Advertisement

Antiviral Potency of Mushroom Constituents

  • Prabin Pradeep
  • Vidya Manju
  • Mohammad Feraz Ahsan
Chapter

Abstract

Mushrooms have various bioactive compounds, which have anticancer, antibacterial, antifungal, antiviral, antioxidant, and anti-inflammatory compounds. The limitation of natural antiviral compounds in the market and the viruses becoming resistant to currently available antivirals warranted the need for new antivirals with fewer side effects. Although many different compounds from various mushrooms (both edible and nonedible) have been isolated and shown to have antiviral effects, successful introduction of a new antiviral to the market requires extensive studies and clinical trials. Antiviral compounds isolated from the mushrooms have shown potential activity against prominent viruses such as human immunodeficiency virus, influenza, herpes simplex virus, hepatitis B and C viruses, etc. State of the art suggests more in-depth exploration of mushrooms for more potent antivirals and other lifesaving drugs.

Keywords

Edible mushrooms Poisonous mushrooms Antivirals Basidiomycetes Natural products 

Abbreviations

AZT

Zidovudine

DNA

Deoxyribonucleic acid

EBV

Epstein-Barr virus

EMCV

Encephalomyocarditis virus

FMDV

Foot-and-mouth disease virus

GLPG

Ganoderma lucidum proteoglycan

GLTA

Ganoderma lucidum triterpenoids Lanosta-7,9(11),24-trien-3-one,15;26- dihydroxy

HBV

Hepatitis B virus

HCV

Hepatitis C virus

HIV

Human immunodeficiency virus

HSV

Herpes simplex virus

JLS

Water-soluble lignin-rich fraction

KS-2

Extract from culture mycelia of Lentinus edodes

LAC

Laccase

NA

Neuraminidase

NDV

Newcastle disease virus

RNA

Ribonucleic acid

RSV

Respiratory syncytial virus

RT

Reverse transcriptase

sAAP

Sulfated Auricularia auricula polysaccharides

VSV

Vesicular stomatitis virus

VZV

Varicella zoster virus

References

  1. Akihisa T, Franzblau SG, Tokuda H et al (2005) Antitubercular activity and inhibitory effect on Epstein-Barr virus activation of sterols and polyisoprenepolyols from an edible mushroom, Hypsizygus marmoreus. Biol Pharm Bull 28:1117–1119.  https://doi.org/10.1248/bpb.28.1117 CrossRefPubMedGoogle Scholar
  2. Awadh ANA, Mothana RA, Lesnau A et al (2003) Antiviral activity of Inonotus hispidus. Fitoterapia 74:483–485.  https://doi.org/10.1016/S0367-326X(03)00119-9 CrossRefGoogle Scholar
  3. Cardozo FT, Camelini CM, Mascarello A et al (2011) Antiherpetic activity of a sulfated polysaccharide from Agaricus brasiliensis mycelia. Antivir Res 92:108–114.  https://doi.org/10.1016/j.antiviral.2011.07.009 CrossRefPubMedGoogle Scholar
  4. Cardozo FT, Larsen IV, Carballo EV et al (2013) In vivo anti-herpes simplex virus activity of a sulfated derivative of Agaricus brasiliensis mycelial polysaccharide. Antimicrob Agents Chemother 57:2541–2549.  https://doi.org/10.1128/AAC.02250-12 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cardozo FT, Camelini CM, Leal PC et al (2014) Antiherpetic mechanism of a sulfated derivative of Agaricus brasiliensis fruiting bodies polysaccharide. Intervirology 57:375–383.  https://doi.org/10.1159/000365194 CrossRefPubMedGoogle Scholar
  6. Chang ST, Buswell JA (1996) Mushroom nutriceuticals. World J Microbiol Biotechnol 12:473–476.  https://doi.org/10.1007/BF00419460 CrossRefPubMedGoogle Scholar
  7. Chen L, Shao HJ (2006) Extract from Agaricus blazei Murill can enhance immune responses elicited by DNA vaccine against foot-and-mouth disease. Vet Immunol Immunopathol 109:177–182.  https://doi.org/10.1016/j.vetimm.2005.08.028 CrossRefPubMedGoogle Scholar
  8. Chen WC, Wang SY, Chiu CC et al (2013) Lucidone suppresses hepatitis c virus replication by Nrf2-mediated heme oxygenase-1 induction. Antimicrob Agents Chemother 57:1180–1191.  https://doi.org/10.1128/AAC.02053-12 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dao TT, Nguyen PH, Lee HS et al (2011) Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata. Bioorg Med Chem Lett 21:294–298.  https://doi.org/10.1016/j.bmcl.2010.11.016 CrossRefPubMedGoogle Scholar
  10. De Clercq E (1996) Chemotherapy of viral infections. In: Medical microbiology, 4th edn. University of Texas Medical Branch, GalvestonGoogle Scholar
  11. De Clercq E, Li G (2016) Approved antiviral drugs over the past 50 years. Clin Microbiol Rev 29:695–747.  https://doi.org/10.1128/CMR.00102-15 CrossRefPubMedPubMedCentralGoogle Scholar
  12. De Leo A, Arena G, Lacanna E et al (2012) Resveratrol inhibits Epstein Barr virus lytic cycle in Burkitt’s lymphoma cells by affecting multiple molecular targets. Antivir Res 96:196–202.  https://doi.org/10.1016/j.antiviral.2012.09.003 CrossRefPubMedGoogle Scholar
  13. Ding Y, Seow SV, Huang CH et al (2009) Coadministration of the fungal immunomodulatory protein FIP-Fve and a tumour-associated antigen enhanced antitumour immunity. Immunology 128:881–894.  https://doi.org/10.1111/j.1365–2567.2009.03099.x CrossRefGoogle Scholar
  14. El Dine RS, El Halawany AM, Ma CM, Hattori M (2008) Anti-HIV-1 protease activity of lanostane triterpenes from the Vietnamese mushroom Ganoderma colossum. J Nat Prod 71:1022–1026.  https://doi.org/10.1021/np8001139 CrossRefPubMedGoogle Scholar
  15. El-Fakharany EM, Haroun BM, Ng TB, Redwan ER (2010) Oyster mushroom laccase inhibits hepatitis C virus entry into peripheral blood cells and hepatoma cells. Protein Pept Lett 17:1031–1039.  https://doi.org/10.2174/092986610791498948 CrossRefPubMedGoogle Scholar
  16. Eo SK, Kim YS, Lee CK, Han SS (2000) Possible mode of antiviral activity of acidic protein bound polysaccharide isolated from Ganoderma lucidum on herpes simplex viruses. J Ethnopharmacol 72:475–481.  https://doi.org/10.1016/S0378-8741(00)00266-X CrossRefPubMedGoogle Scholar
  17. Eo SK, Kim YS, Oh KW et al (2001) Mode of antiviral activity of water soluble components isolated from Elfvingia applanata on vesicular stomatitis virus. Arch Pharm Res 24:74–78CrossRefGoogle Scholar
  18. Faccin LC, Benati F, Rincão VP et al (2007) Antiviral activity of aqueous and ethanol extracts and of an isolated polysaccharide from Agaricus brasiliensis against poliovirus type 1. Lett Appl Microbiol 45:24–28.  https://doi.org/10.1111/j.1472-765X.2007.02153.x CrossRefPubMedGoogle Scholar
  19. Férir G, Palmer KE, Schols D (2011) Synergistic activity profile of griffithsin in combination with tenofovir, maraviroc and enfuvirtide against HIV-1 clade C. Virology 417:253–258.  https://doi.org/10.1016/j.virol.2011.07.004 CrossRefPubMedGoogle Scholar
  20. Friedman M (2016) Mushroom polysaccharides: chemistry and antiobesity, antidiabetes, anticancer, and antibiotic properties in cells, rodents, and humans. Foods 5:80.  https://doi.org/10.3390/foods5040080 CrossRefPubMedCentralGoogle Scholar
  21. Gao W, Sun Y, Chen S et al (2013) Mushroom lectin enhanced immunogenicity of HBV DNA vaccine in C57BL/6 and HBsAg-transgenic mice. Vaccine 31:2273–2280.  https://doi.org/10.1016/j.vaccine.2013.02.062 CrossRefPubMedGoogle Scholar
  22. Gao L, Sun Y, Si J et al (2014) Cryptoporus volvatus extract inhibits influenza virus replication in vitro and in vivo. PLoS One 9:e113604.  https://doi.org/10.1371/journal.pone.0113604 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gong M, Piraino F, Yan N et al (2009) Purification, partial characterization and molecular cloning of the novel antiviral protein RC28. Peptides 30:654–659.  https://doi.org/10.1016/j.peptides.2008.11.016 CrossRefPubMedGoogle Scholar
  24. Grienke U, Schmidtke M, Kirchmair J et al (2010) Antiviral potential and molecular insight into neuraminidase inhibiting diarylheptanoids from Alpinia katsumadai. J Med Chem 53:778–786.  https://doi.org/10.1021/jm901440f CrossRefPubMedGoogle Scholar
  25. Gu CQ, Li JW, Chao FH (2006) Inhibition of hepatitis B virus by D-fraction from Grifola frondosa: Synergistic effect of combination with interferon-α in HepG2 2.2.15. Antivir Res 72:162–165.  https://doi.org/10.1016/j.antiviral.2006.05.011 CrossRefPubMedGoogle Scholar
  26. Gu CQ, Li JW, Chao F et al (2007) Isolation, identification and function of a novel anti-HSV-1 protein from Grifola frondosa. Antivir Res 75:250–257.  https://doi.org/10.1016/j.antiviral.2007.03.011 CrossRefPubMedGoogle Scholar
  27. Han CH, Zhang GQ, Wang HX, Ng TB (2010) Schizolysin, a hemolysin from the split gill mushroom Schizophyllum commune. FEMS Microbiol Lett 309:115–121.  https://doi.org/10.1111/j.1574-6968.2010.02022.x CrossRefPubMedGoogle Scholar
  28. Hassan MAA, Rouf R, Tiralongo E et al (2015) Mushroom lectins: specificity, structure and bioactivity relevant to human disease. Int J Mol Sci 16:7802–7838.  https://doi.org/10.3390/ijms16047802 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Heredia A, Davis C, Redfield R (2000) Synergistic inhibition of HIV-1 in activated and resting peripheral blood mononuclear cells, monocyte-derived macrophages, and selected drug-resistant isolates with nucleoside analogues combined with a natural product, resveratrol. J Acquir Immune Defic Syndr 25:246–255.  https://doi.org/10.1097/00126334-200011010-00006 CrossRefPubMedGoogle Scholar
  30. Hijikata Y, Yamada S, Yasuhara A (2007) Herbal mixtures containing the mushroom Ganoderma lucidum improve recovery time in patients with herpes genitalis and labialis. J Altern Complement Med 13:985–987.  https://doi.org/10.1089/acm.2006.6297 CrossRefPubMedGoogle Scholar
  31. Hsu C-H, Hwang K-C, Chiang Y-H, Chou P (2008) The mushroom Agaricus blazei Murill extract normalizes liver function in patients with chronic hepatitis B. J Altern Complement Med 14:299–301.  https://doi.org/10.1089/acm.2006.6344 CrossRefPubMedGoogle Scholar
  32. Hwang BS, Lee IK, Choi HJ, Yun BS (2015) Anti-influenza activities of polyphenols from the medicinal mushroom Phellinus baumii. Bioorg Med Chem Lett 25:3256–3260.  https://doi.org/10.1016/j.bmcl.2015.05.081 CrossRefPubMedGoogle Scholar
  33. Ichimura T, Watanabe O, Maruyama S (1998) Inhibition of HIV-1 protease by water-soluble lignin-like substance from an edible mushroom, Fuscoporia obliqua. Biosci Biotechnol Biochem 62:575–577.  https://doi.org/10.1271/bbb.62.575 CrossRefPubMedGoogle Scholar
  34. Ichinohe T, Ainai A, Nakamura T et al (2010) Induction of cross-protective immunity against influenza A virus H5N1 by an intranasal vaccine with extracts of mushroom mycelia. J Med Virol 82:128–137.  https://doi.org/10.1002/jmv.21670 CrossRefPubMedGoogle Scholar
  35. Jacobson JM, Feinman L, Liebes L et al (2001) Pharmacokinetics, safety, and antiviral effects of hypericin, a derivative of St. John’s wort plant, in patients with chronic hepatitis C virus infection. Antimicrob Agents Chemother 45:517–524.  https://doi.org/10.1128/AAC.45.2.517 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jiang ZY, Liu WF, Zhang XM et al (2013) Anti-HBV active constituents from Piper longum. Bioorg Med Chem Lett 23:2123–2127.  https://doi.org/10.1016/j.bmcl.2013.01.118 CrossRefPubMedGoogle Scholar
  37. Johnson E, Førland DT, Sætre L et al (2009) Effect of an extract based on the medicinal mushroom Agaricus blazei murill on release of cytokines, chemokines and leukocyte growth factors in human blood ex vivo and in vivo. Scand J Immunol 69:242–250.  https://doi.org/10.1111/j.1365-3083.2008.02218.x CrossRefPubMedGoogle Scholar
  38. Kanokmedhakul S, Kanokmedhakul K, Prajuabsuk T et al (2003) A bioactive triterpenoid and vulpinic acid derivatives from the mushroom Scleroderma citrinum. Planta Med 69:568–571.  https://doi.org/10.1055/s-2003-40639 CrossRefPubMedGoogle Scholar
  39. Kara Rogers, Encyclopaedia Britannica (1999). https://www.britannica.com/science/mushroom
  40. Kotwal GJ (2008) Genetic diversity-independent neutralization of pandemic viruses (e.g. HIV), potentially pandemic (e.g. H5N1 strain of influenza) and carcinogenic (e.g. HBV and HCV) viruses and possible agents of bioterrorism (variola) by enveloped virus neutralizing com. Vaccine 26:3055–3058.  https://doi.org/10.1016/j.vaccine.2007.12.008 CrossRefPubMedGoogle Scholar
  41. Kotwal GJ, Kaczmarek JN, Leivers S et al (2005) Anti-HIV, anti-poxvirus, and anti-SARS activity of a nontoxic, acidic plant extract from the Trifolium species Secomet-V/anti-Vac suggests that it contains a novel broad-spectrum antiviral. Ann N Y Acad Sci 1056:293–302.  https://doi.org/10.1196/annals.1352.014 CrossRefPubMedGoogle Scholar
  42. Krupodorova T, Rybalko S, Barshteyn V (2014) Antiviral activity of Basidiomycete mycelia against influenza type A (serotype H1N1) and herpes simplex virus type 2 in cell culture. Virol Sin 29:284–290.  https://doi.org/10.1007/s12250-014-3486-y CrossRefPubMedGoogle Scholar
  43. Lee IH, Huang R-L, Chen C-T et al (2002) Antrodia camphorata polysaccharides exhibit anti-hepatitis B virus effects. FEMS Microbiol Lett 209:63–67.  https://doi.org/10.1111/j.1574-6968.2002.tb11110.x CrossRefPubMedGoogle Scholar
  44. Lee CL, Chiang LC, Cheng LH et al (2009) Influenza A (H1N1) antiviral and cytotoxic agents from Ferula assa-foetida. J Nat Prod 72:1568–1572.  https://doi.org/10.1021/np900158f CrossRefPubMedGoogle Scholar
  45. Lee S, Il KJ, Heo J et al (2013) The anti-influenza virus effect of Phellinus igniarius extract. J Microbiol 51:676–681.  https://doi.org/10.1007/s12275-013-3384-2 CrossRefPubMedGoogle Scholar
  46. Lehmann VKB, Huang A, Ibanez-Calero S et al (2003) Illudin S, the sole antiviral compound in mature fruiting bodies of Omphalotus illudens. J Nat Prod 66:1257–1258.  https://doi.org/10.1021/np030205w CrossRefPubMedGoogle Scholar
  47. Li YQ, Wang SF (2006) Anti-hepatitis B activities of ganoderic acid from Ganoderma lucidum. Biotechnol Lett 28:837–841.  https://doi.org/10.1007/s10529-006-9007-9 CrossRefPubMedGoogle Scholar
  48. Li YQ, Zhang KC (2005) In vitro inhibitory effects on HBsAg and HBeAg secretion of 3 new components produced by Ganoderma lucidum in the medium contained Radix sophorae flavescentis extract. Wei Sheng Wu Xue Bao 45:643–646PubMedGoogle Scholar
  49. Li YR, Liu QH, Wang HX, Ng TB (2008) A novel lectin with potent antitumor, mitogenic and HIV-1 reverse transcriptase inhibitory activities from the edible mushroom Pleurotus citrinopileatus. Biochim Biophys Acta, Gen Subj 1780:51–57.  https://doi.org/10.1016/j.bbagen.2007.09.004 CrossRefGoogle Scholar
  50. Li N, Li L, Fang JC et al (2012) Isolation and identification of a novel polysaccharide–peptide complex with antioxidant, anti-proliferative and hypoglycaemic activities from the abalone mushroom. Biosci Rep 32:221–228.  https://doi.org/10.1042/BSR20110012 CrossRefPubMedGoogle Scholar
  51. Lindequist U, Niedermeyer THJ, Jülich WD (2005) The pharmacological potential of mushrooms. Evid Based Complement Alternat Med 2:285–299.  https://doi.org/10.1093/ecam/neh107 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lindequist U, Jülich WD, Witt S (2015) Ganoderma pfeifferi – A European relative of Ganoderma lucidum. Phytochemistry 114:102–108.  https://doi.org/10.1016/j.phytochem.2015.02.018 CrossRefPubMedGoogle Scholar
  53. Liu J, Yang F, Ye LB et al (2004) Possible mode of action of antiherpetic activities of a proteoglycan isolated from the mycelia of Ganoderma lucidum in vitro. J Ethnopharmacol 95:265–272.  https://doi.org/10.1016/j.jep.2004.07.010 CrossRefPubMedGoogle Scholar
  54. Ma L-B, Xu B-Y, Huang M et al (2017) Adjuvant effects mediated by the carbohydrate recognition domain of Agrocybe aegerita lectin interacting with avian influenza H9N2 viral surface glycosylated proteins. J Zhejiang Univ Sci B 18:653–661.  https://doi.org/10.1631/jzus.B1600106 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Matsuhisa K, Yamane S, Okamoto T et al (2015) Anti-HCV effect of Lentinula edodes mycelia solid culture extracts and low-molecular-weight lignin. Biochem Biophys Res Commun 462:52–57.  https://doi.org/10.1016/j.bbrc.2015.04.104 CrossRefPubMedGoogle Scholar
  56. Mizerska-Dudka M, Jaszek M, Błachowicz A et al (2015) Fungus Cerrena unicolor as an effective source of new antiviral, immunomodulatory, and anticancer compounds. Int J Biol Macromol 79:459–468.  https://doi.org/10.1016/j.ijbiomac.2015.05.015 CrossRefPubMedGoogle Scholar
  57. Neurath AR, Strick N, Li YY, Debnath AK (2005) Punica granatum (pomegranate) juice provides an HIV-1 entry inhibitor and candidate topical microbicide. Ann N Y Acad Sci 4:41.  https://doi.org/10.1196/annals.1352.015 CrossRefGoogle Scholar
  58. Ng TB (1998) A review of research on the protein-bound polysaccharide (polysaccharopeptide, PSP) from the mushroom Coriolus versicolor (basidiomycetes: Polyporaceae). Gen Pharmacol 12:473–476.  https://doi.org/10.1016/S0306-3623(97)00076-1 CrossRefGoogle Scholar
  59. Nguyen TL, Chen J, Hu Y et al (2012) In vitro antiviral activity of sulfated Auricularia auricula polysaccharides. Carbohydr Polym 90:1254–1258.  https://doi.org/10.1016/j.carbpol.2012.06.060 CrossRefPubMedGoogle Scholar
  60. Nogusa S, Gerbino J, Ritz BW (2009) Low-dose supplementation with active hexose correlated compound improves the immune response to acute influenza infection in C57BL/6 mice. Nutr Res 29:139–143.  https://doi.org/10.1016/j.nutres.2009.01.005 CrossRefPubMedGoogle Scholar
  61. Oyetayo OV (2011) Medicinal uses of mushrooms in Nigeria: Towards full and sustainable exploitation. Afr J Tradit Complement Altern Med 8:267–274.  https://doi.org/10.4314/ajtcam.v8i3.65289 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Pan H, Yu X, Li T et al (2013) Aqueous extract from a Chaga medicinal mushroom, Inonotus obliquus (higher Basidiomyetes), prevents Herpes simplex virus entry through inhibition of viral-induced membrane fusion. Intl J Med Mushrooms 15:29–38.  https://doi.org/10.1615/IntJMedMushr.v15.i1.40 CrossRefGoogle Scholar
  63. Park SH, Song JH, Kim T et al (2012) Anti-human rhinoviral activity of polybromocatechol compounds isolated from the Rhodophyta, Neorhodomela aculeate. Marine Drugs 10:2222–2233.  https://doi.org/10.3390/md10102222 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Piraino F, Brandt CR (1999) Isolation and partial characterization of an antiviral, RC-183, from the edible mushroom Rozites caperata. Antivir Res 43:67–78.  https://doi.org/10.1016/S0166-3542(99)00035-2 CrossRefPubMedGoogle Scholar
  65. Polkovnikova MV, Nosik NN, Garaev TM et al (2014) A study of the antiherpetic activity of the Chaga mushroom (Inonotus obliquus) extracts in the Vero cells infected with the herpes simplex virus. Vopr Virusol 59:45–48PubMedGoogle Scholar
  66. Rincão VP, Yamamoto KA, Silva Ricardo NMP et al (2012) Polysaccharide and extracts from Lentinula edodes: structural features and antiviral activity. Virol J 9:37.  https://doi.org/10.1186/1743-422X-9-37 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Saboulard D, Gaspar A, Roussel B, Villard J (1998) New antiherpetic nucleoside from a Basidiomycete. C R Acad Sci III 321:585–591.  https://doi.org/10.1016/S0764-4469(98)80461-7 CrossRefPubMedGoogle Scholar
  68. Sarkar S, Koga J, Whitley RJ, Chatterjee S (1993) Antiviral effect of the extract of culture medium of Lentinus edodes mycelia on the replication of herpes simplex virus type 1. Antivir Res 20:293–303.  https://doi.org/10.1016/0166-3542(93)90073-R CrossRefPubMedGoogle Scholar
  69. Shibnev VA, Garaev TM, Finogenova MP et al (2015) Antiviral activity of aqueous extracts of the birch fungus Inonotus obliquus on the human immunodeficiency virus. Vopr Virusol 60:35–38PubMedGoogle Scholar
  70. Shin H-B, Choi M-S, Ryu B et al (2013) Antiviral activity of carnosic acid against respiratory syncytial virus. Virol J 10:303.  https://doi.org/10.1186/1743-422X-10-303 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Song AR, Le SX, Kong C et al (2014) Discovery of a new sesquiterpenoid from Phellinus ignarius with antiviral activity against influenza virus. Arch Virol 159:753–760.  https://doi.org/10.1007/s00705-013-1857-6 CrossRefPubMedGoogle Scholar
  72. Sorimachi K, Ikehara Y, Maezato G et al (2001) Inhibition by Agaricus blazei Murill fractions of cytopathic effect induced by Western Equine Encephalitis (WEE) virus on VERO cells in vitro. Biosci Biotechnol Biochem 65:1645–1647.  https://doi.org/10.1271/bbb.65.1645 CrossRefPubMedGoogle Scholar
  73. Sun J, Wang H, Ng TB (2011) Isolation of a laccase with HIV-1 reverse transcriptase inhibitory activity from fresh fruiting bodies of the Lentinus edodes (Shiitake mushroom). Indian J Biochem Biophys 48:88–94PubMedGoogle Scholar
  74. Sundararajan A, Ganapathy R, Huan L et al (2010) Influenza virus variation in susceptibility to inactivation by pomegranate polyphenols is determined by envelope glycoproteins. Antivir Res 88:1–9.  https://doi.org/10.1016/j.antiviral.2010.06.014 CrossRefPubMedGoogle Scholar
  75. Suzuki F, Suzuki C, Shimomura E et al (1979) Antiviral and interferon-inducing activities of a new peptidomannan, KS-2, extracted from culture mycelia of Lentinus edodes. J Antibiot 32:1336–1345.  https://doi.org/10.7164/antibiotics.32.1336 CrossRefPubMedGoogle Scholar
  76. Suzuki H, Iiyama K, Yoshida O, Yamazaki S, Yamamoto N, Toda S (1990) Structural characterization of the immunoactive and antiviral water-solubilized lignin in an extract of the culture medium of Lentinus edodes mycelia (LEM). Agric Biol Chem 54:479–487PubMedGoogle Scholar
  77. Takebe Y, Saucedo CJ, Lund G et al (2013) Antiviral lectins from red and blue-green algae show potent in vitro and in vivo activity against Hepatitis C virus. PLoS One 8:e64449.  https://doi.org/10.1371/journal.pone.0064449 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Teplyakova TV, Psurtseva NV, Kosogova TA et al (2012) Antiviral activity of polyporoid mushrooms (higher Basidiomycetes) from Altai mountains (Russia). Intl J Med Mushrooms 14:37–45.  https://doi.org/10.1615/IntJMedMushr.v14.i1.40 CrossRefGoogle Scholar
  79. Tian J, Hu X, Liu D et al (2017) Identification of Inonotus obliquus polysaccharide with broad-spectrum antiviral activity against multi-feline viruses. Int J Biol Macromol 95:160–167.  https://doi.org/10.1016/j.ijbiomac.2016.11.054 CrossRefPubMedGoogle Scholar
  80. Tochikura TS, Nakashima H, Ohashi Y, Yamamoto N (1988) Inhibition (in vitro) of replication and of the cytopathic effect of human immunodeficiency virus by an extract of the culture medium of Lentinus edodes mycelia. Med Microbiol Immunol 177:235–244.  https://doi.org/10.1007/BF00189409 CrossRefPubMedGoogle Scholar
  81. Van Rensburg CEJ, Gandy JJ, Snyman JR (2010) An observational trial: patient profile of users of Secomet V. S Afr Fam Pract 52:165. http://hdl.handle.net/2263/16819 Google Scholar
  82. Wang HX, Ng TB (2000) Isolation of a novel ubiquitin-like protein from Pleurotus ostreatus mushroom with anti-human immunodeficiency virus, translation-inhibitory, and ribonuclease activities. Biochem Biophys Res Commun 276:587–593.  https://doi.org/10.1006/bbrc.2000.3540 CrossRefPubMedGoogle Scholar
  83. Wang HX, Ng TB (2004a) A new laccase from dried fruiting bodies of the monkey head mushroom Hericium erinaceum. Biochem Biophys Res Commun 322:17–21.  https://doi.org/10.1016/j.bbrc.2004.07.075 CrossRefPubMedGoogle Scholar
  84. Wang HX, Ng TB (2004b) Purification of a novel low-molecular-mass laccase with HIV-1 reverse transcriptase inhibitory activity from the mushroom Tricholoma giganteum. Biochem Biophys Res Commun 315:450–454.  https://doi.org/10.1016/j.bbrc.2004.01.064 CrossRefPubMedGoogle Scholar
  85. Wang HX, Ng TB (2006a) A laccase from the medicinal mushroom Ganoderma lucidum. Appl Microbiol Biotechnol 72:508–513.  https://doi.org/10.1016/j.jsv.2005.04.011 CrossRefPubMedGoogle Scholar
  86. Wang HX, Ng TB (2006b) Purification of a laccase from fruiting bodies of the mushroom Pleurotus eryngii. Appl Microbiol Biotechnol 69:521–525.  https://doi.org/10.1007/s00253-005-0086-7 CrossRefPubMedGoogle Scholar
  87. Wang J, Wang HX, Ng TB (2007) A peptide with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Russula paludosa. Peptides 28:560–565.  https://doi.org/10.1016/j.peptides.2006.10.004 CrossRefPubMedGoogle Scholar
  88. Wang K-C, Chang J-S, Lin L-T et al (2012) Antiviral effect of cimicifugin from Cimicifuga foetida against human respiratory syncytial virus. Am J Chin Med 40:1033–1045.  https://doi.org/10.1142/S0192415X12500760 CrossRefPubMedGoogle Scholar
  89. Wasser SP (2010) Medicinal mushroom science: History, current status, future trends, and unsolved problems. Intl J Med Mushrooms 12:1–16.  https://doi.org/10.1615/IntJMedMushr.v12.i1.10 CrossRefGoogle Scholar
  90. Wasser SP (2017) Medicinal mushrooms in human clinical studies. Part I. Anticancer, oncoimmunological, and Immunomodulatory activities: a review. Intl J Med Mushrooms 19:279–317.  https://doi.org/10.1615/IntJMedMushrooms.v19.i4.10 CrossRefGoogle Scholar
  91. Wong JH, Wang HX, Ng TB (2008) Marmorin, a new ribosome inactivating protein with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the mushroom Hypsizygus marmoreus. Appl Microbiol Biotechnol 81:669–674.  https://doi.org/10.1007/s00253-008-1639-3 CrossRefPubMedGoogle Scholar
  92. Wong JH, Wang H, Ng TB (2009) A haemagglutinin from the medicinal fungus Cordyceps militaris. Biosci Rep 29:321–327.  https://doi.org/10.1042/BSR20080153 CrossRefPubMedGoogle Scholar
  93. Wu YY, Wang HX, Ng TB (2011) A novel metalloprotease from the wild Basidiomycete mushroom Lepista nuda. J Microbiol Biotechnol 21:256–262.  https://doi.org/10.4014/jmb.1010.10060 CrossRefPubMedGoogle Scholar
  94. Wu SF, Lin CK, Chuang YS et al (2012) Anti-hepatitis C virus activity of 3-hydroxy caruilignan C from Swietenia macrophylla stems. J Viral Hepat 19:364–370.  https://doi.org/10.1111/j.1365-2893.2011.01558.x CrossRefPubMedGoogle Scholar
  95. Wu Y, Li S, Li H et al (2016) Effect of a polysaccharide from Poria cocos on humoral response in mice immunized by H1N1 influenza and HBsAg vaccines. Int J Biol Macromol 91:248–257.  https://doi.org/10.1016/j.ijbiomac.2016.05.046 CrossRefPubMedGoogle Scholar
  96. Xu J, Wang J, Deng F et al (2008) Green tea extract and its major component epigallocatechin gallate inhibits hepatitis B virus in vitro. Antivir Res 78:242–249.  https://doi.org/10.1016/j.antiviral.2007.11.011 CrossRefPubMedGoogle Scholar
  97. Yamamoto Y, Shirono H, Kono K, Ohashi Y (1997) Immunopotentiating activity of the water-soluble lignin rich fraction prepared from LEM – the extract of the solid culture medium of Lentinus edodes mycelia. Biosci Biotechnol Biochem 61:1909–1912.  https://doi.org/10.1271/bbb.61.1909 CrossRefPubMedGoogle Scholar
  98. Yan N, He F, Piraino F et al (2015) Antiviral activity of a cloned peptide RC28 isolated from the higher basidiomycetes mushroom Rozites caperata in a mouse model of HSV-1 keratitis. Intl J Med Mushrooms 17:819–828.  https://doi.org/10.1615/IntJMedMushrooms.v17.i9.20 CrossRefGoogle Scholar
  99. Zhang GQ, Sun J, Wang HX, Ng TB (2009) A novel lectin with antiproliferative activity from the medicinal mushroom Pholiota adiposa. Acta Biochim Pol 56:415–421. doi: 20091798 [pii]CrossRefGoogle Scholar
  100. Zhang Y, Liu Y-B, Li Y et al (2013) Sesquiterpenes and alkaloids from the roots of Alangium chinense. J Nat Prod 76:1058–1063.  https://doi.org/10.1021/np4000747 CrossRefPubMedGoogle Scholar
  101. Zhang R, Zhao L, Wang H, Ng TB (2014a) A novel ribonuclease with antiproliferative activity toward leukemia and lymphoma cells and HIV-1 reverse transcriptase inhibitory activity from the mushroom, Hohenbuehelia serotina. Int J Mol Med 33:209–214.  https://doi.org/10.3892/ijmm.2013.1553 CrossRefPubMedGoogle Scholar
  102. Zhang W, Tao J, Yang X et al (2014b) Antiviral effects of two Ganoderma lucidum triterpenoids against enterovirus 71 infection. Biochem Biophys Res Commun 449:307–312.  https://doi.org/10.1016/j.bbrc.2014.05.019 CrossRefPubMedGoogle Scholar
  103. Zhao JK, Wang HX, Ng TB (2009) Purification and characterization of a novel lectin from the toxic wild mushroom Inocybe umbrinella. Toxicon 53:360–366.  https://doi.org/10.1016/j.toxicon.2008.12.009 CrossRefPubMedGoogle Scholar
  104. Zhao S, Zhao Y, Li S et al (2010) A novel lectin with highly potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the edible wild mushroom Russula delica. Glycoconj J 27:259–265.  https://doi.org/10.1007/s10719-009-9274-5 CrossRefPubMedGoogle Scholar
  105. Zhao X, Hu Y, Wang D et al (2011) Optimization of sulfated modification conditions of Tremella polysaccharide and effects of modifiers on cellular infectivity of NDV. Int J Biol Macromol 49:44–49.  https://doi.org/10.1016/j.ijbiomac.2011.03.010 CrossRefPubMedGoogle Scholar
  106. Zhao C, Gao L, Wang C et al (2016) Structural characterization and antiviral activity of a novel heteropolysaccharide isolated from Grifola frondosa against enterovirus 71. Carbohydr Polym 144:382–389.  https://doi.org/10.1016/j.carbpol.2015.12.005 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Prabin Pradeep
    • 1
  • Vidya Manju
    • 1
  • Mohammad Feraz Ahsan
    • 1
  1. 1.Inter University Centre for Biomedical Research & Super Speciality HospitalKottayamIndia

Personalised recommendations