Blazei hot water extract shows anti quorum sensing activity in the nosocomial human pathogen Pseudomonas aeruginosa. Molecules 19:4189–4199.  https://doi.org/10.3390/molecules19044189 CrossRefPubMedPubMedCentralGoogle Scholar
  143. Song YS, Kim SH, Sa JH, Jin C, Lim CJ, Park EH (2004) Anti-angiogenic and inhibitory activity on inducible nitric oxide production of the mushroom Ganoderma lucidum. J Ethnopharmacol 90:17–20CrossRefGoogle Scholar
  144. Song FQ, Liu Y, Kong XS, Chang W, Song G (2013) Progress on understanding the anticancer mechanisms of medicinal mushroom: Inonotus obliquus. Asian Pac J Cancer Prev 14:1571–1578CrossRefGoogle Scholar
  145. Su CY, Shiao MS, Wang CT (1999) Predominant inhibition of ganodermic acid S on the thromboxane A2-dependent pathway in human platelets response to collagen. Biochim Biophys Acta Mol Cell Biol Lipids 1437:223–234.  https://doi.org/10.1016/S1388-1981(98)00012-2 CrossRefGoogle Scholar
  146. Sugiyama K, Akachi T, Yamakawa A (1995) Hypocholesterolemic action of eritadenine is mediated by a modification of hepatic phospholipid metabolism in rats. J Nutr 125:2134–2144CrossRefGoogle Scholar
  147. Sun M, Xiao J, Zhang S, Liu Y, Li S (1984) Therapeutic effect of some foods on hyperlipidemia in man. Acta Nutr Sin 6:127–133Google Scholar
  148. Sun YQ, Guo TK, Xi YM, Chen C, Wang J, Wang ZR (2007) Effects of AZT and RNA-protein complex (FA-2-b-beta) extracted from Liang Jin mushroom on apoptosis of gastric cancer cells. World J Gastroenterol 13:4185–4191CrossRefGoogle Scholar
  149. Suzuki S, Ohshima S (1976) Influence of shiitake (Lentinus edodes) on human serum cholesterol. Mushroom Sci 9:463–470Google Scholar
  150. Tangen JM, Tierens A, Caers J, Binsfeld M, Olstad OK, Trøseid AMS, Wang J, Tjønnfjord GE, Hetland G (2015) Immunomodulatory effects of the Agaricus blazei murill-based mushroom extract andoSan in patients with multiple myeloma undergoing high dose chemotherapy and autologous stem cell transplantation: a randomized, double blinded clinical study. Biomed Res Int 2015:1–11.  https://doi.org/10.1155/2015/718539 CrossRefGoogle Scholar
  151. Tello I, Campos Pena V, Montiel E, Rodriguez V, Aguirre Moreno A, Leon Rivera I, Del Rio Portilla F, Herrera Ruiz M, Villeda Hernandez J (2013) Anticonvulsant and neuroprotective effects of oligosaccharides from Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (Higher Basidiomycetes). Int J Med Mushrooms 15:555–568CrossRefGoogle Scholar
  152. Tochikura TS, Nakashima H, Yamamoto N (1989) Antiviral agents with activity against human retroviruses. J Acquir Immune Defic Syndr 2:441–447PubMedGoogle Scholar
  153. Tokita F, Shibukawa N, Yasumoto T, Kaneda T (1972) Isolation and chemical structure of the plasma-cholesterol reducing substance from shiitake mushroom. Mushroom Sci 8:783–788Google Scholar
  154. Vincent M, Philippe E, Everard A, Kassis N, Rouch C, Denom J, Takeda Y, Uchiyama S, Delzenne NM, Cani PD, Migrenne S, Magnan C (2013) Dietary supplementation with Agaricus blazei murill extract prevents diet-induced obesity and insulin resistance in rats. Obesity 21:553–561.  https://doi.org/10.1002/oby.20276 CrossRefPubMedGoogle Scholar
  155. Wang SY, Hsu ML, Hsu HC, Tzeng CH, Lee SS, Shiao MS, Ho CK (1997) The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. Int J Cancer 70:699–705CrossRefGoogle Scholar
  156. Wang MF, Chan YC, Wu CL, Wong YC, Hosoda K, Yamamoto S (2004) Effects of Ganoderma on aging and learning and memory ability in senescence accelerated mice. Int Congr Ser 1260:399–404.  https://doi.org/10.1016/S0531-5131(03)01682-0 CrossRefGoogle Scholar
  157. Wang CZ, Basila D, Aung HH, Mehendale SR, Chang WT, McEntee E, Guan X, Yuan CS (2005) Effects of Ganoderma lucidum extract on chemotherapy-induced nausea and vomiting in a rat model. Am J Chin Med 33:807–815.  https://doi.org/10.1142/S0192415X05003429 CrossRefPubMedGoogle Scholar
  158. Wang JM, Singh C, Liu L, Irwin RW, Chen S, Chung EJ, Thompson RF, Brinton RD (2010) Allopregnanolone reverses neurogenic and cognitive deficits in mouse model of Alzheimer’s disease. Proc Natl Acad Sci 107:6498–6503.  https://doi.org/10.1073/pnas.1001422107 CrossRefPubMedGoogle Scholar
  159. Wang CR, Ng TB, Li L, Fang JC, Jiang Y, Wen TY, Qiao WT, Li N, Liu F (2011) Isolation of a polysaccharide with antiproliferative, hypoglycemic, antioxidant and HIV-1 reverse transcriptase inhibitory activities from the fruiting bodies of the abalone mushroom Pleurotus abalonus. J Pharm Pharmacol 63:825–832.  https://doi.org/10.1111/j.2042-7158.2011.01274.x CrossRefPubMedGoogle Scholar
  160. Wang HY, Bakshi K, Frankfurt M, Stucky A, Goberdhan M, Shah SM, Burns LH (2012a) Neurobiology of disease reducing amyloid-related Alzheimer’s disease pathogenesis by a small molecule targeting filamin A. J Neurosci 32:9773–9784.  https://doi.org/10.1523/JNEUROSCI.0354-12.2012 CrossRefPubMedGoogle Scholar
  161. Wang LC, Wang SE, Wang JJ, Tsai TY, Lin CH, Pan TM, Lee CL (2012b) In vitro and in vivo comparisons of the effects of the fruiting body and mycelium of Antrodia camphorata against amyloid β-protein-induced neurotoxicity and memory impairment. Appl Microbiol Biotechnol 94:1505–1519.  https://doi.org/10.1007/s00253-012-3941-3 CrossRefPubMedGoogle Scholar
  162. Wang J, Yu G, Li Y, Shen L, Qian Y, Yang J, Wang F (2015) Inhibitory effects of sulfated lentinan with different degree of sulfation against tobacco mosaic virus (TMV) in tobacco seedlings. Pestic Biochem Physiol 122:38–43.  https://doi.org/10.1016/j.pestbp.2014.12.027 CrossRefPubMedGoogle Scholar
  163. Wasser SP (2005) Reishi or Ling Zhi (Ganoderma lucidum).  https://doi.org/10.1081/E-EDS-120022119 CrossRefGoogle Scholar
  164. Wasser SP (2010) Medicinal mushroom science: History, current status, future trends, and unsolved problems. Int J Med Mushrooms 12:1–16.  https://doi.org/10.1615/IntJMedMushr.v12.i1.10 CrossRefGoogle Scholar
  165. Wasser S (2014) Medicinal mushroom science: current perspectives, advances, evidences, and challenges. Biomed J 37:345.  https://doi.org/10.4103/2319-4170.138318 CrossRefPubMedGoogle Scholar
  166. Wasser SP, Weis AL (1999) Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol 19:65–96PubMedPubMedCentralGoogle Scholar
  167. Watanabe H, Kashimoto N, Ushijima M, Tamura K (2013) Effects of a water-soluble extract of Ganoderma lucidum mycelia on aberrant crypt foci induced by azoxymethane and small-intestinal injury by 5-FU in F344 rats. Med Mol Morphol 46:97–103.  https://doi.org/10.1007/s00795-013-0012-5 CrossRefPubMedGoogle Scholar
  168. Willem M, Garratt AN, Novak B, Citron M, Kaufmann S, Rittger A, DeStrooper B, Saftig P, Birchmeier C, Haass C (2006) Control of peripheral nerve myelination by the -secretase BACE1. Science (80-) 314:664–666.  https://doi.org/10.1126/science.1132341 CrossRefGoogle Scholar
  169. Wong KH, Vikineswary S, Abdullah N, Naidu M, Keynes R (2007) Activity of aqueous extracts of lion’s mane mushroom Hericium erinaceus (Bull.: Fr.) Pers. (Aphyllophoromycetideae) on the neural cell line NG108-15. Int J Med Mushrooms 9:57–65.  https://doi.org/10.1615/IntJMedMushr.v9.i1.70 CrossRefGoogle Scholar
  170. Wong K-H, Naidu M, David P, Abdulla MA, Abdullah N, Kuppusamy UR, Sabaratnam V (2011) Peripheral nerve regeneration following crush injury to rat peroneal nerve by aqueous extract of medicinal mushroom Hericium erinaceus (Bull.: Fr) Pers. (Aphyllophoromycetideae). Evid Based Complement Alternat Med 2011:580752.  https://doi.org/10.1093/ecam/neq062 CrossRefPubMedPubMedCentralGoogle Scholar
  171. Wu GH, Hu T, Li ZY, Huang ZL, Jiang JG (2014) In vitro antioxidant activities of the polysaccharides from Pleurotus tuber-regium (Fr.) Sing. Food Chem 148:351–356.  https://doi.org/10.1016/j.foodchem.2013.10.029 CrossRefPubMedGoogle Scholar
  172. Xiao JH, Xiao DM, Chen DX, Xiao Y, Liang ZQ, Zhong JJ (2012) Polysaccharides from the medicinal mushroom Cordyceps taii show antioxidant and immunoenhancing activities in a D-galactose-induced aging mouse model. Evidence-Based Complement Altern Med 2012:1–15.  https://doi.org/10.1155/2012/273435 CrossRefGoogle Scholar
  173. Xue Z, Li J, Cheng A, Yu W, Zhang Z, Kou X, Zhou F (2015) Structure identification of triterpene from the mushroom Pleurotus eryngii with inhibitory effects against breast cancer. Plant Foods Hum Nutr 70:291–296.  https://doi.org/10.1007/s11130-015-0492-7 CrossRefPubMedGoogle Scholar
  174. Yamac M, Kanbak G, Zeytinoglu M, Bayramoglu G, Senturk H, Uyanoglu M (2008) Hypoglycemic effect of Lentinus strigosus (Schwein.) Fr. crude exopolysaccharide in streptozotocin-induced diabetic rats. J Med Food 11:513–517.  https://doi.org/10.1089/jmf.2007.0551 CrossRefPubMedGoogle Scholar
  175. Yamamoto KA, Galhardi LCF, Rincão VP, Soares S de A, Vieira ÍGP, Ricardo NMPS, Nozawa C, Linhares REC (2013) Antiherpetic activity of an Agaricus brasiliensis polysaccharide, its sulfated derivative and fractions. Int J Biol Macromol 52:9–13.  https://doi.org/10.1016/j.ijbiomac.2012.09.029 CrossRefPubMedGoogle Scholar
  176. Ye L, Zheng X, Zhang J, Tang Q, Yang Y, Wang X, Li J, Liu Y, Pan Y (2011) Biochemical characterization of a proteoglycan complex from an edible mushroom Ganoderma lucidum fruiting bodies and its immunoregulatory activity. Food Res Int 44:367–372.  https://doi.org/10.1016/j.foodres.2010.10.004 CrossRefGoogle Scholar
  177. Yeung M, Cheung P (2002) The hypolipidemic effect of some lesser-known edible and medicinal mushrooms. In Abstracts of the Institute of Food Technologists’ Annual Meeting. Institute of Food Technologists, AnaheimGoogle Scholar
  178. Yin X, You Q, Zhou X (2015) Complex enzyme-assisted extraction, purification, and antioxidant activity of polysaccharides from the button mushroom, Agaricus bisporus (higher basidiomycetes). Int J Med Mushrooms 17:987–996CrossRefGoogle Scholar
  179. Ying C, Wang Y, Tang H (1989) Icons of medicinal fungi from China. Science Press, BeijingGoogle Scholar
  180. Ytrebo LM (2006) Interorgan ammonia, glutamate, and glutamine trafficking in pigs with acute liver failure. AJP Gastrointest Liver Physiol 291:G373–G381.  https://doi.org/10.1152/ajpgi.00440.2005 CrossRefGoogle Scholar
  181. Yuan D, Mori J, Komatsu K, Makino T, Kano Y (2004) An anti-aldosteronic diuretic component (drain dampness) in Polyporus sclerotium. Biol Pharm Bull 27:867–870CrossRefGoogle Scholar
  182. Yuen JWM, Gohel MDI (2008) The dual roles of Ganoderma antioxidants on urothelial cell DNA under carcinogenic attack. J Ethnopharmacol 118:324–330.  https://doi.org/10.1016/J.JEP.2008.05.003 CrossRefPubMedGoogle Scholar
  183. Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12:9–18.  https://doi.org/10.1038/sj.cr.7290105 CrossRefPubMedGoogle Scholar
  184. Zhang M, Cui SW, Cheung PCK, Wang Q (2007) Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci Technol 18:4–19.  https://doi.org/10.1016/j.tifs.2006.07.013 CrossRefGoogle Scholar
  185. Zhang ZC, Lian B, Huang DM, Cui FJ (2009) Compare activities on regulating lipid-metabolism and reducing oxidative stress of diabetic rats of Tremella Aurantialba  Broth’s Extract (TBE) with its mycelia polysaccharides (TMP). J Food Sci 74:H15–H21.  https://doi.org/10.1111/j.1750-3841.2008.00989.x CrossRefPubMedGoogle Scholar
  186. Zhang R, Xu S, Cai Y, Zhou M, Zuo X, Chan P (2011) Ganoderma lucidum protects dopaminergic neuron degeneration through inhibition of microglial activation. Evidence-Based Complement Altern Med 2011:1–9.  https://doi.org/10.1093/ecam/nep075 CrossRefGoogle Scholar
  187. Zhang Z, Lv G, Pan H, Pandey A, He W, Fan L (2012) Antioxidant and hepatoprotective potential of endo-polysaccharides from Hericium erinaceus grown on tofu whey. Int J Biol Macromol 51:1140–1146.  https://doi.org/10.1016/j.ijbiomac.2012.09.002 CrossRefGoogle Scholar
  188. Zhao HB, Lin SQ, Liu JH, Lin ZB (2004) Polysaccharide extract isolated from ganoderma lucidum protects rat cerebral cortical neurons from hypoxia/reoxygenation injury. J Pharmacol Sci 95:294–298CrossRefGoogle Scholar
  189. Zheng L, Jia D, Fei X, Luo X, Yang Z (2009) An assessment of the genetic diversity within Ganoderma strains with AFLP and ITS PCR-RFLP. Microbiol Res 164:312–321.  https://doi.org/10.1016/j.micres.2007.02.002 CrossRefPubMedGoogle Scholar
  190. Zhou C, Jia W, Yang Y, Bai Y (2002) Experimental studies on prevention of several kinds of fungi polysaccharides against alcohol-induced hepatic injury. Edible Fungi 24:36–37Google Scholar
  191. Zhu W, Liu Z, Xu H, Chu W, Ye Q, Xie A, Chen L, Li J (2005) Effect of the oil from ganoderma lucidum spores on pathological changes in the substantia nigra and behaviors of MPTP-treated mice. Di Yi Jun Yi Da Xue Xue Bao 25:667–671Google Scholar
  192. Zhu H, Liu W, Tian B, Liu H, Ning S (2011) Inhibition of quorum sensing in the opportunistic pathogenic bacterium Chromobacterium violaceum by an extract from fruiting bodies of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt.:Fr.) P. Karst. (higher Basidiomycetes). Int J Med Mushrooms 13:559–564CrossRefGoogle Scholar
  193. Zhu L, Tang Q, Zhou S, Liu Y, Zhang Z, Gao X, Wang S, Wang Z (2014a) Isolation and purification of a polysaccharide from the caterpillar medicinal mushroom Cordyceps militaris (Ascomycetes) fruit bodies and its immunomodulation of RAW 264.7 macrophages. Int J Med Mushrooms 16:247–257CrossRefGoogle Scholar
  194. Zhu ZY, Zhang JY, Chen LJ, Liu XC, Liu Y, Wang WX, Zhang YM (2014b) Comparative evaluation of polysaccharides isolated from Astragalus, oyster mushroom, and yacon as inhibitors of α-glucosidase. Chin J Nat Med 12:290–293.  https://doi.org/10.1016/S1875-5364(14)60056-X CrossRefPubMedGoogle Scholar
  195. Zou Y, Liao D, Huang H, Li T, Chi H (2015) A systematic review and meta-analysis of beta-glucan consumption on glycemic control in hypercholesterolemic individuals. Int J Food Sci Nutr 66:355–362.  https://doi.org/10.3109/09637486.2015.1034250 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sindhu Ramesh
    • 1
  • Mohammed Majrashi
    • 1
    • 2
  • Mohammed Almaghrabi
    • 3
  • Manoj Govindarajulu
    • 1
  • Eddie Fahoury
    • 1
  • Maali Fadan
    • 1
  • Manal Buabeid
    • 1
    • 4
  • Jack Deruiter
    • 1
  • Randall Clark
    • 1
  • Vanisree Mulabagal
    • 5
  • Dinesh Chandra Agrawal
    • 6
    Email author
  • Timothy Moore
    • 1
  • Muralikrishnan Dhanasekaran
    • 1
    Email author
  1. 1.Department of Drug Discovery and Development, Harrison School of PharmacyAuburn UniversityAuburnUSA
  2. 2.Department of Pharmacology, Faculty of MedicineUniversity of JeddahJeddahKingdom of Saudi Arabia
  3. 3.Department of Pharmaceutical Chemistry, College of PharmacyTaibah UniversityAlmadinah AlmunawwarahKingdom of Saudi Arabia
  4. 4.College of Pharmacy and Health ScienceAjman UniversityAjmanUAE
  5. 5.Department of Civil EngineeringAuburn UniversityAuburnUSA
  6. 6.Department of Applied ChemistryChaoyang University of TechnologyTaichungTaiwan

Personalised recommendations