Advertisement

Recent Progress in Research on the Pharmacological Potential of Mushrooms and Prospects for Their Clinical Application

  • Susanna M. BadalyanEmail author
  • Anush Barkhudaryan
  • Sylvie Rapior
Chapter

Abstract

Fungi are considered one of the most diverse, ecologically significant, and economically important organisms on Earth. The edible and medicinal mushrooms have long been known by humans and were used by ancient civilizations not only as valuable food but also as medicines. Mushrooms are producers of high- and low-molecular-weight bioactive compounds (alkaloids, lectins, lipids, peptidoglycans, phenolics, polyketides, polysaccharides, proteins, polysaccharide-protein/peptides, ribosomal and non-ribosomal peptides, steroids, terpenoids, etc.) possessing more than 130 different therapeutic effects (analgesic, antibacterial, antifungal, anti-inflammatory, antioxidant, antiplatelet, antiviral, cytotoxic, hepatoprotective, hypocholesterolemic, hypoglycemic, hypotensive, immunomodulatory, immunosuppressive, mitogenic/regenerative, etc.).

The early record of Materia Medica shows evidence of using mushrooms for treatment of different diseases. Mushrooms were widely used in the traditional medicine of many countries around the world and became great resources for modern clinical and pharmacological research. However, the medicinal and biotechnological potential of mushrooms has not been fully investigated. This review discusses recent advances in research on the pharmacological potential of mushrooms and perspectives for their clinical application.

Keywords

Bioactive compounds Clinical application Ethno-mycopharmacology Medicinal mushrooms Pharmacological potential 

Abbreviations

ACE

Angiotensin-converting enzyme

AIDS

Acquired immune deficiency syndrome

BDNF

Brain-derived neurotrophic factor

CL

Cultural liquid

COX-1

Cyclooxygenase-1

COX-2

Cyclooxygenase-2

CSF

Colony-stimulating factor

CVD

Cardiovascular diseases

DENV-2

Dengue virus type 2

DS

Dietary supplement

EPS

Exopolysaccharides

FIP

Fungal immunomodulatory protein

GLPS

G. lucidum polysaccharide

GSK-3

Glycogen synthase kinase 3

HIV

Human immunodeficiency virus

HK2

Hexokinase 2

HMG-CoA

5-Hydroxy-3-methylglutaryl-coenzyme A

HPV-1

Human papillomavirus 1

HSV-2

Herpes simplex virus 2

IC50

The half maximal inhibitory concentration

IFN

Interferon

IL

Interleukin

iNOS

Inducible NO synthase

LPS

Lipopolysaccharide

MDCK

Madin-Darby canine kidney cells

MIC

Minimal inhibitory concentrations

MMDD

Medicinal mushroom-derived drug

MS

Mycosterol

NGF

Nerve growth factor

NO

Nitric oxide

NSAID

Nonsteroidal anti-inflammatory drug

OLTT

Oxygenated lanostane-type triterpenoid

PAMP

Pathogen-associated molecular pattern

PPAR

Peroxisome proliferator-activated receptor

PRR

Pattern recognition receptor

PI3K/Akt

Phosphatidylinositol-3-kinase and protein kinase B

PSK

Polysaccharide K

PSP

Polysaccharide-protein

PSPC

Polysaccharide-protein complex

PTP1B

Protein tyrosine phosphatase 1B

QoL

Quality of life

STAT3

Signal transducer and activator of transcription 3

TCM

Traditional Chinese medicine

TNBC

Triple-negative breast cancer

TNF

Tumor necrosis factor

TNFα

Tumor necrosis factor alfa

VDM

Vitamin D-enriched mushroom

Notes

Acknowledgments

This chapter arises from a long-standing cooperation between two authors (S.M.B. and S.R.) on fungal research directed to the identification of bioactive compounds and medicinal properties supported by the collaboration between the Institute of Pharmacy; Yerevan State University, Armenia; and Faculty of Pharmacy of the University of Montpellier/UMR 5175 CNRS, France.

We thank Philippe Callac (INRA, Villenave d’Ornon, France) for advice on the genus Agaricus. We are grateful to our colleagues Claudio Angelini (Pordenone, Italy), Guy Fourré (France), Jacques Guinberteau (France), Jean-Paul Maurice (Société Lorraine de Mycologie, Neufchâteau, France), Jean-Marc Moingeon (Goux-les-Usiers, France), Luigi Perrone (Roma, Italy), Jean-Philippe Rioult (EREM, Caen, France), and Peter Verstraeten (Nazareth, Belgium) for kindly providing photos of medicinal mushrooms (Figs. 1.1 and 1.2). We are also very thankful to mycologists and researchers around the world for providing literature data.

The authors have not reported any conflict of interest that would likely raise questions about their independence.

References

  1. Abdullah N, MZD H, Lau BF et al (2013) Domestication of a wild medicinal sclerotial mushroom, Lignosus rhinocerotis (Cooke) Ryvarden. Ind Crop Prod 47:256–261.  https://doi.org/10.1016/j.indcrop.2013.03.012 CrossRefGoogle Scholar
  2. Abidin MHZ, Abdullah N, Abidin NZ (2018) Antiatherogenic potential of extracts from the gray oyster medicinal mushroom, Pleurotus pulmonarius (Agaricomycetes), in vitro. Int J Med Mushrooms 20(3):283–290.  https://doi.org/10.1615/IntJMedMushrooms.2018025821 CrossRefPubMedGoogle Scholar
  3. Abugri DA, McElhenney WH (2013) Extraction of total phenolic and flavonoids from edible wild and cultivated medicinal mushrooms as affected by different solvents. J Nat Prod Plant Resour 3(3):37–42Google Scholar
  4. Acharya K, Bera I, Khatua S et al (2015) Pharmacognostic standardization of Grifola frondosa: a well-studied medicinal mushroom. Pharm Lett 7:72–78Google Scholar
  5. Acharya K, Ghosh S, Kundu I (2016) Pharmacognostic standardization of a well-known edible mushroom, Volvariella volvacea. J App Pharm Sci 6(11):185–190.  https://doi.org/10.7324/JAPS.2016.601129 CrossRefGoogle Scholar
  6. Acharya K, Khatua S, Ray S (2017) Quality assessment and antioxidant study of Pleurotus djamor (Rumph. Ex Fr.) Boedijn. J Appl Pharm Sci 7(6):105–110.  https://doi.org/10.7324/JAPS.2017.70614 CrossRefGoogle Scholar
  7. Adams LS, Phung S, Wu X et al (2008) White button mushroom (Agaricus bisporus) exhibits antiproliferative and proapoptotic properties and inhibits prostate tumor growth in athymic mice. Nutr Cancer 60(6):744–756.  https://doi.org/10.1080/01635580802192866 CrossRefPubMedGoogle Scholar
  8. Adebayo EA, Martinez-Carrera D, Morales P et al (2018) Comparative study of antioxidant and antibacterial properties of the edible mushrooms Pleurotus levis, P. ostreatus, P. pulmonarius and P. tuber-regium. Int J Food Sci Technol 53(5):1316–1330.  https://doi.org/10.1111/ijfs.13712 CrossRefGoogle Scholar
  9. Adejumo TO, Coker ME, Akinmoladun VO (2015) Identification and evaluation of nutritional status of some edible and medicinal mushrooms in Akoko area, Ondo state, Nigeria. Int J Curr Microbiol App Sci 4(4):1011–1028Google Scholar
  10. Adotey G, Quarcoo A, Holliday JC et al (2011) Effect of immunomodulating and antiviral agent of medicinal mushrooms (immune assist 24/7™) on CD4+ T-lymphocyte counts of HIV-infected patients. Int J Med Mushrooms 13(2):109–113.  https://doi.org/10.1615/IntJMedMushr.v13.i2.20 CrossRefPubMedGoogle Scholar
  11. Afrin S, Rakib MA, Kim BH et al (2016) Eritadenine from edible mushrooms inhibits activity of angiotensin converting enzyme in vitro. J Agric Food Chem 64(11):2263–2268.  https://doi.org/10.1021/acs.jafc.5b05869 CrossRefPubMedGoogle Scholar
  12. Ahmad MS, Noor ZM, Ariffin ZZ (2014) Isolation and identification fibrinolytic protease endophytic fungi from Hibiscus leaves in Shah Alam. Int J Agric Biol Eng 8(10):1104–1107. https://doi.org/scholar.org/1307-6892/9999437
  13. Ahmad MR, Murtaza I, Bhat G et al (2016) Evaluation of some mushrooms from Kashmir valley for their potential anti-cancer activity. Int Arch BioMed Clin Res 2(4):57–60.  https://doi.org/10.21276/iabcr.2016.2.4.13 CrossRefGoogle Scholar
  14. Ahn WS, Kim DJ, Chae GT et al (2004) Natural killer cell activity and quality of life were improved by consumption of a mushroom extract, Agaricus blazei Murill Kyowa, in gynecological cancer patients undergoing chemotherapy. Int J Gynecol Cancer 14:589–594.  https://doi.org/10.1111/j.1048-891X.2004.14403.x CrossRefPubMedGoogle Scholar
  15. Ahn H, Jeon E, Kim JC et al (2017) Lentinan from Shiitake selectively attenuates AIM2 and non-canonical inflammasome activation while inducing pro-inflammatory cytokine production. Sci Rep 7:1314.  https://doi.org/10.1038/s41598-017-01462-4 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Aleem E (2013) β-Glucans and their application in cancer therapy: focus on human studies. Anti Cancer Agents Med Chem 13:709–719.  https://doi.org/10.2174/1871520611313050005 CrossRefGoogle Scholar
  17. Al-Fatimi M, Schröder G, Kreisel H et al (2013) Biological activities of selected basidiomycetes from Yemen. Pharmazie 68:221–226.  https://doi.org/10.1691/ph.2013.2729
  18. Ali SM, Ling TC, Muniandy S et al (2014) Recovery and partial purification of fibrinolytic enzymes of Auricularia polytricha (Mont.) Sacc. by an aqueous two-phase system. Sep Purif Technol 122:359–366.  https://doi.org/10.1016/j.seppur.2013.11.016 Google Scholar
  19. Ali SM, Tan YS, Raman J et al (2017) Do culinary mushrooms have fibrinolytic activities? Biomed Rev 28:95–103.  https://doi.org/10.14748/bmr.v28.4454 Google Scholar
  20. Allen JL, Lendemer JC (2015) Fungal conservation in the USA. Endanger Species Res 28:33–42.  https://doi.org/10.3354/esr00678 CrossRefGoogle Scholar
  21. Alonso EN, Ferronato MJ, Fermento ME et al (2018) Antitumoral and antimetastatic activity of Maitake D-Fraction in triple-negative breast cancer cells. Oncotarget 9(34):23396–23412.  https://doi.org/10.18632/oncotarget.25174 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Alves M, Ferreira I, Martins A et al (2012) Antimicrobial activity of wild mushroom extracts against clinical isolates resistant to different antibiotics. J Appl Microbiol 113(2):466–475.  https://doi.org/10.1111/j.1365-2672.2012.05347 CrossRefPubMedGoogle Scholar
  23. Alves M, Ferreira I, Lourenço I et al (2014) Wild mushroom extracts as inhibitors of bacterial biofilm formation. Pathogens 3:667–679.  https://doi.org/10.3390/pathogens3030667 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Anjana S, Savita J (2017) Oyster mushroom: answer to human ailments. Asian J Pharm Clin Res 10(4):24–27.  https://doi.org/10.22159/ajpcr.2017.v10i4.16867 CrossRefGoogle Scholar
  25. Anke H, Antelo L (2011) Cyclic peptides and depsipeptides from fungi. In: Anke T, Weber D (eds) The mycota. Physiology and genetics. Selected basic and applied aspects, vol XV. Springer, Heidelberg, pp 273–296Google Scholar
  26. Anwar H, Hussain G, Mustafa I (2018) Antioxidants from natural sources. In Antioxidants in foods and its applications, pp. 3–28.  https://doi.org/10.5772/intechopen/75961.
  27. Aras A, Khalid S, Jabeen S et al (2018) Regulation of cancer cell signaling pathways by mushrooms and their bioactive molecules: overview of the journey from benchtop to clinical trials. Food Chem Toxicol 119:206–214.  https://doi.org/10.1016/j.fct.2018.04.038 PubMedGoogle Scholar
  28. Asatiani MD, Elisashvili EI, Wasser SP et al (2007) Free-radical scavenging activity of submerged mycelium extracts from higher basidiomycetes mushrooms. Biosci Biotechnol Biochem 71:3090–3092.  https://doi.org/10.1271/bbb.70280 CrossRefPubMedGoogle Scholar
  29. Atila F, Owaid MN, Shariati MA (2017) The nutritional and medical benefits of Agaricus bisporus: a review. J Microbiol Biotechnol Food Sci 7(3):281–286.  https://doi.org/10.15414/jmbfs.2017/18.7.3.281-286 CrossRefGoogle Scholar
  30. Awadasseid A, Hou J, Gamallat Y et al (2017) Purification, characterization, and antitumor activity of a novel glucan from the fruiting bodies of Coriolus versicolor. PLoS One 12(2):e0171270.  https://doi.org/10.1371/journal.pone.0171270 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ayaz FA, Torun H, Colak A et al (2011) Macro- and microelement contents of fruiting bodies of wild-edible mushrooms growing in the East Black Sea region of Turkey. 2:53–59.  https://doi.org/10.4236/fns.2011.22007 Google Scholar
  32. Baby S, Johnson AJ, Govindan B (2015) Secondary metabolites from Ganoderma. Phytochem 114:66–101.  https://doi.org/10.1016/j.phytochem.2015.03.010 CrossRefGoogle Scholar
  33. Badalian SM (2000) Antitumor and immune-modulating activities of compounds from several basidiomycete mushrooms. Probl Med Mycology 2(1):22–30. (in Russian)Google Scholar
  34. Badalian SM, Serrano JJ (1999) Hypoglycemic activity of the medicinal mushroom Hypholoma fasciculare (Fr.) Kumm. Int J Med Mushrooms 1(3):245–250.  https://doi.org/10.1615/IntJMedMushrooms.v1.i3.40 CrossRefGoogle Scholar
  35. Badalian SM, Doko L, Rapior S et al (1996) Chemical and pharmacological study of higher fungi. II. Comparative investigation of the chemical composition of fruiting bodies extracts and cultural characteristics of Nematoloma species (N. fasciculare, N. capnoides, N. sublateritium, Strophariaceae). Mikol Fitopatol 30(4):79–86Google Scholar
  36. Badalian SM, Mnatzakanian VA, Aroutunian LS et al (1997a) Chemical and pharmacological study of higher fungi. IV. Comparative investigation of the chemical composition from fruiting body extracts of five xylotrophic species (Agaricales). Mikol Fitopatol 31(3):61–66. (in Russian)Google Scholar
  37. Badalian SM, Serrano JJ, Le Quang J et al (1997b) Chemical and pharmacological study of higher fungi. III. Acute toxicity studies from fruiting body extracts of Nematoloma fasciculare (Huds.:Fr.) Karst. and Nematoloma capnoides (Fr.) Karst. (Strophariaceae). Mikol Fitopatol 31(1):42–45. (in Russian)Google Scholar
  38. Badalian SM, Rapior S, Andary C et al (1999) Biologically active metabolites of higher fungi. In Produits naturels d’origine végétale. Actes of IVth Colloque. 25–29 May 1999, Ottawa, pp. 93–98.Google Scholar
  39. Badalyan SM (2001) The main groups and therapeutic significance of compounds formed by macromycetes. Probl Med Mycology 3(1):16–23Google Scholar
  40. Badalyan SM (2003a) Edible and medicinal Basidiomycetes mushrooms as source of natural antioxidants. Int J Med Mushrooms 5(2):153–162.  https://doi.org/10.1615/InterJMedicMush.v5.i2.40 CrossRefGoogle Scholar
  41. Badalyan SM (2003b) Antioxidant activity of culinary-medicinal mushroom Flammulina velutipes (Curt.:Fr.) P. Karst. (Agaricomycetideae). Int J Med Mushrooms 5(3):277–286.  https://doi.org/10.1615/InterJMedicMush.v5.i3.50 CrossRefGoogle Scholar
  42. Badalyan SM (2004a) Screening of antifungal activity of several Basidiomycetous macromycetes. Probl Med Mycology 6(1):18–26. (in Russian)Google Scholar
  43. Badalyan SM (2004b) Antiprotozoal activity and mitogenic effect of mycelium of culinary-medicinal Shiitake mushroom Lentinus edodes (Berk.) Singer (Agaricomycetidae). Int J Med Mushrooms 6(2):131–138.  https://doi.org/10.1615/IntJMedMushr.v6.i2.40 CrossRefGoogle Scholar
  44. Badalyan SM (2012) Medicinal aspects of edible ectomycorrhizal mushrooms. In: Zambonelli A, Bonitо G (eds) Edible ectomycorrhizal mushrooms, current knowledge and future prospects, vol 34. Springer, Berlin/Heidelberg, pp 317–334Google Scholar
  45. Badalyan SM (2015) Chemical composition of mycelia of different collections of coprinoid mushrooms. In Biodiversity and ecology of fungi and fungiform organisms of the Northern Eurasia. Proceedings of All-Russian conference with international participation, 20–24 April 2015, Yekaterinburg, pp. 297–299.Google Scholar
  46. Badalyan SM (2016) Fatty acid composition of different collections of coprinoid mushrooms (Agaricomycetes) and their nutritional and medicinal values. Int J Med Mushrooms 18(10):883–893.  https://doi.org/10.1615/IntJMedMushrooms.v18.i10.40 CrossRefPubMedGoogle Scholar
  47. Badalyan SM, Gharibyan NG (2017a) Characteristics of mycelial structures of different fungal collections. YSU Press (Armenian/English), YerevanGoogle Scholar
  48. Badalyan SM, Gharibyan NG (2017b) Antiphytopathogenic activity of mycelia polypore mushrooms (Аgaricomycetes, Polyporales). In Current mycology in Russia. Proceedings of the IVth congress of Russian mycologists, vol 7. 12–14 April 2017, Moscow, pp 207–208 (in Russian).Google Scholar
  49. Badalyan SM, Hambardzumyan LA (2001) Investigation of immune-modulating activity of medicinal mushroom Flammulina velutipes (Curt.:Fr.) P. Karst. in vitro. Cytokines induction by fruiting body extract. Int J Med Mushrooms 3(2–3):110–111.  https://doi.org/10.1615/IntJMedMushr.v3.i2-3.290 CrossRefGoogle Scholar
  50. Badalyan SM, Rapior S (1999) Chemical screening and biological activities of wood-decaying fungi Flammulina velutipes (Curt.:Fr.) Karst. (Tricholomataceae). In Proceedings of the scientific session for the 75-year celebration of Department of Botany at Yerevan State University, 21–23 March 1999, Yerevan, pp. 54–56 (in Russian).Google Scholar
  51. Badalyan SM, Shahbazyan TA (2015) Medicinal properties of two polypore species: Fomes fomentarius and Fomitopsis pinicola. In Current mycology in Russia. Proceedings of IIIrd international mycological forum, vol 5. 14–15 April 2015, Moscow, pp. 277–279 (in Russian).Google Scholar
  52. Badalyan SM, Zambonelli A (2019) Biotechnological exploitation of macrofungi for the production of food, pharmaceuticals and cosmeceuticals. In: Sridhar KR, Deshmukh SK (eds) Advances in macrofungi: diversity, ecology and biotechnology. CRC Press, pp 199–230.  https://doi.org/10.1201/9780429504075
  53. Badalyan SM, Rapior S, Doko L et al (1994) Investigation of primary and secondary metabolites in a chemical study of Cortinarius armillatus (A.-S.:Fr.) Fr. (Cortinariaceae, Telamonia). Cryptogam Mycol 15(4):223–228Google Scholar
  54. Badalyan SM, Rapior S, Le Quang J et al (1995) Investigation of fungal metabolites and acute toxicity studies from fruiting bodies of Hypholoma species (Strophariaceae). Cryptogam Mycol 16(2):79–84Google Scholar
  55. Badalyan SM, Serrano JJ, Rapior S et al (2001) Pharmacological activity of the mushrooms Flammulina velutipes (Curt.:Fr.) Sing., Paxillus involutus (Batsch.:Fr.) Fr. and Tricholoma pardinum Quél. (Basidiomycota). Int J Med Mushrooms 3:27–33.  https://doi.org/10.1615/IntJMedMushr.v3.i1.40 Google Scholar
  56. Badalyan SM, Innocenti G, Garibyan NG (2002) Antagonistic activity of xylotrophic mushrooms against pathogenic fungi of cereals in dual culture. Phytopathol Mediterr 41(3):220–225.  https://doi.org/10.1400/14513
  57. Badalyan SM, Innocenti G, Gharibyan NG (2004) Interactions between xylotrophic mushrooms and mycoparasitic fungi in dual-culture experiments. Phytopathol Mediterr 43(1):44–48. http://dx.doi.org/10.14601/Phytopathol_Mediterr-1733
  58. Badalyan SM, Isikhuemhen OS, Gharibyan NG (2008a) Antagonistic/antifungal activity of Pleurotus tuberregium (Fr.) Singer against selected fungal pathogens. Int J Med Mushrooms 10(2):155–162.  https://doi.org/10.1615/IntJMedMushr.v10.i2.60 CrossRefGoogle Scholar
  59. Badalyan SM, Melikyan LR, Navarro-González M et al (2008b) Fibrinolytic activity of several coprinoid mushrooms. VIth international conference of mushroom biology & mushroom production, 9 September–3 October 2008, Bonn, pp. 66–67.Google Scholar
  60. Badalyan SM, Gharibyan NG, Iotti M et al (2012) Morphological and genetic characteristics of different collections of Ganoderma P. Karst. species. Proceedings of the 18th congress ISMS. 26–30 August 2012, Beijing, pp. 247–254.Google Scholar
  61. Badalyan SM, Shnyreva AV, Iotti M et al (2015) Genetic resources and mycelial characteristics of several medicinal polypore mushrooms (Higher Basidiomycetes). Int J Med Mushrooms 17(4):371–384.  https://doi.org/10.1615/IntJMedMushrooms.v17.i4.60 CrossRefPubMedGoogle Scholar
  62. Badalyan SM, Gharibyan NG, Shahbazyan TA et al (2016) Milk coagulating and thrombolytic activity of red-belt conk Fomitopsis pinicola. In Advances in medical mycology. Proceedings of memorial conference of medical mycology, vol 16. 14–15 April 2016, Moscow, pp. 239–242. (in Russian).Google Scholar
  63. Baggio CH, Freitas CS, Martins DF et al (2010) Antinociceptive effects of (1→3), (1→6)-linked β-glucan isolated from Pleurotus pulmonarius in models of acute and neuropathic pain in mice: evidence for a role for glutamatergic receptors and cytokine pathways. J Pain 11(10):965–971.  https://doi.org/10.1016/j.jpain.2010.01.005 CrossRefPubMedGoogle Scholar
  64. Bandara AR, Rapior S, Bhat DJ et al (2015) Polyporus umbellatus, an edible-medicinal cultivated mushroom with multiple developed health-care products as food, medicine and cosmetics: a review. Cryptogam Mycol 36(1):3–42.  https://doi.org/10.7872/crym.v36.iss1.2015.3 CrossRefGoogle Scholar
  65. Bandara AR, Karunarathna SC, Mortimer PE et al (2017) First successful domestication and determination of nutritional and antioxidant properties of the red ear mushroom Auricularia thailandica (Auriculariales, Basidiomycota). Mycol Prog 16(11–12):1029–1039.  https://doi.org/10.1007/s11557-017-1344-7 CrossRefGoogle Scholar
  66. Bao F, Yang K, Wub C et al (2018) New natural inhibitors of hexokinase 2 (HK2): steroids from Ganoderma sinense. Fitoterapia 125:123–129.  https://doi.org/10.1016/j.fitote.2018.01.001 CrossRefPubMedGoogle Scholar
  67. Barbieri A, Quagliariello V, Del Vecchio V et al (2017) Anticancer and anti-inflammatory properties of Ganoderma lucidum extract effects on melanoma and triple-negative breast cancer treatment. Nutrients 9:210.  https://doi.org/10.3390/nu9030210 CrossRefPubMedCentralGoogle Scholar
  68. Barceloux DG (2008) Medical toxicology of natural substances. Foods, fungi, medicinal herbs, plants and venomous animals. Wiley, Hoboken.  https://doi.org/10.1002/9780470330319 CrossRefGoogle Scholar
  69. Barros L, Cruz T, Baptista P (2008) Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food Chem Toxicol 46:2742–2747.  https://doi.org/10.1016/j.fct.2008.04.030 CrossRefPubMedGoogle Scholar
  70. Barsanti L, Passarelli V, Evangelista V et al (2011) Chemistry, physico-chemistry and applications linked to biological activities of β-glucans. Nat Prod Rep 28:457–466.  https://doi.org/10.1039/c0np00018c CrossRefPubMedGoogle Scholar
  71. Baskaran A (2015) Suppression of lipopolysaccharide and hydrogen peroxide-induced inflammatory responses in Raw 264.7 macrophage by Pleurotus giganteus and Lignosus rhinocerotis. University of Malaya. http://studentsrepo.um.edu.my/id/eprint/7425
  72. Baskaran A, Chua KH, Sabaratnam V et al (2017) Pleurotus giganteus (Berk. Karun & Hyde), the giant oyster mushroom inhibits NO production in LPS/H2O2 stimulated RAW 264.7 cells via STAT 3 and COX-2 pathways. BMC Complement Altern Med 17:40.  https://doi.org/10.1186/s12906-016-1546-6 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Batbayar S, Lee DH, Kim HW (2012) Immunomodulation of fungal β-glucan in host defense signaling by dectin-1. Biomol Ther 20(5):433–445.  https://doi.org/10.4062/biomolther.2012.20.5.433 CrossRefGoogle Scholar
  74. Bedlovičová Z, Smrčová M, Strapáč I et al (2016) Mushrooms as the source of potential antimicrobial agents: a review. Curr Org Chem 20:1–13.  https://doi.org/10.2174/1385272820666160608101058 CrossRefGoogle Scholar
  75. Beekman AM, Barrow R (2014) Fungal metabolites as pharmaceuticals. Aust J Chem 67:827–843.  https://doi.org/10.1071/CH13639 CrossRefGoogle Scholar
  76. Bello M, Oluwamukomi MO, Enujiugha VN (2017) Nutrient composition and sensory properties of biscuit from mushroom-wheat composite flours. ACRI 9(3):1–11.  https://doi.org/10.1111/jfpp.13150 CrossRefGoogle Scholar
  77. Bennett L, Kersaitis C, Macaulay SL et al (2013) Vitamin D2-enriched button mushroom (Agaricus bisporus) improves memory in both wild type and APPswe/PS1dE9 transgenic mice. PLoS One 8(10):e76362.  https://doi.org/10.1371/journal.pone.0076362 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Berihuete-Azorín M, Girbal J, Piqué R et al (2018) Punk’s not dead. Fungi for tinder at the Neolithic site of La Draga (NE Iberia). PLoS One 13(4):e0195846.  https://doi.org/10.1371/journal.pone.0195846 PubMedPubMedCentralGoogle Scholar
  79. Bhakta M, Kumar P (2013) Mushroom polysaccharides as potential prebiotics. Int J Health Sci Res 3:77–84.  https://doi.org/10.1016/j.bcdf.2015.11.001 CrossRefGoogle Scholar
  80. Bhatt RP, Singh U, Uniyal P (2018) Healing mushrooms of Uttarakhand Himalaya, India. Curr Res Environ Appl Mycol 8(1):1–23.  https://doi.org/10.5943/cream/8/1/1 CrossRefGoogle Scholar
  81. Bhattacharjee J, Bhattacharjee D, Paul T et al (2015) Diversity of mushrooms in indo-Bangladesh region of north-East India. J Andaman Sci Assoc 20(1):75–82Google Scholar
  82. Bishop KS, Kao CHJ, Xu Y et al (2015) From 2000 years of Ganoderma lucidum to recent developments in nutraceuticals. Phytochemistry 114:56–65.  https://doi.org/10.1016/j.phytochem.2015.02.015 CrossRefPubMedGoogle Scholar
  83. Biswas G, Nandi S, Kuila D et al (2017) A comprehensive review on food and medicinal prospects of Astraeus hygrometricus. Pharm J 9(6):799–806.  https://doi.org/10.5530/pj.2017.6.125 CrossRefGoogle Scholar
  84. Blackwell M (2011) The Fungi: 1, 2, 3 … 5.1 million species? Am J Bot 98:426–438.  https://doi.org/10.3732/ajb.1000298 CrossRefPubMedGoogle Scholar
  85. Blann AD, Landray MJ, Lip GY (2002) An overview of antithrombotic therapy. Br Med J 325(7367):762–765.  https://doi.org/10.1136/bmj.325.7367.762 CrossRefGoogle Scholar
  86. Boa ER (2004) Wild edible fungi a global overview of their use and importance to people. Food and Agriculture Organization of the United Nations, Roma. http://www.fao.org/docrep/007/y5489e/y5489e00.htm Google Scholar
  87. Borchers AT, Krishnamurthy A, Keen CL et al (2008) The immunobiology of mushrooms. Exp Biol Med (Maywood) 233(3):259–276.  https://doi.org/10.3181/0708-MR-227 CrossRefGoogle Scholar
  88. Bouike G, Nishitani Y, Shiomi H et al (2011) Oral treatment with extract of Agaricus blazei Murill enhanced Th1 response through intestinal epithelial cells and suppressed OVA-sensitized allergy in mice. eCAM 2011:1–11.  https://doi.org/10.1155/2011/532180 CrossRefGoogle Scholar
  89. Brandalise F, Cesaroni V, Gregori A et al (2017) Dietary supplementation of Hericium erinaceus increases mossy fiber-CA3 hippocampal neurotransmission and recognition memory in wild-type mice. Evid Based Complement Alternat Med 2017:3864340.):13 p.  https://doi.org/10.1155/2017/3864340 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Breheret S, Talou T, Rapior S et al (1998) (Z)- and (E)-1,3-octadiene – new major volatile compounds in mushroom aromas (Basidiomycotina). J Essent Oil Res 10:716–718.  https://doi.org/10.1080/10412905.1998.9701020 CrossRefGoogle Scholar
  91. Brown GD, Gordon S (2003) Fungal β-glucans and mammalian immunity. Immunity 19:311–315.  https://doi.org/10.1016/S1074-7613(03)00233-4 CrossRefPubMedGoogle Scholar
  92. Brunelli E (2009) Sindrome di Szechwan e Auricularia auricula-judae. Pag Micol 32:53–57Google Scholar
  93. Buruleanu LC, Radulescu C, Georgescu AA et al (2018) Statistical characterization of the phytochemical characteristics of edible mushroom extracts. Anal Lett 51(7):1039–1059.  https://doi.org/10.1080/00032719.2017.1366499 CrossRefGoogle Scholar
  94. Butkhup L, Samappito W, Jorjong S (2018) Evaluation of bioactivities and phenolic contents of wild edible mushrooms from northeastern Thailand. Food Sci Biotechnol 27(1):193–202.  https://doi.org/10.1007/s10068-017-0237-5 CrossRefPubMedGoogle Scholar
  95. Canli K, Akata I, Altuner EM (2016) In vitro antimicrobial activity screening of Xylaria hypoxylon. Afr J Tradit Complement Altern Med 13(4):42–46.  https://doi.org/10.21010/ajtcam.v13i4.7 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Cappelli A (2011) Approccio al genere Agaricus – IV. Riv Micol 1:2–27Google Scholar
  97. Carhart-Harris RL, Roseman L, Bolstridge M et al (2017) Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms. Sci Rep 7:13187.  https://doi.org/10.1038/s41598-017-13282-71 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Carocho M, Ferreira ICFR, Morales P et al (2018) Antioxidants and pro-oxidants: effects on health and aging. Oxidative Med Cell Longev 2018:1472708.):2 p.  https://doi.org/10.1155/2018/1472708 CrossRefGoogle Scholar
  99. Castellano G, Torrens F (2015) Information entropy-based classification of triterpenoids and steroids from Ganoderma. Phytochem 116:305–313.  https://doi.org/10.1016/j.phytochem.2015.05.008 CrossRefGoogle Scholar
  100. Cerigini E, Palma F, Buffalini M et al (2007) Identification of a novel lectin from the Ascomycetes fungus Tuber borchii. Int J Med Mushrooms 9(3/4):287.  https://doi.org/10.1615/IntJMedMushr.v9.i34.100 CrossRefGoogle Scholar
  101. Chaiyasut C, Sivamaruthi BS (2017) Anti-hyperglycemic proper ty of Hericium erinaceus – a mini review. Asian Pac J Trop Biomed 7(11):1036–1040.  https://doi.org/10.1016/j.apjtb.2017.09.024 CrossRefGoogle Scholar
  102. Chan GCF, Chan WK, Sze DMY (2009) The effects of β-glucan on human immune and cancer cells. J Hematol Oncol 2:25.  https://doi.org/10.1186/1756-8722-2-25 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Chandrawanshi NK, Tandia DK, Jadhav SK (2017) Nutraceutical properties evaluation of Schizophyllum commune. Indian J Sci Res 13(2):57–62Google Scholar
  104. Chang R (1996) Functional properties of edible mushrooms. Nutr Rev 54(11 pt. 2):S91–S93.  https://doi.org/10.1111/j.1753-4887.1996.tb03825.x CrossRefPubMedGoogle Scholar
  105. Chang ST, Buswell JA (1996) Mushroom nutriceuticals. World J Microbiol Biotechnol 12(5):473–476.  https://doi.org/10.1007/BF00419460 CrossRefPubMedGoogle Scholar
  106. Chang YS, Lee SS (2004) Utilisation of macrofungi species in Malaysia. Fungal Divers 15:15–22Google Scholar
  107. Chang ST, Miles PG (2008) Mushrooms: Cultivation, nutritional value, medicinal effect, and environmental impact, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  108. Chang ST, Wasser SP (2012) The role of culinary-medicinal mushrooms on human welfare with a pyramid model for human health. Int J Med Mushrooms 14(2):95–134.  https://doi.org/10.1615/IntJMedMushr.v14.i2.10 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Chang ST, Wasser SP (2017) The cultivation and environmental impact of mushrooms. In: Oxford research encyclopedia of environmental science – agriculture and the environment.  https://doi.org/10.1093/acrefore/9780199389414.013.231 CrossRefGoogle Scholar
  110. Chang JC, Hsiao G, Lin RK et al (2017) Bioactive constituents from the termite nest-derived medicinal fungus Xylaria nigripes. J Nat Prod 80:38–44.  https://doi.org/10.1021/acs.jnatprod.6b00249 CrossRefPubMedGoogle Scholar
  111. Chen J, Seviour R (2007) Medicinal importance of fungal β-(1→3), (1→6)-glucans. Mycol Res 111:635–652.  https://doi.org/10.1016/j.mycres.2007.02.011 CrossRefPubMedGoogle Scholar
  112. Chen CC, Shiao YJ, Lin RD et al (2006) Neuroprotective diterpenes from the fruiting body of Antrodia camphorata. J Nat Prod 69:689–691.  https://doi.org/10.1021/np0581263 CrossRefGoogle Scholar
  113. Chen W, Zhao Z, Chen SF et al (2008) Optimization for the production of exopolysaccharide from Fomes fomentarius in submerged culture and its antitumor effect in vitro. Bioresour Technol 99(8):3187–3194.  https://doi.org/10.1016/j.biortech.2007.05.049 CrossRefPubMedGoogle Scholar
  114. Chen JT, Tominaga K, Sato Y et al (2010) Maitake mushroom (Grifola frondosa) extract induces ovulation in patients with polycystic ovary syndrome: a possible monotherapy and a combination therapy after failure with first-line clomiphene citrate. J Altern Complement Med 16(12):1295–1299.  https://doi.org/10.1089/acm.2009.0696 CrossRefPubMedGoogle Scholar
  115. Chen H, Tian T, Miao H et al (2016) Traditional uses, fermentation, phytochemistry and pharmacology of Phellinus linteus: a review. Fitoterapia 113:6–26.  https://doi.org/10.1016/j.fitote.2016.06.009 CrossRefPubMedGoogle Scholar
  116. Chen B, Tiana J, Zhang J et al (2017) Triterpenes and meroterpenes from Ganoderma lucidum with inhibitory activity against HMGs reductase, aldose reductase and α-glucosidase. Fitoterapia 120:6–16.  https://doi.org/10.1016/j.fitote.2017.05.005 CrossRefPubMedGoogle Scholar
  117. Cheng CR, Yue QX, Wu ZY et al (2010) Cytotoxic triterpenoids from Ganoderma lucidum. Phytochem 71:1579–1585.  https://doi.org/10.1016/j.phytochem.2010.06.005 CrossRefGoogle Scholar
  118. Cheng PG, Phan CW, Sabaratnam V et al (2013) Polysaccharides-rich extract of Ganoderma lucidum (M.A. Curtis:Fr.) P. Karst. accelerates wound healing in streptozotocin-induced diabetic rats. Evid Based Complement Alternat Med 2013:671252.:9 p.  https://doi.org/10.1155/2013/671252 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Chepkirui C, Yuyama K, Wanga L et al (2018) Microporenic acids A-G, biofilm inhibitors, and antimicrobial agents from the basidiomycete Microporus species. J Nat Prod 81(4):778–784.  https://doi.org/10.1021/acs.jnatprod.7b00764 CrossRefPubMedGoogle Scholar
  120. Cheung PCK (2008) Mushrooms as functional foods. Wiley, Hoboken.  https://doi.org/10.1002/9780470367285 CrossRefGoogle Scholar
  121. Cheung PCK (2013) Mini-review on edible mushrooms as source of dietary fiber: preparation and health benefits. Food Sci Human Wellness 2:162–166.  https://doi.org/10.1016/j.fshw.2013.08.001 CrossRefGoogle Scholar
  122. Chiu CH, Chyau CC, Chen CC et al (2018) Erinacine A-enriched Hericium erinaceus mycelium produces antidepressant-like effects through modulating BDNF/PI3K/Akt/GSK-3 signaling in mice. Int J Mol Sci 19:341.  https://doi.org/10.3390/ijms19020341 CrossRefPubMedCentralGoogle Scholar
  123. Choi HS, Sa YS (2000) Fibrinolytic and antithrombotic protease from Ganoderma lucidum. Mycologia 92:545–552.  https://doi.org/10.2307/3761514 CrossRefGoogle Scholar
  124. Choi HS, Shin HH (1998) Purification and partial characterization of a fibrinolytic protease in Pleurotus ostreatus. Mycologia 90(4):674–679.  https://doi.org/10.2307/3761226 CrossRefGoogle Scholar
  125. Choi BS, Sapkota K, Choi JH et al (2013) Herinase: a novel bi-functional fibrinolytic protease from the monkey head mushroom, Hericium erinaceum. Appl Biochem Biotechnol 170(3):609–622.  https://doi.org/10.1007/s12010-013-0206-2 CrossRefPubMedGoogle Scholar
  126. Choi JY, Paik DJ, Kwan DY et al (2014) Dietary supplementation with rice bran fermented with Lentinus edodes increases interferon-γ activity without causing adverse effects: a randomized, double-blind, placebo-controlled, parallel-group study. Nutr J 13(1):35–42.  https://doi.org/10.1186/1475-2891-13-35 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Choi JH, Kim DW, Kim S et al (2017) Purification and partial characterization of a fibrinolytic enzyme from the fruiting body of the medicinal and edible mushroom Pleurotus ferulae. Prep Biochem Biotechnol 7(6):539–546.  https://doi.org/10.1080/10826068.2016.1181083 CrossRefGoogle Scholar
  128. Choi YJ, Park IS, Kim MH et al (2018) The medicinal mushroom Auricularia auricula-judae (Bull.) extract has antioxidant activity and promotes procollagen biosynthesis in HaCaT cells. Nat Prod Res 4:1–4.  https://doi.org/10.1080/14786419.2018.1468332
  129. Ćilerdžić J, Kosanić M, Stajić M et al (2016) Species of genus Ganoderma (Agaricomycetes) fermentation broth: a novel antioxidant and antimicrobial agent. Int J Med Mushrooms 18(5):397–404.  https://doi.org/10.1615/IntJMedMushrooms.v18.i5.30 CrossRefPubMedGoogle Scholar
  130. Combs GF (2001) Selenium in global food systems. Br J Nutr 85:517–547.  https://doi.org/10.1079/BJN2000280 CrossRefPubMedGoogle Scholar
  131. Corrěa RCG, Brugnari T, Bracht A et al (2016) Biotechnological, nutritional and therapeutic uses of Pleurotus spp. (oyster mushroom) related with its chemical composition: a review on the past decade findings. Trends Food Sci Technol 50:103–117.  https://doi.org/10.1016/j.tifs.2016.01.012 CrossRefGoogle Scholar
  132. Corrěa RCG, Peralta RM, Bracht A et al (2017) The emerging use of mycosterols in food industry along with the current trend of extended use of bioactive phytosterols. Trends Food Sci Technol 67:19–35.  https://doi.org/10.1016/j.tifs.2017.06.012 CrossRefGoogle Scholar
  133. Corrěa RCG, Barros L, Fernandes A et al (2018) A natural food ingredient based on ergosterol: optimization of the extraction from Agaricus blazei, evaluation of bioactive properties and incorporation in yogurts. Food Funct 9(3):1465–1474.  https://doi.org/10.1039/C7FO02007D CrossRefPubMedGoogle Scholar
  134. Cucuianu V, Bratanescu V, Sterian B (2004) The edible mushrooms – an organic food and its potential use for health. J Environ Prot Ecol 5(4):801–808Google Scholar
  135. Da Silva de Souza AC, Corrěa VG, Goncalves GA et al (2017) Agaricus blazei bioactive compounds and their effects on human health: benefits and controversies. Curr Pharm Des 23(19):2807–2834.  https://doi.org/10.2174/1381612823666170119093719 CrossRefPubMedGoogle Scholar
  136. Da Silva de Souza AC, de Almeida Gonсalves G, Soares AA et al (2018) The antioxidant action of an aqueous extract of royal sun medicinal mushroom, Agaricus brasiliensis (Agaricomycetes) in rats with adjuvant-induced arthritis. Int J Med Mushrooms 20(2):101–117.  https://doi.org/10.1615/IntJMedMushrooms.2018025309 CrossRefGoogle Scholar
  137. Da Silva Milhorini S, Smiderle FR, Biscaia SMP et al (2018) Fucogalactan from the giant mushroom Macrocybe titans inhibits melanoma cells migration. Carbohydr Polym 190:50–56.  https://doi.org/10.1016/j.carbpol.2018.02.063 CrossRefGoogle Scholar
  138. Dadakova E, Pelikanova T, Kalc P (2009) Content of biogenic amines and polyamines in some species of European wild-growing edible mushrooms. Eur Food Res Technol 230:163–117.  https://doi.org/10.1007/s00217-009-1148-3 CrossRefGoogle Scholar
  139. Dai YC, Yang ZL, Ui BK et al (2009) Species diversity and utilization of medicinal mushrooms and fungi in China (review). Int J Med Mushrooms 11:287–302.  https://doi.org/10.1615/IntJMedMushr.v11.i3.80 CrossRefGoogle Scholar
  140. Dai X, Stanilka JM, Row CA et al (2015) Consuming Lentinula edodes (shiitake) mushrooms daily improves human immunity: a randomized dietary intervention in healthy young adults. J Am Coll Nutr 34(6):478–487.  https://doi.org/10.1080/07315724.2014.950391 CrossRefPubMedGoogle Scholar
  141. De Mattos-Shipley KMJ, Ford KL, Alberti F et al (2016) The good, the bad and the tasty: the many roles of mushrooms. Stud Mycol 85:125–157.  https://doi.org/10.1016/j.simyco.2016.11.002 CrossRefPubMedPubMedCentralGoogle Scholar
  142. De Silva DD, Rapior S, Fons F et al (2012a) Medicinal mushrooms in supportive cancer therapies: an approach to anti-cancer effects and putative mechanisms of action. Fungal Divers 55:1–35.  https://doi.org/10.1007/s13225-012-0151-3 CrossRefGoogle Scholar
  143. De Silva DD, Rapior S, Hyde KD et al (2012b) Medicinal mushrooms in prevention and control of diabetes mellitus. Fungal Divers 56:1–29.  https://doi.org/10.1007/s13225-012-0187-4 CrossRefGoogle Scholar
  144. De Silva DD, Rapior S, Sudarman E et al (2013) Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry. Fungal Divers 62:1–40.  https://doi.org/10.1007/s13225-013-0265-2 CrossRefGoogle Scholar
  145. Debnath S, Upadhyay RC, Das P et al (2017) Antioxidant activities of methanolic extracts from ten Pleurotus species. Int Res J Pharm 8(3):44–49.  https://doi.org/10.7897/2230-8407.080335 CrossRefGoogle Scholar
  146. Degreef J, Demuynck L, Mukandera A et al (2016) Wild edible mushrooms, a valuable resource for food security and rural development in Burundi and Rwanda. Biotechnol Agron Soc Environ 20(4):441–452Google Scholar
  147. Del Buono A, Bonucci M, Publiese S et al (2016) Polysaccharide from Lentinus edodes for integrative cancer treatment: immunomodulatory effects on lymphocyte population. WCRJ 3(1):1–7Google Scholar
  148. Denisova NP (1982) Proteolytic activity of cultures of higher fungi. Mikol Fitopatol 16(5):458–466. (in Russian)Google Scholar
  149. Denisova NP (2010) History of the study of thrombolytic and fibrinolytic enzymes of higher basidiomycetes mushrooms at the V.L. Komarov botanical institute in Saint Petersburg, Russia. Int J Med Mushrooms 12(3):317–325.  https://doi.org/10.1615/IntJMedMushr.v12.i3.110 CrossRefGoogle Scholar
  150. Denisova NP, Semenova IR, Sukharevich VI (1989) Biosynthesis of proteinases with fibrinolytic action by basidiomycetes in submerged culture. Mikol Fitopatol 23(4):378–381. (in Russian).  https://doi.org/10.1186/1756-8722-2-25 CrossRefGoogle Scholar
  151. Diling C, Chaoqun Z, Jian Y et al (2017) Immunomodulatory activities of a fungal protein extracted from Hericium erinaceus through regulating the gut microbiota. Front Immunol 8:666.  https://doi.org/10.3389/fimmu.2017.00666 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Dissanayakea AA, Zhanga CR, Mills GL et al (2018) Cultivated Maitake mushroom demonstrated functional food quality as determined by in vitro bioassays. J Funct Foods 44:79–85.  https://doi.org/10.1016/j.jff.2018.02.031 CrossRefGoogle Scholar
  153. Doğan HH, Karagöz S, Duman R (2018) In vitro evaluation of the antiviral activity of some mushrooms from Turkey. Int J Med Mushrooms 20(3):201–212.  https://doi.org/10.1615/IntJMedMushrooms.2018025468 CrossRefPubMedGoogle Scholar
  154. Donatini B (2011) Hericium erinaceus: properties mostly related to the secretion of neuronal growth factor. Phytothérapie 9:48–52.  https://doi.org/10.1007/s10298-010-0601-6 CrossRefGoogle Scholar
  155. Donatini B (2014) Control of oral human papillomavirus (HPV) by medicinal mushrooms, Trametes versicolor and Ganoderma lucidum: a preliminary clinical trial. Int J Med Mushrooms 16(5):497–498.  https://doi.org/10.1615/IntJMedMushrooms.v16.i5.80 CrossRefPubMedGoogle Scholar
  156. Donnini D, Gargano ML, Perini C et al (2013) Wild and cultivated mushrooms as a model of sustainable development. Plant Biosyst 147(1):226–236.  https://doi.org/10.1080/11263504.2012.754386 CrossRefGoogle Scholar
  157. Duru ME, Çayan GT (2015) Biologically active terpenoids from mushroom origin: a review. Rec Nat Prod 9(4):456–483Google Scholar
  158. Dutta S (2013) Role of mushrooms as nutraceutical an overview. Int J Pharm Bio Sci 4(4):B59–B66Google Scholar
  159. Dyakova MY, Kamzolkina OV, Shtaera OV et al (2011) Morphological characteristics of natural strains of certain species of Basidiomycetes and biological analysis of antimicrobial activity under submerged cultural conditions. Microbiology 80(2):274–285.  https://doi.org/10.1134/S0026261711020044 CrossRefGoogle Scholar
  160. Ebrahimi A, Atashi A, Soleimani M et al (2017) Anti-invasive and anti-proliferative effects of Pleurotus ostreatus extract on acute leukemia cell lines. J Basic Clin Physiol Pharmacol 29(1):95–102.  https://doi.org/10.1515/jbcpp-2017-0088 CrossRefGoogle Scholar
  161. Ehsanifard Z, Mir-Mohammadrezaei F, Safarzadeh A et al (2017) Aqueous extract of Inocutis levis improves insulin resistance and glucose tolerance in high sucrose-fed Wistar rats. J Herbmed Pharmacol 6(4):160–164Google Scholar
  162. Eik LF, Naidu M, David P et al (2012) Lignosus rhinocerus (Cooke) Ryvarden: a medicinal mushroom that stimulates neurite outgrowth in PC-12 cells. Evid Based Complement Alternat Med 2012:320308.:7 p.  https://doi.org/10.1155/2012/320308 CrossRefPubMedGoogle Scholar
  163. El Dine RS, El Halawany AM, Ma CM et al (2009) Inhibition of the dimerization and active site of HIV-1 protease by secondary metabolites from the Vietnamese mushroom Ganoderma colossum. J Nat Prod 72:2019–2023.  https://doi.org/10.1021/np900279u CrossRefPubMedGoogle Scholar
  164. Elisashvili V (2012) Submerged cultivation of medicinal mushrooms: bioprocesses and products. Int J Med Mushrooms 14:211–239.  https://doi.org/10.1615/IntJMedMushr.v14.i3.10 CrossRefPubMedGoogle Scholar
  165. Eliza WL, Fai CK, Chung LP (2012) Efficacy of Yun Zhi (Coriolus versicolor) on survival in cancer patients: systematic review and meta-analysis. Recent Patents Inflamm Allergy Drug Discov 6(1):78–87.  https://doi.org/10.2174/187221312798889310 CrossRefGoogle Scholar
  166. Ellan K, Sabaratnam V, Thayan R (2013) Antiviral activity and mode of action of mushroom extracts against dengue virus type-2. In Proceedings of the 3rd international conference on dengue and dengue haemorrhagic fever, 21–23 October 2012, Bangkok.Google Scholar
  167. Ellertsen LK, Hetland G (2009) An extract of the medicinal mushroom Agaricus blazei Murill can protect against allergy. Clin Mol Allergy 7(6):1–10.  https://doi.org/10.1186/1476-7961-7-6 CrossRefGoogle Scholar
  168. Ey J, Schomig E, Taubert D (2007) Dietary sources and antioxidant effects of ergothioneine. J Agric Food Chem 55:6466–6474.  https://doi.org/10.1021/jf071328f CrossRefPubMedGoogle Scholar
  169. Falade OE, Oyetayo VO, Awala SI (2017) Evaluation of the mycochemical composition and antimicrobial potency of wild macrofungus, Rigidoporus microporus (Sw.). J Phytopharmacol 6(2):115–125Google Scholar
  170. Falandysz J (2008) Selenium in edible mushrooms. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 26(3):256–299.  https://doi.org/10.1080/10590500802350086 CrossRefPubMedGoogle Scholar
  171. Fan L, Pan H, Soccol AT et al (2006) Advances in mushroom research in the last decade. Food Technol Biotechnol 44(3):303–311Google Scholar
  172. Fang N, Li Q, Yu S et al (2006) Inhibition of growth and induction of apoptosis in human cancer cell lines by an ethyl acetate fraction from shiitake mushrooms. J Altern Complement Med 12(2):125–132.  https://doi.org/10.1089/acm.2006.12.125.PubMedGoogle Scholar
  173. Farzana T, Mohajan S, Saha T et al (2017) Formulation and nutritional evaluation of a healthy vegetable soup powder supplemented with soy flour, mushroom, and moringa leaf. Food Sci Nutr 5:911–920.  https://doi.org/10.1002/fsn3.476 CrossRefPubMedPubMedCentralGoogle Scholar
  174. Fernandes A, Barros L, Martins A et al (2015) Nutritional characterisation of Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm. produced using paper scraps as substrate. Food Chem 169:396–400.  https://doi.org/10.1016/j.foodchem.2014.08.027 CrossRefPubMedGoogle Scholar
  175. Ferreira ICFR, Barros L, Abreu RMV (2009) Antioxidants in wild mushrooms. Curr Med Chem 16(12):1543–1560.  https://doi.org/10.3390/molecules201019489 CrossRefGoogle Scholar
  176. Ferreira ICFR, Vaz JA, Vasconcelos MH et al (2010) Compounds from wild mushrooms with antitumor potential. Anti Cancer Agents Med Chem 10(5):424–436.  https://doi.org/10.2174/1871520611009050424 Google Scholar
  177. Ferreira ICFR, Heleno SA, Reis FS et al (2015) Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochem 114:38–55.  https://doi.org/10.1016/j.phytochem.2014.10.011 CrossRefGoogle Scholar
  178. Ferreira-Silva V, Gusmão NB, Gibertoni TB (2017) Antibacterial activity of ethyl acetate extract of Agaricomycetes collected in Northeast Brazil. Curr Res Environ Appl Mycol J Fungal Biol 7(4):267–274.  https://doi.org/10.5943/cream/7/4/3 CrossRefGoogle Scholar
  179. Filipic M, Umek A, Mlinaric A (2002) Screening of Basidiomycete mushroom extracts for antigenotoxic and bio-antimutagenic activity. Pharmazie 57:416–420PubMedGoogle Scholar
  180. Finimundy TC, Dillon AJP, Henriques JAP et al (2014) A review on general nutritional compounds and pharmacological properties of the Lentinula edodes mushroom. Food Nutr Sci 5:1095–1105.  https://doi.org/10.4236/fns.2014.512119 CrossRefGoogle Scholar
  181. Finimundy TC, Abreu RMV, Bonetto N et al (2018a) Apoptosis induction by Pleurotus sajor-caju (Fr.) Singer extracts on colorectal cancer cell lines. Food Chem Toxicol 112:383–392.  https://doi.org/10.1016/j.fct.2018.01.015 CrossRefPubMedGoogle Scholar
  182. Finimundy TC, Barros L, Calhelha RC et al (2018b) Multifunctions of Pleurotus sajor-caju (Fr.) Singer: a highly nutritious food and a source for bioactive compounds. Food Chem 245:150–158.  https://doi.org/10.1016/j.foodchem.2017.10.088 CrossRefPubMedGoogle Scholar
  183. Fortes RC, Recôva VL, Melo AL et al (2008) Effects of dietary supplementation with medicinal fungus in fasting glycemia levels of patients with colorectal cancer: a randomized, double-blind, placebo-controlled clinical study. Nutr Hosp 23(6):591–598PubMedGoogle Scholar
  184. Fortes RC, Novaes MRCG, Recôva VL et al (2009) Immunological, hematological, and glycemia effects of dietary supplementation with Agaricus sylvaticus on patients’ colorectal cancer. Exp Biol Med (Maywood) 234(1):53–62.  https://doi.org/10.3181/0806-RM-193 CrossRefGoogle Scholar
  185. Francia C, Rapior S, Courtecuisse R et al (1999) Current research findings on the effects of selected mushrooms on cardiovascular diseases. Int J Med Mushrooms 1:169–172.  https://doi.org/10.1615/IntJMedMushrooms.v1.i2.60 CrossRefGoogle Scholar
  186. Francisco CRL, Heleno SA, Fernandes IPM et al (2018) Functionalization of yogurts with Agaricus bisporus extracts encapsulated in spray-dried maltodextrin crosslinked with citric acid. Food Chem 15(245):845–853.  https://doi.org/10.1016/j.foodchem.2017.11.098 CrossRefGoogle Scholar
  187. Friedman M (2016) Mushroom polysaccharides: chemistry and antiobesity, antidiabetes, anticancer, and antibiotic properties in cells, rodents, and humans. Foods 5(4):80.  https://doi.org/10.3390/foods5040080 CrossRefPubMedCentralGoogle Scholar
  188. Fritz H, Kennedy DA, Ishii M et al (2015) Polysaccharide K and Coriolus versicolor extracts for lung cancer: a systematic review. Integr Cancer Ther 14(3):201–211.  https://doi.org/10.1177/1534735415572883 CrossRefPubMedGoogle Scholar
  189. Frost, M. (2016). Three popular medicinal mushroom supplements: a review of human clinical trials. Dissertation, Brigham Young University.Google Scholar
  190. Fu Z, Liu Y, Zhang Q (2016) A potent pharmacological mushroom: Pleurotus eryngii. Fungal Genom Biol 6:139.  https://doi.org/10.4172/2165-8056.1000139 CrossRefGoogle Scholar
  191. Gao Y, Padhiar AA, Wang J et al (2018) Recombinant latcripin 11 of Lentinula edodes C91-3 suppresses the proliferation of various cancer cells. Gene 642:212–219.  https://doi.org/10.1016/j.gene.2017.10.080 CrossRefPubMedGoogle Scholar
  192. Gargano ML (2018) Mycotheca of edible and medicinal mushrooms at herbarium SAF as a potential source of nutraceuticals and cultivated mushrooms. Int J Med Mushrooms 20(4):405–409.  https://doi.org/10.1615/IntJMedMushrooms.2018025966 CrossRefPubMedGoogle Scholar
  193. Gargano ML, van Griensven LJLD, Isikhuemhen OS et al (2017) Medicinal mushrooms: valuable biological resources of high exploitation potential. Plant Biol 151(3):548–565.  https://doi.org/10.1080/11263504.2017.1301590 CrossRefGoogle Scholar
  194. Gaylan CM, Estebal JC, Tantengco OA et al (2018) Anti-staphylococcal and antioxidant properties of crude ethanolic extracts of macrofungi collected from the Philippines. Pharm J 10(1):106–109.  https://doi.org/10.5530/pj.2018.1.19 CrossRefGoogle Scholar
  195. Giacomoni L (2004) Le Syndrome de Szechwan. Bull AEMBA 42:43–47Google Scholar
  196. Giavasis I (2014) Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Curr Opin Biotechnol 26:162–173.  https://doi.org/10.1016/j.copbio.2014.01.010 CrossRefPubMedGoogle Scholar
  197. Gil-Ramirez A, Morales D, Soler-Rivas C (2017) Molecular actions of hypocholesterolaemic compounds from edible mushrooms. Food Funct 9(1):53–69.  https://doi.org/10.1039/C7FO00835J CrossRefGoogle Scholar
  198. Glamočlija J, Soković M (2017) Fungi a source with huge potential for “mushroom pharmaceuticals”. Lek Sirov 37:50–56.  https://doi.org/10.5937/leksir1737050G CrossRefGoogle Scholar
  199. Glamočlija J, Stojković D, Nikolic M et al (2015) A comparative study on edible Agaricus mushrooms as functional foods. Food Funct 6(6):1900–1910.  https://doi.org/10.1039/c4fo01135j CrossRefPubMedGoogle Scholar
  200. Gregori A (2014) Cordycepin production by Cordyceps militaris cultivation on spent brewery grains. ABS 57(2):45–52Google Scholar
  201. Grienke U, Zöll M, Peintner U et al (2014) European medicinal polypores – a modern view on traditional uses. J Ethnopharmacol 154:564–583.  https://doi.org/10.1016/j.jep.2014.04.030 CrossRefPubMedGoogle Scholar
  202. Grotto D, Bueno DCR, Ramos GKA et al (2016) Assessment of the safety of the shiitake culinary-medicinal mushroom, Lentinus edodes (Agaricomycetes), in rats: biochemical, hematological, and antioxidative parameters. Int J Med Mushrooms 16(10):861–870.  https://doi.org/10.1615/IntJMedMushrooms.v18.i10.20 CrossRefGoogle Scholar
  203. Gründemann C, Arnhold M, Meier S et al (2016) Effects of Inonotus hispidus extracts and compounds on human immunocompetent cells. Planta Med 82:1359–1367.  https://doi.org/10.1055/s-0042-111693 CrossRefPubMedGoogle Scholar
  204. Guggenheim AG, Wright KM, Zwickey HL (2014) Immune modulation from five major mushrooms: application to integrative oncology. Integr Med 13(1):32–41Google Scholar
  205. Guillamón E, García-Lafuente A, Lozano M et al (2010) Edible mushrooms: role in the prevention of cardiovascular diseases. Fitoterapia 81(7):715–723.  https://doi.org/10.1016/j.fitote.2010.06.005 CrossRefGoogle Scholar
  206. Gunde-Cimmerman N (1999) Medicinal value of the genus Pleurotus (Fr.) P. Karst. (Agaricales s.l., Basidiomycetes). Int J Med Mushrooms 1:69–80.  https://doi.org/10.1615/IntJMedMushrooms.v1.i1.50 CrossRefGoogle Scholar
  207. Gupta S, Summuna B, Gupta M et al (2018) Edible mushrooms: cultivation, bioactive molecules, and health benefits. In: Mérillon JM, Ramawat KG (eds) Bioactive molecules in food, reference series in Phytochemistry. Springer, pp 1–33.  https://doi.org/10.1007/978-3-319-54528-8_86-1 Google Scholar
  208. Guzmán G (2015) New studies on hallucinogenic mushrooms: history, diversity, and applications in psychiatry. Int J Med Mushrooms 17:1019–1030.  https://doi.org/10.1615/IntJMedMushrooms.v17.i11.10 CrossRefPubMedGoogle Scholar
  209. Hadda M, Djamel C, Akila O (2015a) Production and qualitative analysis of triterpenoids and steroids of Ganoderma species harvested from cork oak forest of north-eastern Algeria. Res J Microbiol 10(8):366–376.  https://doi.org/10.3923/jm.2015.366.376 CrossRefGoogle Scholar
  210. Hadda M, Djamel C, Akila O (2015b) Screening of extracellular enzyme activities of Ganoderma and Fomes species collected from north East Algeria. RJPBCS 6(4):1455–1462Google Scholar
  211. Hammerschmidt DE (1980) Szechwan purpura. N Engl J Med 302(21):1191–1193PubMedGoogle Scholar
  212. Hapuarachchi KK, Wen TC, Jeewon R et al (2016a) Mycosphere essays 7: Ganoderma lucidum – are the beneficial anti-cancer properties substantiated? Mycosphere 7(3):305–332.  https://doi.org/10.5943/mycosphere/7/3/6 CrossRefGoogle Scholar
  213. Hapuarachchi KK, Wen TC, Jeewon R et al (2016b) Mycosphere essays 15: Ganoderma lucidum – are the beneficial medical properties substantiated? Mycosphere 7(6):687–715.  https://doi.org/10.5943/mycosphere/7/6/1 CrossRefGoogle Scholar
  214. Hapuarachchi KK, Cheng CR, Wen TC et al (2017) Mycosphere essays 20: therapeutic potential of Ganoderma species: insights into its use as traditional medicine. Mycosphere 8(10):1653–1694.  https://doi.org/10.5943/mycosphere/8/10/5 CrossRefGoogle Scholar
  215. Hara M, Hanaoka T, Kobayashi M et al (2003) Cruciferous vegetables, mushrooms, and gastrointestinal cancer risk in a multicenter, hospital-based case-control study in Japan. Nutr Cancer 46(2):138–147.  https://doi.org/10.1207/S15327914NC4602_06 CrossRefPubMedGoogle Scholar
  216. Hawksworth DL (1991) The fungal dimension of biodiversity magnitude, significance and conservation. Mycol Res 95:641–655.  https://doi.org/10.1016/S0953-7562(09)80810-1 CrossRefGoogle Scholar
  217. Hawksworth DL (2001) Mushrooms: the extent of the unexplored potential. Int J Med Mushrooms 3:333–337.  https://doi.org/10.1615/IntJMedMushr.v3.i4.50 CrossRefGoogle Scholar
  218. Hawskworth DL (2012) Global species numbers of fungi: are tropical studies and molecular approaches contributing to a more robust estimate? Biodivers Conserv 21:2425–2433.  https://doi.org/10.1007/s10531-012-0335-x CrossRefGoogle Scholar
  219. He X, Wang X, Fang J et al (2017a) Structures, biological activities, and industrial applications of the polysaccharides from Hericium erinaceus (Lion’s mane) mushroom: a review. Int J Biol Macromol 97:228–237.  https://doi.org/10.1016/j.ijbiomac.2017.01.040 CrossRefPubMedGoogle Scholar
  220. He X, Wang X, Fang J et al (2017b) Polysaccharides in Grifola frondosa mushroom and their health promoting properties: a review. Int J Biol Macromol 101:910–921.  https://doi.org/10.1016/j.ijbiomac.2017.03.177 CrossRefPubMedGoogle Scholar
  221. Heleno SA, Ferreira RC, Antonio AL et al (2015a) Nutritional value, bioactive compounds and antioxidant properties of three edible mushrooms from Poland. Food Biosci 11:48–55.  https://doi.org/10.1016/j.fbio.2015.04.006 CrossRefGoogle Scholar
  222. Heleno SA, Barros L, Martins A et al (2015b) Nutritional value, bioactive compounds, antimicrobial activity and bioaccessibility studies with wild edible mushrooms. LWT Food Sci Technol 63(2):799–806.  https://doi.org/10.1016/j.lwt.2015.04.028 CrossRefGoogle Scholar
  223. Heleno SA, Rudke AR, Calhelha RC et al (2017) Development of dairy beverages functionalized with pure ergosterol and mycosterol extracts: an alternative to phytosterol-based beverages. Food Funct 8:103.  https://doi.org/10.1039/c6fo01600f CrossRefPubMedGoogle Scholar
  224. Hennicke F, Cheikh-Ali Z, Liebisch T et al (2016) Distinguishing commercially grown Ganoderma lucidum from Ganoderma lingzhi from Europe and East Asia on the basis of morphology, molecular phylogeny, and triterpenic acid profiles. Phytochem 127:29–37.  https://doi.org/10.1016/j.phytochem.2016.03.012 CrossRefGoogle Scholar
  225. Heo S, Jeon S, Lee S (2014) Utilization of Lentinus edodes mushroom β-glucan to enhance the functional properties of gluten-free rice noodles. LWT Food Sci Technol 55:627–631.  https://doi.org/10.1016/j.lwt.2013.10.002 CrossRefGoogle Scholar
  226. Hibbet DS, Taylor JW (2013) Fungal systematics: is a new age of enlightenment at hand? Nat Rev Microbiol 11:129–133.  https://doi.org/10.1038/nrmicro2963 CrossRefGoogle Scholar
  227. Hobbs CR (1995) Medicinal mushrooms: an exploration of traditions, healing, & culture. Botanica Press, Santa CruzGoogle Scholar
  228. Hobbs CR (2005) The chemistry, nutritional value, immune-pharmacology, and safety of the traditional food of medicinal split-gill fugus Schizophyllum commune Fr.:Fr. (Schizophyllaceae). A literature review. Int J Med Mushrooms 7(1–2):127–139.  https://doi.org/10.1615/IntJMedMushr.v7.i12.130 CrossRefGoogle Scholar
  229. Hong L, Xun M, Wutong W (2007) Anti-diabetic effect of an alpha-glucan from fruit body of Maitake (Grifola frondosa) on KK-Ay mice. J Pharm Pharmacol 59(4):575–582.  https://doi.org/10.1211/jpp.59.4.0013 PubMedGoogle Scholar
  230. Hossain S, Hashimoto M, Choudhury EK et al (2003) Dietary mushroom (Pleurotus ostreatus) ameliorates atherogenic lipid in hypercholesterolaemic rats. Clin Exp Pharmacol Physiol 30(7):470–475.  https://doi.org/10.1046/j.1440-1681.2003.03857.x CrossRefPubMedGoogle Scholar
  231. Hu SH, Wang JC, Lien JL et al (2006) Antihyperglycemic effect of polysaccharide from fermented broth of Pleurotus citrinopileatus. Appl Microbiol Biotechnol 70:107–113.  https://doi.org/10.1007/s00253-005-0043-5 CrossRefPubMedGoogle Scholar
  232. Ikekawa T (2001) Beneficial effects of edible and medicinal mushrooms on human health care. Int J Med Mushrooms 3(4):291–298.  https://doi.org/10.1615/IntJMEDMuhsr.v3.i2-3.30 CrossRefGoogle Scholar
  233. Ikekawa T (2005) Cancer risk reduction by intake of mushrooms and clinical studies on EEM. Int J Med Mushrooms 7(3):347.  https://doi.org/10.1615/IntJMedMushrooms.v7.i3.110 CrossRefGoogle Scholar
  234. Ina K, Furuta R, Kataoka T et al (2016) Chemo-immunotherapy using lentinan for the treatment of gastric cancer with liver metastases. Med Sci 4:8.  https://doi.org/10.3390/medsci4020008 CrossRefGoogle Scholar
  235. Isaka M, Sappan M, Supothina S et al (2017) Alliacane sesquiterpenoids from submerged cultures of the Basidiomycete Inonotus sp. BCC 22670. Phytochem 136:175–181.  https://doi.org/10.1016/j.phytochem.2017.01.018 CrossRefGoogle Scholar
  236. Ishara JRM, Sila DN, Kenji GM et al (2018) Nutritional and physical attributes of maize-mushroom complementary porridges as influenced by mushroom species and ratio. Am J Food Nutr 6(1):17–27.  https://doi.org/10.12691/ajfn-6-1-4 CrossRefGoogle Scholar
  237. Islam T, Yu X, Xu B (2016) Phenolic profiles, antioxidant capacities and metal chelating ability of edible mushrooms commonly used in China. LWT Food Sci Technol 72:423–431.  https://doi.org/10.1016/j.lwt.2016.05.005 CrossRefGoogle Scholar
  238. Ivanova TS, Krupodorova TA, Barshteyn VY et al (2014) Anticancer substances of mushroom origin. Exp Oncol 36(2):58–66PubMedGoogle Scholar
  239. Jakopovich I (2011) New dietary supplements from medicinal mushrooms: Dr. Myko San – a registration report. Int J Med Mushrooms 13(3):307–313.  https://doi.org/10.1615/IntJMedMushr.v13.i3.110 CrossRefPubMedGoogle Scholar
  240. Jaszek M, Osińska-Jaroszuk M, Sulej J et al (2015) Stimulation of the antioxidative and antimicrobial potential of the blood red bracket mushroom Pycnoporus sanguineus (higher Basidiomycetes). Int J Med Mushrooms 17(8):701–712.  https://doi.org/10.1615/IntJMedMushrooms.v17.i8.10 CrossRefPubMedGoogle Scholar
  241. Jaworska G, Pogoń K, Bernaś E et al (2014) Vitamins, phenolics and antioxidant activity of culinary prepared Suillus luteus (L) Roussel mushroom. LWT Food Sci Technol 59:701–706.  https://doi.org/10.1016/j.lwt.2014.07.040 Google Scholar
  242. Jayachandran M, Xiao J, Xu B (2017) A critical review on health promoting benefits of edible mushrooms through gut microbiota. Int J Mol Sci 18:1934.  https://doi.org/10.3390/ijms18091934 CrossRefPubMedCentralGoogle Scholar
  243. Jayasuriya WJABN, Wanigatunge CA, Fernando GH et al (2015) Hypoglycaemic activity of culinary Pleurotus ostreatus and P. cystidiosus mushrooms in healthy volunteers and type 2 diabetic patients on diet control and the possible mechanisms of action. Phytother Res 29(2):303–309.  https://doi.org/10.1002/ptr.5255 CrossRefPubMedGoogle Scholar
  244. Jesenak M, Hrubisko M, Majtan J et al (2014) Anti-allergic effect of pleuran (β-glucan from Pleurotus ostreatus) in children with recurrent respiratory tract infections. Phytother Res 28:471–474.  https://doi.org/10.1002/ptr.5020 CrossRefPubMedGoogle Scholar
  245. Jia X, Qu L, Panpan R et al (2018) Characterization and antioxidant activity of an exopolysaccharide produced by Rigidoporus microporus (Agaricomycetes). Int J Med Mushrooms 20(4):311–320.  https://doi.org/10.1615/IntJMedMushrooms.2018025808 CrossRefPubMedGoogle Scholar
  246. Jiang J, Sliva D (2010) Novel medicinal mushroom blend suppresses growth and invasiveness of human breast cancer cells. Int J Oncol 37(6):1529–1536.  https://doi.org/10.3892/ijo-00000806 CrossRefPubMedGoogle Scholar
  247. Jin X, Ruiz Beguerie J, Sze DMY et al (2012) Ganoderma lucidum (Reishi mushroom) for cancer treatment. Cochrane Database Syst Rev 6:CD007731.  https://doi.org/10.1002/14651858.CD007731.pub2 CrossRefGoogle Scholar
  248. Jing X, Mao D, Geng L et al (2013) Medium optimization, molecular characterization and bioactivity of exopolysaccharides from Pleurotus eryngii. Arch Microbiol 195:749–757.  https://doi.org/10.1007/s00203-013-0927-1 CrossRefPubMedGoogle Scholar
  249. John PA, Wong KH, Naidu M et al (2013) Combination effects of curcumin and aqueous extract of Lignosus rhinocerotis mycelium on neurite outgrowth stimulation activity in PC-12 cells. Nat Prod Commun 8:711–714Google Scholar
  250. Johnson E, Førland DT, Saetre L et al (2009) Effect of an extract based on the medicinal mushroom Agaricus blazei Murrill on release of cytokines, chemokines and leukocyte growth factors in human blood ex vivo and in vivo. Scand J Immunol 69(3):242–250.  https://doi.org/10.1111/j.1365-3083.2008.02218.x CrossRefGoogle Scholar
  251. Jose N, Ajith TA, Janardhanan KK (2002) Antioxidant, anti-inflammatory and antitumor activities of culinary medicinal mushroom Pleurotus pulmonarius (Fr.) Quél. (Agaricomycetideae). Int J Med Mushrooms 4:329–335.  https://doi.org/10.1615/IntJMedMushr.v4.i4.60 CrossRefGoogle Scholar
  252. Joseph TP, Chanda W, Padhiar AA et al (2017) A preclinical evaluation of the antitumor activities of edible and medicinal mushrooms: a molecular insight. Integr Cancer Ther 17(2):1–10.  https://doi.org/10.1177/1534735417736861 CrossRefGoogle Scholar
  253. Kalač P (2013) A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J Sci Food Agric 93(2):209–218.  https://doi.org/10.1002/jsfa.5960 CrossRefGoogle Scholar
  254. Kalač P (2016) Edible mushrooms. chemical composition and nutritional value. Academic, Amsterdam.  https://doi.org/10.1016/B978-0-12-804455-1.00008-4 CrossRefGoogle Scholar
  255. Kalač P, Svoboda L (2000) A review of trace element concentrations in edible mushrooms. Food Chem 69:273–281.  https://doi.org/10.1016/S0308-8146(99)00264-2 CrossRefGoogle Scholar
  256. Kang HJ, Baik HW, Kim SJ et al (2015) Cordyceps militaris enhances cell-immunity in heathen Korean men. J Med Food 18(10):1164–1172.  https://doi.org/10.1089/jmf.2014.3350 CrossRefPubMedGoogle Scholar
  257. Karun NC, Sridhar KR (2017) Edible wild mushrooms of the Western Ghats: data on the ethnic knowledge. Data Brief 14:320–328.  https://doi.org/10.1016/j.dib.2017.07.067 CrossRefPubMedPubMedCentralGoogle Scholar
  258. Ke L, Chen H (2016) Homogenate extraction of crude polysaccharides from Lentinus edodes and evaluation of the antioxidant activity. Food Sci Technol 36(3):533–539.  https://doi.org/10.1590/1678-457X.00916 CrossRefGoogle Scholar
  259. Keong CY, Rashid BAA, Ing YS et al (2007) Quantification and identification of polysaccharide contents in Hericium erinaceus. Nutr Food Sci 37:260–271.  https://doi.org/10.1108/00346650710774631 CrossRefGoogle Scholar
  260. Kerrigan RW (2005) Agaricus subrufescens, a cultivated edible and medicinal mushroom, and its synonyms. Mycologia 97(1):12–24.  https://doi.org/10.3852/mycologia.97.1.12 CrossRefPubMedGoogle Scholar
  261. Kerrigan RW (2016) Agaricus of North America. Memoirs of the New York botanical garden, vol 114. NYBG Press, New YorkGoogle Scholar
  262. Khadhri A, Aouadhi C, Aschi-Smiti S (2017) Screening of bioactive compounds of medicinal mushrooms collected on Tunisian territory. Int J Med Mushrooms 19(2):127–135.  https://doi.org/10.1615/IntJMedMushrooms.v19.i2.40 CrossRefPubMedGoogle Scholar
  263. Khan M, Tania M, Zhang D-z et al (2010) Cordyceps mushroom: a potent anticancer nutraceutical. Open Nutraceuticals J 3:179–183.  https://doi.org/10.2174/18763960010030100179 CrossRefGoogle Scholar
  264. Khan MS, Zhang X, You L (2014) Structure and bioactivities of fungal polysaccharides. In: Ramawat K, Mérillon JM (eds) Polysaccharides – bioactivity and biotechnology. Springer, Cham, pp 1851–1866Google Scholar
  265. Khaskheli AA, Khaskheli SG, Liu Y et al (2018) Characterization and antioxidant properties of crude water soluble polysaccharides from three edible mushrooms. J Med Plant Res 12(12):133–138.  https://doi.org/10.5897/JMPR2017.6441 CrossRefGoogle Scholar
  266. Khatua S, Paul S, Acharya K (2013) Mushroom as the potential source of new generation of antioxidant – a review. Res J Pharm Technol 6:496–505Google Scholar
  267. Khatua S, Ghosh S, Acharya K (2017) Laetiporus sulphureus (Bull.:Fr.) Murr. as food as medicine. Pharm J 9(6):1–15.  https://doi.org/10.5530/pj.2017.6s.151 CrossRefGoogle Scholar
  268. Khatun K, Mahtab H, Khanam PA et al (2007) Oyster mushroom reduced blood glucose and cholesterol in diabetic subjects. Mymensingh Med J 16:94–99.  https://doi.org/10.3329/mmj.v16i1.261 CrossRefPubMedGoogle Scholar
  269. Khatun S, Islam A, Cakilcioglu U et al (2012) Research on mushroom as a potential source of nutraceuticals: a review on Indian perspective. Am J Experim Agricult 2(1):47–73.  https://doi.org/10.9734/AJEA/2012/492 CrossRefGoogle Scholar
  270. Khatun S, Islam A, Cakilcioglu U et al (2015) Nutritional qualities and antioxidant activity of three edible oyster mushrooms (Pleurotus spp.). NJAS – Wageningen J Life Sci 72(73):1–5.  https://doi.org/10.1016/j.njas.2012.03.003 CrossRefGoogle Scholar
  271. Kim JH, Kim YS (1999) A fibrinolytic metalloprotease from the fruiting bodies of an edible mushroom, Armillariella mellea. Biosci Biotechnol Biochem 63(12):2130–2136.  https://doi.org/10.1271/bbb.63.2130 CrossRefPubMedGoogle Scholar
  272. Kim YW, Kim KH, Choi HJ et al (2005) Anti-diabetic activity of β-glucans and their enzymatically hydrolyzed oligosaccharides from Agaricus blazei. Biotechnol Lett 27(7):483–487.  https://doi.org/10.1007/s10529-005-2225-8 CrossRefPubMedGoogle Scholar
  273. Kim JS, Sapkota K, Park SE et al (2006) A fibrinolytic enzyme from the medicinal mushroom Cordyceps militaris. J Microbiol 44(6):622–631PubMedGoogle Scholar
  274. Kim JS, Kim JE, Choi BS et al (2008) Purification and characterization of fibrinolytic metalloprotease from Perenniporia fraxinea mycelia. Mycol Res 112:990–998.  https://doi.org/10.1016/j.mycres.2008.01.029 CrossRefPubMedGoogle Scholar
  275. Kim YD, Kwak SH, Kim KJ et al (2014) The analysis of useful components in Flammulina velutipes fruit body, Flammulina velutipes mycelium and Cordyceps militaris mycelium. J Mushroom 12(3):193–200.  https://doi.org/10.14480/JM.2014.12.3.193 CrossRefGoogle Scholar
  276. Kirk PM, Cannon PF, Minter DW et al (2008) In: Kirk PM, Cannon PF, Minter DW, Stalpers JA (eds) Ainsworth and Bisby’s dictionary of the fungi, 10th edn. CABI Europe, WallingfordGoogle Scholar
  277. Klaus AS, Kozarski MS, Vunduk JD et al (2016) Antibacterial and antifungal potential of wild Basidiomycete mushroom Ganoderma applanatum. Lek Sirov 36:37–46.  https://doi.org/10.5937/leksir1636037K
  278. Klimaszewska M, Górska S, Dawidowski M et al (2017) Selective cytotoxic activity of se-methyl-seleno-L-cysteine- and se-polysaccharide–containing extracts from shiitake medicinal mushroom, Lentinus edodes (Agaricomycetes). Int J Med Mushrooms 19(8):709–716.  https://doi.org/10.1615/IntJMedMushrooms.2017021250 CrossRefPubMedGoogle Scholar
  279. Klupp NL, Chang D, Hawke F et al (2015) Ganoderma lucidum mushroom for the treatment of cardiovascular risk factors (review). Cochrane Database Syst Rev 2:CD007259.  https://doi.org/10.1002/14651858.CD007259.pub2 CrossRefGoogle Scholar
  280. Klupp NL, Kiat H, Bensoussan A et al (2016) A double-blind, randomised, placebo-controlled trial of Ganoderma lucidum for the treatment of cardiovascular risk factors of metabolic syndrome. Sci Rep 6:29540.  https://doi.org/10.1038/srep29540 CrossRefPubMedPubMedCentralGoogle Scholar
  281. Kodama N, Komuta K, Nanba H (2002) Can Maitake MD fraction aid cancer patients? Altern Med Rev 7(3):236–239PubMedGoogle Scholar
  282. Kolundčzić M, Stanojković T, Radović J et al (2017) Cytotoxic and antimicrobial activities of Cantharellus cibarius Fr. (Cantharellaceae). J Med Food 20(8):790–796.  https://doi.org/10.1089/jmf.2016.0176 CrossRefGoogle Scholar
  283. Konno S (2009) Synergistic potentiation of D-fraction with vitamin C as possible alternative approach for cancer therapy. Int J Gen Med 2:91–108.  https://doi.org/10.2147/IJGM.S5498 CrossRefPubMedPubMedCentralGoogle Scholar
  284. Kosanić M, Ranković B, Rančić A et al (2016) Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. J Food Drug Anal 24:477–484.  https://doi.org/10.1016/j.jfda.2016.01.008 CrossRefPubMedGoogle Scholar
  285. Kostic M, Smiljkovic M, Petrovic J et al (2017) Chemical, nutritive composition and wide-broad bioactive properties of honey mushroom Armillaria mellea (Vahl.:Fr.) Kummer. Food Funct 9:3239–3249.  https://doi.org/10.1039/C7FO00887B CrossRefGoogle Scholar
  286. Kovács B, Béni Z, Dékány M et al (2018) Isolation and structure determination of antiproliferative secondary metabolites from the potato earthball mushroom, Scleroderma bovista (Agaricomycetes). Int J Med Mushrooms 20(5):411–418.  https://doi.org/10.1615/IntJMedMushrooms.2018026043 CrossRefPubMedGoogle Scholar
  287. Kozarski MS, Klaus AS, Nikšić MP et al (2014) Polysaccharides of higher fungi: biological role, structure and antioxidative activity. Hem Ind 68(3):305–320.  https://doi.org/10.2298/HEMIND121114056K CrossRefGoogle Scholar
  288. Kozarski M, Klaus A, Jakovljevic D et al (2015) Antioxidants of edible mushrooms. Molecules 20:19489–19525.  https://doi.org/10.3390/molecules201019489 CrossRefPubMedPubMedCentralGoogle Scholar
  289. Krupodorova T, Rybalko S, Barshteyn V (2014) Antiviral activity of Basidiomycete mycelia against influenza type A (serotype H1N1) and herpes simplex virus type 2 in cell culture. Virol Sin 29(5):284–290.  https://doi.org/10.1007/s12250-014-3486-y CrossRefGoogle Scholar
  290. Kudryavtseva OA, Dunaevsky YE, Kamzolkina OV et al (2008) Fungal proteolytic enzymes: features of the extracellular proteases of xylotrophic Basidiomycetes. Microbiology 77(6):643–653.  https://doi.org/10.1134/S0026261708060015 CrossRefGoogle Scholar
  291. Kües U, Badalyan SM (2017) Making use of genomic information to explore the biotechnological potential of medicinal mushrooms. In: Agrawal DC, Tsay HS, Shyur LF, Wu YC, Wang SY (eds) Medicinal plants and fungi: recent advances in research and development, Medicinal and aromatic plants of the world, vol 4. Springer, New York, pp 397–458.  https://doi.org/10.1007/978-981-10-5978-0_13 CrossRefGoogle Scholar
  292. Kües U, Khonsuntia W, Subba S, Dörnte B (2018) Volatiles in communication of Agaricomycetes. In: Anke T, Schüffler A (eds) Physiology and genetics. The Mycota (a comprehensive treatise on fungi as experimental systems for basic and applied research), vol 15. Springer, Cham, pp 149–212.  https://doi.org/10.1007/978-3-319-71740-1_6 CrossRefGoogle Scholar
  293. Kumar K (2015) Role of edible mushroom as functional foods – a review. South Asian J Food Technol Environm 1(3&4):211–218Google Scholar
  294. Kumaran S, Palani P, Nishanthi R et al (2011) Studies on screening, isolation and purification of a fibrinolytic protease from an isolate (VK12) of Ganoderma lucidum and evaluation of its antithrombotic activity. Med Mycol J 52(2):153–162.  https://doi.org/10.3314/jjmm.52.153 CrossRefPubMedGoogle Scholar
  295. Lakornwong W, Kanokmedhakul K, Kanokmedhakul S et al (2014) Triterpene lactones from cultures of Ganoderma sp. KM01. J Nat Prod 77:1545–1153.  https://doi.org/10.1021/np400846k CrossRefGoogle Scholar
  296. Lalotra P, Bala P, Kumar S, Sharma YP (2016) Biochemical characterization of some wild edible mushrooms from Jammu and Kashmir. Proc Natl Acad Sci India, Sect B Biol Sci 88(2):539–545.  https://doi.org/10.1007/s40011-016-0783-2 CrossRefGoogle Scholar
  297. Landi N, Pacifico S, Ragucci S et al (2017) Pioppino mushroom in southern Italy: an undervalued source of nutrients and bioactive compounds. J Sci Food Agric 97(15):5388–5397.  https://doi.org/10.1002/jsfa.8428 CrossRefPubMedGoogle Scholar
  298. Lau BF, Abdullah N (2017) Bioprospecting of Lentinus squarrosulus Mont., an underutilized wild edible mushroom, as a potential source of functional ingredients: a review. Trends Food Sci Technol 61:116–131.  https://doi.org/10.1016/j.tifs.2016.11.017 CrossRefGoogle Scholar
  299. Lee JS, Baik HS, Park SS (2002) Optimal production and characterization of fibrinolytic enzymes from Fomitella fraxinea mycelia. Kor J Microbiol Biotechnol 30:325–331Google Scholar
  300. Lee JS, Baik HS, Park SS (2006) Purification and characterization of two novel fibrinolytic proteases from mushroom, Fomitella fraxinea. J Microbiol Biotechnol 16(2):264–271Google Scholar
  301. Lee JS, Park BC, Ko YJ et al (2008) Grifola frondosa (Maitake mushroom) water extract inhibits vascular endothelial growth factor-induced angiogenesis through inhibition of reactive oxygen species and extracellular signal-regulated kinase phosphorylation. J Med Food 11(4):643–651.  https://doi.org/10.1089/jmf.2007.06290 CrossRefPubMedGoogle Scholar
  302. Lee KH, Morris-Natschke SL, Yang X et al (2012) Recent progress of research on medicinal mushrooms, foods, and other herbal products used in traditional Chinese medicine. J Tradit Complement Med 2(2):84–95.  https://doi.org/10.1016/S2225-4110(16)30081-5 CrossRefPubMedPubMedCentralGoogle Scholar
  303. Lee SS, Tan NH, Fung SY et al (2014a) Anti-inflammatory effect of the sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden, the tiger milk mushroom. BMC Complement Altern Med 14:359.  https://doi.org/10.1186/1472-6882-14-359 CrossRefPubMedPubMedCentralGoogle Scholar
  304. Lee KF, Chen JW, Teng CC et al (2014b) Protective effects of Hericium erinaceus mycelium and its isolated erinacine a against ischemia-injury-induced neuronal cell death via the inhibition of iNOS/p38 MAPK and nitrotyrosine. Int J Mol Sci 15:15073–15089.  https://doi.org/10.3390/ijms150915073 CrossRefPubMedPubMedCentralGoogle Scholar
  305. Lemieszek MK, Nunes FHFM, Sawa-Wejksza K et al (2017) A king Bolete, Boletus edulis (Agaricomycetes), RNA fraction stimulates proliferation and cytotoxicity of natural killer cells against myelogenous leukemia cells. Int J Med Mushrooms 19(4):347–353.  https://doi.org/10.1615/IntJMedMushrooms.v19.i4.50 CrossRefPubMedGoogle Scholar
  306. Lima CUJO, Souza VC, Morita MC et al (2011) Agaricus blazei Murrill and inflammatory mediators in elderly women: a randomized clinical trial. Scand J Immunol 75(3):336–341.  https://doi.org/10.1111/j.1365-3083.2011.02656.x CrossRefGoogle Scholar
  307. Lin KW, Maitraie D, Huang AM et al (2016) Triterpenoids and an alkamide from Ganoderma tsugae. Fitoterapia 108:73–80.  https://doi.org/10.1016/j.fitote.2015.11.003 CrossRefPubMedGoogle Scholar
  308. Lindequist U (2011) The impact of ethnomycology on modern pharmacy. Curare 34(1+2):118–123Google Scholar
  309. Lindequist U (2013) The merit of medicinal mushrooms from a pharmaceutical point of view. Int J Med Mushrooms 15(6):517–523.  https://doi.org/10.1615/IntJMedMushr.v15.i6.10 CrossRefPubMedGoogle Scholar
  310. Lindequist U, Niedermeyer THJ, Jülich WD (2005) The pharmacological potential of mushrooms. Evid Based Complement Alternat Med 2(3):285–299.  https://doi.org/10.1093/ecam/neh107 CrossRefPubMedPubMedCentralGoogle Scholar
  311. Liu JK (2005) N-containing compounds of macromycetes. Chem Rev 105(7):2723–2744.  https://doi.org/10.1002/chin.200542287 CrossRefPubMedGoogle Scholar
  312. Liu Y, Fukuwatari Y, Okumura K et al (2008) Immunomodulating activity of Agaricus brasiliensis KA21 in mice and in human volunteers. Evid Based Complement Alternat Med 5(2):205–219.  https://doi.org/10.1093/ecam/nem016 CrossRefPubMedGoogle Scholar
  313. Liu Y, Wang J, Wang W et al (2015a) The chemical constituents and pharmacological actions of Cordyceps sinensis. Evid Based Complement Alternat Med 2015:575063.):12 p.  https://doi.org/10.1155/2015/575063 CrossRefPubMedPubMedCentralGoogle Scholar
  314. Liu Z, Wang Q, Cui J et al (2015b) Systemic screening of strains of the Lion’s mane medicinal mushroom Hericium erinaceus (higher Basidiomycetes) and its protective effects on Aβ-triggered neurotoxicity in PC12 cells. Int J Med Mushrooms 7(3):219–229.  https://doi.org/10.1615/IntJMedMushrooms.v17.i3.20 CrossRefGoogle Scholar
  315. Liu M, Jing H, Zhang J et al (2016) Optimization of mycelia selenium polysaccharide extraction from Agrocybe cylindracea SL-02 and assessment of their antioxidant and anti-ageing activities. PLoS One 11(8):e0160799.  https://doi.org/10.1371/journal.pone.0160799 CrossRefPubMedPubMedCentralGoogle Scholar
  316. Llarena-Hernández RC, Renouf E, Vitrac X et al (2015) Antioxidant activities and metabolites in edible fungi, a focus on the almond mushroom Agaricus subrufescens. In: Mérillon JM, Ramawat KG (eds) Fungal metabolites. Springer, Cham, pp 1–22.  https://doi.org/10.1007/978-3-319-19456-1_35-1 CrossRefGoogle Scholar
  317. Lo HC, Wasser SP (2011) Medicinal mushrooms for glycemic control in diabetes mellitus: history, current status, future perspectives, and unsolved problems (review). Int J Med Mushrooms 13(5):401–426.  https://doi.org/10.1615/IntJMedMushr.v13.i5.10 CrossRefPubMedGoogle Scholar
  318. Lu LC, Chen SN (2012) Fibrinolytic enzymes from medicinal mushrooms. In: Biochemistry, genetics and molecular biology. Protein structure, Shanghai, pp 337–362Google Scholar
  319. Lu X, Brennan MA, Serventi L et al (2016) How the inclusion of mushroom powder can affect the physicochemical characteristics of pasta. Int J Food Sci Technol 51:2433–2439.  https://doi.org/10.1111/ijfs.13246 CrossRefGoogle Scholar
  320. Lu X, Brennan MA, Serventi L et al (2018) Addition of mushroom powder to pasta enhances the antioxidant content and modulates the predictive glycaemic response of pasta. Food Chem 264:199–209.  https://doi.org/10.1016/j.foodchem.2018.04.130 CrossRefPubMedGoogle Scholar
  321. Ludwig E (2007) Pilzkompendium 2:61. Fungicon-Verlag, BerlinGoogle Scholar
  322. Ma G, Yang W, Mariga AM et al (2014a) Purification, characterization and antitumor activity of polysaccharides from Pleurotus eryngii residue. Carbohydr Polym 114:297–305.  https://doi.org/10.1016/j.carbpol.2014.07.069 CrossRefPubMedGoogle Scholar
  323. Ma K, Ren J, Han J et al (2014b) Ganoboninketals A − C, antiplasmodial 3,4-seco-27-norlanostane triterpenes from Ganoderma boninense. Pat J Nat Prod 77:1847–1852.  https://doi.org/10.1021/np5002863 CrossRefPubMedGoogle Scholar
  324. Ma HT, Hsieh JF, Chen ST (2015) Anti-diabetic effects of Ganoderma lucidum. Phytochem 114:109–113.  https://doi.org/10.1016/j.phytochem.2015.02.017 CrossRefGoogle Scholar
  325. Martel J, Ojcius DM, Chang CJ et al (2017) Anti-obesogenic and antidiabetic effects of plants and mushrooms. Nat Rev Endocrinol 13:149–161.  https://doi.org/10.1038/nrendo.2016.142 CrossRefPubMedGoogle Scholar
  326. Masri HJ, Maftoun P, Malek RA et al (2017) The edible mushroom Pleurotus spp.: II. Medicinal values. Int J Biotech Well Indus 6:1–11Google Scholar
  327. Masuda Y, Murata Y, Hayashi M et al (2008) Inhibitory effect of MD-fraction on tumor metastasis: involvement of NK cell activation and suppression of intercellular adhesion molecule (ICAM)-1 expression in lung vascular endothelial cells. Biol Pharm Bull 31(6):1104–1108.  https://doi.org/10.1248/bpb.31.1104 CrossRefPubMedGoogle Scholar
  328. Mehrotra A, Calvo MS, Beelman RB et al (2014) Bioavailability of vitamin D2 from enriched mushrooms in prediabetic adults: a randomized controlled trial. Eur J Clin Nutr 68(10):1154–1160.  https://doi.org/10.1038/ejcn.2014.157 CrossRefPubMedGoogle Scholar
  329. Meneses ME, Martínez-Carrera D, Torres N et al (2016) Hypocholesterolemic properties and prebiotic effects of Mexican Ganoderma lucidum in C57BL/6 mice. PLoS One 11(7):e0159631.  https://doi.org/10.1371/journal.pone.0159631 CrossRefPubMedPubMedCentralGoogle Scholar
  330. Meng X, Liang H, Luo L (2016) Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydr Res 424:30–41.  https://doi.org/10.1016/j.carres.2016.02.008 CrossRefPubMedGoogle Scholar
  331. Merdivan S, Lindequist U (2017) Medicinal mushrooms with antiallergic activities. In: Agrawal DC, Tsay HS, Shyur LF, Wu YC, Wang SY (eds) Medicinal plants and fungi: recent advances in research and development, Medicinal and aromatic plants of the world, vol 4. Springer, New York, pp 93–111.  https://doi.org/10.1007/978-981-10-5978-0_4 CrossRefGoogle Scholar
  332. Merdivan S, Jenett-Siems K, Siems K et al (2017) Inhibition of degranulation of RBL-2H3 cells by extracts and compounds from Armillaria ostoyae. Planta Med Int Open 4:e1–e7.  https://doi.org/10.1055/s-0042-121608 CrossRefGoogle Scholar
  333. Milovanović I, Brčeski I, Stajić M et al (2013) Potential enrichment of medicinal mushrooms with selenium to obtain new dietary supplements. Int J Med Mushrooms 15:451–457.  https://doi.org/10.1615/IntJMedMushr.v15.i5.30 CrossRefGoogle Scholar
  334. Milovanović I, Stajić M, Stanojković T et al (2015a) Effects of selenium presence in mycelia of Ganoderma species (higher Basidiomycetes) on their medicinal properties. Int J Med Mushrooms 17(1):11–20.  https://doi.org/10.1615/IntJMedMushrooms.v17.i1.20 CrossRefPubMedGoogle Scholar
  335. Milovanović IN, Stanojkovic TP, Stajic MM et al (2015b) Effect of selenium enrichment of Lenzites betulinus and Trametes hirsuta mycelia on antioxidant, antifungal and cytostatics potential. Curr Pharm Biotechnol 16(10):920–926.  https://doi.org/10.2174/1389201016666150618152531 CrossRefGoogle Scholar
  336. Mirończuk-Chodakowska I, Witkowska AM, Zujko ME et al (2017) Quantitative evaluation of 1,3-1,6-β-D-glucan contents in wild–growing species of edible Polish mushrooms. Rocz Panstw Zakl Hig 68(3):281–290PubMedGoogle Scholar
  337. Mizuno M, Nishitani Y (2013) Immunomodulating compounds in Basidiomycetes. J Clin Biochem Nutr 52(3):202–207.  https://doi.org/10.3164/jcbn.13-3 CrossRefPubMedPubMedCentralGoogle Scholar
  338. Mizuno T, Wang G, Zhang J et al (1995) Reishi, Ganoderma lucidum and Ganoderma tsugae: bioactive substances and medicinal effects. Food Rev Int 11(1):151–166.  https://doi.org/10.1080/87559129509541025 CrossRefGoogle Scholar
  339. Mocan A, Fernandes Â, Barros L et al (2018) Chemical composition and bioactive properties of the wild mushroom Polyporus squamosus (Huds.) Fr: a study with samples from Romania. Food Funct 9:160–170.  https://doi.org/10.1039/C7FO01514C CrossRefPubMedGoogle Scholar
  340. Mohanarji S, Dharmalingam S, Kalusalingam A (2012) Screening of Lignosus rhinocerus extracts as antimicrobial agents against selected human pathogens. J Pharm Biomed Sci 18:1–4Google Scholar
  341. Money NP (2016) Are mushrooms medicinal? Fungal Biol 120:449–453.  https://doi.org/10.1016/j.funbio.2016.01.006 CrossRefPubMedPubMedCentralGoogle Scholar
  342. Monro JA (2003) Treatment of cancer with mushroom products. Arch Environ Health 58:533–537.  https://doi.org/10.3200/AEOH.58.8.533-537 CrossRefPubMedGoogle Scholar
  343. Moore D, Chiu SW (2001) Fungal products as food. In: Pointing SB, Hyde KD (eds) Bio-exploitation of filamentous fungi. Fungal Diversity Press, Hong Kong, pp 223–251Google Scholar
  344. Morales D, Piris AJ, Ruiz-Rodriguez A et al (2018) Extraction of bioactive compounds against cardiovascular diseases from Lentinula edodes using a sequential extraction method. Biotechnol Prog 34:746.  https://doi.org/10.1002/btpr.2616 CrossRefPubMedGoogle Scholar
  345. Morel S, Arnould S, Vitou M et al (2018) Antiproliferative and antioxidant activities of wild Boletales mushrooms from France. Int J Med Mushrooms 20(1):13–29.  https://doi.org/10.1615/IntJMedMushrooms.v17.i3.20 CrossRefPubMedGoogle Scholar
  346. Mori K, Inatomi S, Ouchi K et al (2009) Improving effects of the mushroom Yamabushitake (Hericium erinaceus) on mild cognitive impairment: a double-blind placebo-controlled clinical trial. Phytother Res 23(3):367–372.  https://doi.org/10.1002/ptr.2634 CrossRefGoogle Scholar
  347. Morozova EN, Falina NN, Denisova NP et al (1982) Analysis of the component constitution and substrate specificity of a fibrinolytic preparation from the fungus Flammulina velutipes. Biokhimia (Moscow, Russia) 47(7):1181–1185. (in Russian)Google Scholar
  348. Morris HJ, Beltrán Y, Llauradó G et al (2017) Mycelia from Pleurotus sp. (oyster mushroom): a new wave of antimicrobials, anticancer and antioxidant bio-ingredients. Intl J Phyto Natur Ingrd 4(1):03.  https://doi.org/10.15171/ijpni.2017.03 CrossRefGoogle Scholar
  349. Motoi M, Motoi A, Yamanaka D et al (2015) Open-label study of the influence of food containing the royal sun mushroom, Agaricus brasiliensis KA21 (higher Basidiomycetes), on the quality of life of healthy volunteers. Int J Med Mushrooms 17(9):799–817.  https://doi.org/10.1615/IntJMedMushrooms.v17.i9.10 CrossRefPubMedGoogle Scholar
  350. Mustonen AM, Määttänen M, Kärjä V et al (2018) Myo- and cardiotoxic effects of the wild winter mushroom (Flammulina velutipes) on mice. Exp Biol Med 243:639–644.  https://doi.org/10.1177/1535370218762340 CrossRefGoogle Scholar
  351. Muszynska B, Lojewski M, Rojowski J et al (2015) Natural products of relevance in the prevention and supportive treatment of depression. Psychiatr Pol 49:435–453.  https://doi.org/10.12740/PP/29367 CrossRefPubMedGoogle Scholar
  352. Muta T (2006) Molecular basis for invertebrate innate immune recognition of (1-3)-beta-D-glucan as a pathogen-associated molecular pattern. Curr Pharm Des 12(32):4155–4161.  https://doi.org/10.2174/138161206778743529 CrossRefGoogle Scholar
  353. Nagano M, Shimizu K, Kondo R et al (2010) Reduction of depression and anxiety by 4 weeks Hericium erinaceus intake. Biomed Res 31(4):231–237.  https://doi.org/10.2220/biomedres.31.231 CrossRefGoogle Scholar
  354. Nallathamby N, Lee GS, Raman J et al (2016) Identification and in vitro evaluation of lipids from sclerotia of Lignosus rhinocerotis for antioxidant and anti-neuroinflammatory activities. Nat Prod Commun 11:1485–1490PubMedGoogle Scholar
  355. Nallathamby N, Phan CW, Seow SL et al (2018) A status review of the bioactive activities of tiger milk mushroom Lignosus rhinocerotis (Cooke) Ryvarden. Front Pharmacol 8:998.  https://doi.org/10.3389/fphar.2017.00998 CrossRefPubMedPubMedCentralGoogle Scholar
  356. Nguyen AH, Gonzaga MI, Lim VM et al (2017) Clinical features of shiitake dermatitis: a systematic review. Int J Dermatol 56(6):610–616.  https://doi.org/10.1111/ijd.13433 CrossRefPubMedGoogle Scholar
  357. Nielsen JC, Nielsen J (2017) Development of fungal cell factories for the production of secondary metabolites: linking genomics and metabolism. Synth Syst Biotechnol 2(1):5–12.  https://doi.org/10.1016/j.synbio.2017.02.002 CrossRefPubMedPubMedCentralGoogle Scholar
  358. Novak M, Vetvicka V (2008) β-Glucans, history, and the present: immunomodulatory aspects and mechanisms of action. J Immunotoxicol 5(1):47–57.  https://doi.org/10.1080/15476910802019045 CrossRefPubMedGoogle Scholar
  359. Novakovič A, Karaman M, Kaišarevič S et al (2017) Antioxidant and antiproliferative potential of fruiting bodies of the wild-growing king bolete mushroom, Boletus edulis (Agaricomycetes), from Western Serbia. Int J Med Mushrooms 19(1):27–34.  https://doi.org/10.1615/IntJMedMushrooms.v19.i1.30 CrossRefPubMedGoogle Scholar
  360. Nowacka N, Nowak R, Drozd M et al (2014) Analysis of phenolic constituents, antiradical and antimicrobial activity of edible mushrooms growing wild in Poland. LWT Food Sci Technol 59:689–694.  https://doi.org/10.1016/j.lwt.2014.05.041 Google Scholar
  361. Nowak R, Nowacka-Jechalke N, Juda M et al (2017) The preliminary study of prebiotic potential of polish wild mushroom polysaccharides: the stimulation effect on Lactobacillus strains growth. Eur J Nutr 57(4):1511–1521.  https://doi.org/10.1007/s00394-017-1436-9 CrossRefPubMedPubMedCentralGoogle Scholar
  362. Nunes RGFL, da Luz JMR, de Freitas RB et al (2012) Selenium bioaccumulation in shiitake mushrooms: a nutritional alternative source of this element. J Food Sci 77(9):983–986.  https://doi.org/10.1111/j.1750-3841.2012.02837.x CrossRefGoogle Scholar
  363. Nyegue M, Amvam Zollo PH, Bessière JM et al (2003) Volatile components of fresh Pleurotus ostreatus and Termitomyces shimperi from Cameroon. J Essent Oil Bear Plants 6:153–157.  https://doi.org/10.1080/0972-060X.2003.10643344 CrossRefGoogle Scholar
  364. Oba K, Teramukai S, Kobayashi M et al (2007) Efficacy of adjuvant immunochemotherapy with polysaccharide K for patients with curative resections of gastric cancer. Cancer Immunol Immunother 56:905–911.  https://doi.org/10.1007/s00262-006-0248-1 CrossRefPubMedGoogle Scholar
  365. Oba K, Koboyashi M, Matsui T et al (2009) Individual patient based meta-analysis of lentinan for unresectable/recurrent gastric cancer. Anticancer Res 7:2739–2745Google Scholar
  366. Okolo KO, Orisakwe OE, Siminialayi IM (2018) Nephroprotective and antioxidant effects of king tuber oyster medicinal mushroom, Pleurotus tuberregium (Agaricomycetes), on carbon tetrachloride–induced nephrotoxicity in male Sprague dawley rats. Int J Med Mushrooms 20(5):419–429.  https://doi.org/10.1615/IntJMedMushrooms.2018026044 CrossRefPubMedGoogle Scholar
  367. Owaid MN, AL Saeedi SS, Abed IA et al (2017) Antifungal activities of some Pleurotus species (higher Basidiomycetes). Walailak J Sci Tech 14(3):215–224Google Scholar
  368. Özcan Ö, Ertan F (2018) Beta-glucan content, antioxidant and antimicrobial activities of some edible mushroom species. Food Sci Technol 6(2):47–55.  https://doi.org/10.13189/fst.2018.060201 CrossRefGoogle Scholar
  369. Palacios I, Lozano M, Moro C et al (2011) Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chem 128:674–678.  https://doi.org/10.1016/j.foodchem.2011.03.085 CrossRefGoogle Scholar
  370. Palazzolo E, Gargano ML, Venturella G (2012) The nutritional composition of selected wild edible mushrooms from Sicily (southern Italy). Int J Food Sci Nutr 63(1):79–83.  https://doi.org/10.3109/09637486.2011.598850 CrossRefPubMedGoogle Scholar
  371. Pandya U, Dhuldhaj U, Sahay NS (2018) Bioactive mushroom polysaccharides as antitumor: an overview. Nat Prod Res 4:1–13.  https://doi.org/10.1080/14786419.2018.1466129 CrossRefGoogle Scholar
  372. Panthong S, Boonsathorn N, Chuchawankul S (2016) Antioxidant activity, anti-proliferative activity, and amino acid profiles of ethanolic extracts of edible mushrooms. Genet Mol Res 15(4):gmr15048886.  https://doi.org/10.4238/gmr15048886 CrossRefGoogle Scholar
  373. Papaspyridi LM, Aligiannis N, Christakopoulos P et al (2011) Production of bioactive metabolites with pharmaceutical and nutraceutical interest by submerged fermentation of Pleurotus ostreatus in a batch stirred tank bioreactor. Proc Food Sci 1:1746–1752.  https://doi.org/10.1016/j.profoo.2011.09.257 CrossRefGoogle Scholar
  374. Paravamsivam P, Heng CK, Malek SNA et al (2016) Giant oyster mushroom Pleurotus giganteus (Agaricomycetes) enhances adipocyte differentiation and glucose uptake via activation of PPAR and glucose transporters 1 and 4 in 3T3-L1 cells. Int J Med Mushrooms 18(9):821–831.  https://doi.org/10.1615/IntJMedMushrooms.v18.i9.60 CrossRefPubMedGoogle Scholar
  375. Park HJ (2014) CARI III inhibits tumor growth in a melanoma-bearing mouse model through induction of G0/G1 cell cycle arrest. Molecules 19:14383–14395.  https://doi.org/10.3390/molecules190914383 CrossRefPubMedPubMedCentralGoogle Scholar
  376. Park KJ, Lee SY, Kim HS et al (2007) The neuroprotective and neurotrophic effects of Tremella fuciformis in PC12h cells. Mycobiology 35(1):11–15.  https://doi.org/10.4489/MYCO.2007.35.1.011 CrossRefPubMedPubMedCentralGoogle Scholar
  377. Parra LA (2013) Agaricus L. Allopsalliota Nauta and Bas, Part II. Candusso, AlassioGoogle Scholar
  378. Patel Y, Naraian R, Singh VK (2012) Medicinal properties of Pleurotus species (oyster mushroom): a review. World J Fungal Plant Biol 3:1–12.  https://doi.org/10.5829/idosi.wjfpb.2012.3.1.303 CrossRefGoogle Scholar
  379. Paterson RRM (2006) Ganoderma – a therapeutic fungal biofactory. Phytochem 67(18):1985–2001.  https://doi.org/10.1016/j.phytochem.2006.07.004 CrossRefGoogle Scholar
  380. Paterson RRM, Lima N (2014) Biomedical effects of mushrooms with emphasis on pure compounds. Biom J 37(6):357–368.  https://doi.org/10.4103/2319-4170.143502 CrossRefGoogle Scholar
  381. Patin EC, Thompson A, Orr SJ (2018) Pattern recognition receptors in fungal immunity. Semin Cell Dev Biol. (in press).  https://doi.org/10.1016/j.semcdb.2018.03.003 Google Scholar
  382. Patra KC, Wang Q, Bhaskar PT et al (2013) Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24(2):213–228.  https://doi.org/10.1016/j.ccr.2013.06.014 CrossRefPubMedPubMedCentralGoogle Scholar
  383. Paul N, Slathia PS, Vaid A et al (2018) Traditional knowledge of Gucchi, Morchella esculenta (Ascomycetes), in Doda district, Jammu and Kashmir, India. Int J Med Mushrooms 20(5):445–450.  https://doi.org/10.1615/IntJMedMushrooms.2018025995 CrossRefPubMedGoogle Scholar
  384. Pavithra M, Sridhar KR, Ayyanna G (2017) Functional properties of edible mushroom Astraeus hygrometricus. KAVAKA 49:22–27Google Scholar
  385. Peay KG, Kennedy PG, Talbot JM (2016) Dimension of biodiversity in the earth mycobiome. Nat Rev Microbiol 14:434–447.  https://doi.org/10.1038/nrmicro.2016.59 CrossRefPubMedGoogle Scholar
  386. Pedrero Z, Madrid Y (2009) Novel approaches for selenium speciation in foodstuffs and biological specimens: a review. Anal Chim Acta 634(2):135–152.  https://doi.org/10.1016/j.aca.2008.12.026 CrossRefPubMedGoogle Scholar
  387. Peng XR, Liu JQ, Xia JJ et al (2015) Lanostane triterpenoids from Ganoderma hainanense J.D. Zhao. Phytochem 114:137–145.  https://doi.org/10.1016/j.phytochem.2014.10.009 CrossRefGoogle Scholar
  388. Peng X, Li L, Wang X et al (2016) Antioxidant farnesylated hydroquinones from Ganoderma capense. Fitoterapia 111:18–23.  https://doi.org/10.1016/j.fitote.2016.04.006 PubMedGoogle Scholar
  389. Perera PK, Li Y (2011) Mushrooms as a functional food mediator in preventing and ameliorating diabetes. Funct Food Health Dis 4:161–171.  https://doi.org/10.31989/ffhd.v1i4.133
  390. Pérez-Martínez AS, Acevedo-Padilla SA, Bibbins-Martínez M et al (2015) A perspective on the use of Pleurotus for the development of convenient fungi-made oral subunit vaccines. Vaccine 33:25–33.  https://doi.org/10.1016/j.vaccine.2014.10.05 CrossRefPubMedGoogle Scholar
  391. Phan CW, David P, Naidu M et al (2013) Neurite outgrowth stimulatory effects of culinary-medicinal mushrooms and their toxicity assessment using differentiating Neuro-2a and embryonic fibroblast BALB/3T3. BMC Complement Altern Med 13:261.  https://doi.org/10.1186/1472-6882-13-261 CrossRefPubMedPubMedCentralGoogle Scholar
  392. Phan CW, David P, Naidu M et al (2015) Therapeutic potential of culinary-medicinal mushroom for the management of neurodegenerative diseases: diversity, metabolite, and mechanism. Crit Rev Biotechnol 35(3):355–368.  https://doi.org/10.3109/07388551.2014.887649 CrossRefGoogle Scholar
  393. Phan CW, David P, Sabaratnam V (2017a) Edible and medicinal mushrooms: emerging brain food for the mitigation of neurodegenerative diseases. J Med Food 20(1):1–10.  https://doi.org/10.3389/fphar.2017.0021910.1089/jmf.2016.3740 CrossRefGoogle Scholar
  394. Phan CW, Wang JK, Cheah SC et al (2017b) A review on the nucleic acid constituents in mushrooms: nucleobases, nucleosides and nucleotides. Crit Rev Biotechnol 10:1–16.  https://doi.org/10.1080/07388551.2017.1399102 CrossRefGoogle Scholar
  395. Phan CW, Tan EYY, Sabaratnam V (2018) Bioactive molecules in edible and medicinal mushrooms for human wellness. In: Mérillon JM, Ramawat K (eds) Bioactive molecules in food, Reference series in phytochemistry. Springer, Cham, pp 1–24Google Scholar
  396. Piotrowski J, Jedrzejewski T, Kozak W (2015) Immunomodulatory and antitumor properties of polysaccharide peptide (PSP). Postepy Hig Med Dosw 69:91–97.  https://doi.org/10.5604/17322693.1137086 CrossRefGoogle Scholar
  397. Pop RM, Puia IC, Puia A et al (2018) Characterization of Trametes versicolor: medicinal mushroom with important health benefits. Not Bot Horti Agrobo 46(2):343–349.  https://doi.org/10.15835/nbha46211132 CrossRefGoogle Scholar
  398. Poucheret P, Fons F, Rapior S (2006) Biological and pharmacological activity of higher fungi: 20-year retrospective analysis. Cryptogam Mycol 27:311–333Google Scholar
  399. Powell M (2014) Medicinal mushrooms: a clinical guide. Mycology Press, SomersetGoogle Scholar
  400. Prasad S, Rathore H, Sharma S et al (2015) Medicinal mushrooms as a source of novel functional food. Int J Food Sci Nutr Diet 04(5):221–225.  https://doi.org/10.19070/2326-3350-1500040 CrossRefGoogle Scholar
  401. Previtali E, Bucciarelli P, Passamonti SM et al (2011) Risk factors for venous and arterial thrombosis. Blood Transfus 9(2):120–138.  https://doi.org/10.2450/2010.0066-10 CrossRefPubMedPubMedCentralGoogle Scholar
  402. Pu DB, Zheng X, Gao JB et al (2017) Highly oxygenated lanostane-type triterpenoids and their bioactivity from the fruiting body of Ganoderma gibbosum. Fitoterapia 119:1–7.  https://doi.org/10.1016/j.fitote.2017.03.007 CrossRefPubMedGoogle Scholar
  403. Qiao X, Wang Q, Ji S et al (2015) Metabolites identification and multi-component pharmacokinetics of ergostane and lanostane triterpenoids in the anticancer mushroom Antrodia cinnamomea. J Pharm Biomed Anal 111:266–276.  https://doi.org/10.1016/j.jpba.2015.04.010 PubMedGoogle Scholar
  404. Rajamahanty S, Louie B, O’Neill C et al (2009) Possible disease remission in patient with invasive bladder cancer with D-fraction regime. Int J Gen Med 2:15–17.  https://doi.org/10.2147/IJGM.S4948 CrossRefPubMedPubMedCentralGoogle Scholar
  405. Ramberg JE, Nelson ED, Sinnott RA (2010) Immunomodulatory dietary polysaccharides: a systematic review of the literature. Nutr J 9:54.  https://doi.org/10.1186/1475-2891-9-54 CrossRefPubMedPubMedCentralGoogle Scholar
  406. Rapior S, Pélissier Y, Vassas A et al (1993) Termitomyces striatus (Beeli) Heim forma annulatus. Identification et étude préliminaire de la composition chimique: recherche des polyols, des sucres, des alcaloïdes, des acides phénols et des toxines. Le Pharmacien d’Afrique (77):19–22Google Scholar
  407. Rapior S, Fruchier A, Bessière JM (1997) Volatile aroma constituents of Agarics and Boletes. In: Pandalai SG (ed) Recent research developments in phytochemistry. Research Signpost, Trivandrum, pp 567–584Google Scholar
  408. Rapior S, Mauruc MJ, Guinberteau J et al (2000) The volatile composition of Gyrophragmium dunalii. Mycologia 92:1043–1046.  https://doi.org/10.2307/3761469 CrossRefGoogle Scholar
  409. Rathee S, Rathee D, Rathee D et al (2012) Mushrooms as therapeutic agents. Bras J Pharmacognosy 22(2):459–474.  https://doi.org/10.1590/S0102-695X2011005000195 CrossRefGoogle Scholar
  410. Rayman MP (2000) The importance of selenium to human health. Lancet 356(9225):233–241.  https://doi.org/10.1016/S0140-6736(00)02490-9 CrossRefPubMedGoogle Scholar
  411. Reinoso R, Cajas-Madriaga D, Martínez M et al (2013) Biological activity of macromycetes isolated from Chilean subantarctic ecosystems. J Chil Chem Soc 58(4):2016–2019.  https://doi.org/10.4067/S0717-97072013000400024 CrossRefGoogle Scholar
  412. Reis FS, Stojković D, Barros L et al (2014) Can Suillus granulatus (L.) Roussel be classified as a functional food? Food Funct 5:2861.  https://doi.org/10.1039/c4fo00619d CrossRefPubMedGoogle Scholar
  413. Reis FS, Martins A, Vasconcelos MH et al (2017) Functional foods based on extracts or compounds derived from mushrooms. Trends Food Sci Technol 66:48–62.  https://doi.org/10.1016/j.tifs.2017.05.010 CrossRefGoogle Scholar
  414. Ren L, Perera C, Hemar Y (2012) Antitumor activity of mushroom polysaccharides: a review. Food Funct 3(11):1118–1130.  https://doi.org/10.1039/c2fo10279j CrossRefGoogle Scholar
  415. Ren L, Hemara Y, Perera CO et al (2014) Antibacterial and antioxidant activities of aqueous extracts of eight edible mushrooms. Bioact Carbohydr Dietary Fibre 3:41–51.  https://doi.org/10.1016/j.bcdf.2014.01.003 CrossRefGoogle Scholar
  416. Ríos JL, Andújar I, Recio MC et al (2012) Lanostanoids from fungi: a group of potential anticancer compounds. J Nat Prod 75:2016–2044.  https://doi.org/10.1021/np300412h CrossRefPubMedGoogle Scholar
  417. Ros S, Schulze A (2013) Glycolysis back in the limelight: systemic targeting of HK2 blocks tumor growth. Cancer Discov 3:1105–1107.  https://doi.org/10.1158/2159-8290.CD-13-0565 CrossRefPubMedGoogle Scholar
  418. Rossi P, Difrancia R, Quagliariello V et al (2018) B-glucans from Grifola frondosa and Ganoderma lucidum in breast cancer: an example of complementary and integrative medicine. Oncotarget 9(37):24837–24856.  https://doi.org/10.18632/oncotarget.24984 CrossRefPubMedPubMedCentralGoogle Scholar
  419. Roupas P, Keogh J, Noakes M (2012) The role of edible mushrooms in health: evaluation of the evidence. J Funct Foods 4(4):687–709.  https://doi.org/10.1016/j.jff.2012.05.003 CrossRefGoogle Scholar
  420. Roussel B, Rapior S, Masson CL et al (2002) Fomes fomentarius (L.:Fr.) Fr.: un champignon aux multiples usages. Cryptogam Mycol 23:349–366Google Scholar
  421. Rubel R, Herta Santa HS, dos Santos LF et al (2018) Immunomodulatory and antitumoral properties of Ganoderma lucidum and Agaricus brasiliensis (Agaricomycetes) medicinal mushrooms. Int J Med Mushrooms 20(4):393–403.  https://doi.org/10.1615/IntJMedMushrooms.2018025979 CrossRefPubMedGoogle Scholar
  422. Rupcic Z, Rascher M, Kanaki S et al (2018) Two new cyathane diterpenoids from mycelial cultures of the medicinal mushroom Hericium erinaceus and the rare species, Hericium flagellum. Int J Mol Sci 19(3):740.  https://doi.org/10.3390/ijms19030740 CrossRefPubMedCentralGoogle Scholar
  423. Ruthes AC, Carbonero ER, Cordova MM et al (2013) Lactarius rufus (1-3)-, (1-6)-β-D-glucans: structure, antinociceptive and anti-inflammatory effects. Carbohydr Polym 94(1):129–136.  https://doi.org/10.1016/j.carbpol.2013.01.026 CrossRefPubMedGoogle Scholar
  424. Sabaratnam V, Kah-Hui W, Naidu M et al (2013) Neuronal health – can culinary and medicinal mushrooms help? J Tradit Complement Med 3(1):62–68.  https://doi.org/10.4103/2225-4110.106549 CrossRefPubMedPubMedCentralGoogle Scholar
  425. Saltarelli R, Ceccaroli P, Iotti M et al (2009) Biochemical characterisation and antioxidant activity of mycelium of Ganoderma lucidum from Central Italy. Food Chem 116:143–151.  https://doi.org/10.1016/j.foodchem.2009.02.023 CrossRefGoogle Scholar
  426. Saltarelli R, Ceccaroli P, Buffalini M et al (2015) Biochemical characterization, antioxidant and antiproliferative activities of different Ganoderma collections. J Mol Microbiol Biotechnol 25(1):16–25.  https://doi.org/10.1159/000369212 CrossRefPubMedGoogle Scholar
  427. Samberkar S, Gandhi S, Naidu M et al (2015) Lion’s mane, Hericium erinaceus and Tiger milk, Lignosus rhinocerotis (higher Basidiomycetes) medicinal mushrooms stimulate neurite outgrowth in dissociated cells of brain, spinal cord, and retina: an in vitro study. Int J Med Mushrooms 17:1047–1054.  https://doi.org/10.1615/IntJMedMushrooms.v17.i11.40 CrossRefPubMedPubMedCentralGoogle Scholar
  428. Sánchez C (2017a) Bioactives from mushrooms and their application. In: Puri M (ed) Food bioactives. Springer, pp 23–57.  https://doi.org/10.1007/978-3-319-51639-4_2 Google Scholar
  429. Sánchez C (2017b) Reactive oxygen species and antioxidant properties from mushrooms. Synth Syst Biotechnol 2:13–22.  https://doi.org/10.1016/j.synbio.2016.12.001 CrossRefPubMedGoogle Scholar
  430. Santoyo S, Ramirez AC, Garcia LA et al (2012) Antiviral activities of Boletus edulis, Pleurotus ostreatus and Lentinus edodes extracts and polysaccharide fractions against Herpes simplex virus type 1. J Food Nutr Res 51(4):225–235Google Scholar
  431. Sato M, Tai T, Nunoura Y et al (2002) Dehydrotrametenolic acid induces preadipocyte differentiation and sensitizes animal models of noninsulin-dependent diabetes mellitus to insulin. Biol Pharm Bull 25:81–86.  https://doi.org/10.1248/bpb.25.81 CrossRefPubMedGoogle Scholar
  432. Scarpari M, Parroni A, Zaccaria M et al (2016) Trametes versicolor bioactive compounds stimulate Aspergillus flavus antioxidant system and inhibit aflatoxin synthesis. Plant Biosyst 150(4):653–659.  https://doi.org/10.1080/11263504.2014.981235 CrossRefGoogle Scholar
  433. Schillaci D, Arizza V, Gargano ML et al (2013) Antibacterial activity of mediterranean oyster mushrooms, species of genus Pleurotus (higher Basidiomycetes). Int J Med Mushrooms 15(6):591–594.  https://doi.org/10.1615/IntJMedMushr.v15.i6.70 CrossRefPubMedGoogle Scholar
  434. Schillaci D, Cusimano MG, Cascioferro SM et al (2017) Antibacterial activity of desert truffles from Saudi Arabia against Staphylococcus aureus and Pseudomonas aeruginosa. Int J Med Mushrooms 19(2):121–125.  https://doi.org/10.1615/IntJMedMushrooms.v19.i2.30 CrossRefPubMedGoogle Scholar
  435. Schueffler A, Anke T (2014) Fungal natural products in research and development. Nat Prod Rep 31(10):1425–1448.  https://doi.org/10.1039/c4np00060a PubMedGoogle Scholar
  436. Sękara A, Kalisz A, Grabowska A et al (2015) Auricularia spp. – mushrooms as novel food and therapeutic agents – a review. Sydowia 67:1–10.  https://doi.org/10.12905/0380.sydowia67-2015-0001 CrossRefGoogle Scholar
  437. Seow SLS, Naidu M, David P et al (2013) Potentiation of neuritogenic activity of medicinal mushrooms in rat pheochromocytoma cells. BMC Complement Altern Med 13:157. http://www.biomedcentral.com/1472-6882/13/157 Google Scholar
  438. Seow SLS, Eik LF, Naidu M et al (2015) Lignosus rhinocerotis (Cooke) Ryvarden mimics the neuritogenic activity of nerve growth factor via MEK/ERK1/2 signaling pathway in PC-12 cells. Sci Rep 5:16349.  https://doi.org/10.1038/srep16349 CrossRefPubMedPubMedCentralGoogle Scholar
  439. Seow LS, Naidu M, Sabaratnam V et al (2017) Tiger’s milk medicinal mushroom, Lignosus rhinocerotis (Agaricomycetes) sclerotium inhievbits nitric oxide production in LPS-stimulated BV2 microglia. Int J Med Mushrooms 19(5):405–418.  https://doi.org/10.1615/IntJMedMushrooms.v19.i5.30 CrossRefPubMedGoogle Scholar
  440. Shang X, Tan Q, Liu R et al (2013) In vitro anti-Helicobacter pylori effects of medicinal mushroom extracts, with special emphasis on the Lion’s mane mushroom, Hericium erinaceus (higher Basidiomycetes). Int J Med Mushrooms 15(2):165–174.  https://doi.org/10.1615/IntJMedMushr.v15.i2.50 CrossRefPubMedGoogle Scholar
  441. Sharjahan MA, Tan YS, Raman J et al (2017) Do culinary mushrooms have fibrinolytic activities? Biomed Rev 28:95–103Google Scholar
  442. Sharma SK, Gautam N (2017) Chemical and bioactive profiling, and biological activities of coral fungi from Northwestern Himalayas. Sci Rep 7:46570.  https://doi.org/10.1038/srep46570 CrossRefGoogle Scholar
  443. Sharma D, Singh VP, Singh NK (2017) A review on phytochemistry and pharmacology of medicinal as well as poisonous mushrooms. Mini-Rev Med Chem.  https://doi.org/10.2174/1389557517666170927144119 PubMedGoogle Scholar
  444. Shen HS, Shao S, Chen JC et al (2017) Antimicrobials from mushrooms for assuring food safety. Compr Rev Food Sci Food Saf 16:316–329.  https://doi.org/10.1111/1541-4337.12255 CrossRefGoogle Scholar
  445. Shibata T, Kudou M, Hoshi Y et al (2010) Isolation and characterization of a novel two-component hemolysin, erylysin A and B, from an edible mushroom, Pleurotus eryngii. Toxicon 56(8):1436–1442.  https://doi.org/10.1016/j.toxicon.2010.08.010 CrossRefPubMedGoogle Scholar
  446. Shibu MA, Agrawal DC, Huang CY (2017) Mushrooms: a Pandora box of cardioprotective phytochemicals. In: Agrawal DC, Tsay HS, Shyur LF, Wu YC, Wang SY (eds) Medicinal plants and fungi: recent advances in research and development, Medicinal and aromatic plants of the world, vol 4. Springer, New York, pp 337–362.  https://doi.org/10.1007/978-981-10-5978-0_11 CrossRefGoogle Scholar
  447. Shin A, Kim J, Lim SY et al (2010) Dietary mushroom intake and the risk of breast cancer based on hormone receptor status. Nutr Cancer 62(4):476–483.  https://doi.org/10.1080/01635580903441212 CrossRefPubMedGoogle Scholar
  448. Singdevsachan SK, Auroshree P, Mishra J et al (2016) Mushroom polysaccharides as potential prebiotics with their antitumor and immunomodulating properties: a review. Bioact Carbohydr Dietary Fibre 7:1–14.  https://doi.org/10.1016/j.bcdf.2015.11.001 CrossRefGoogle Scholar
  449. Singh J, Sindhu SC, Sindhu A et al (2016) Development and evaluation of value added biscuits from dehydrated shiitake (Lentinula edodes) mushroom. Int J Curr Res 8(03):27155–27159Google Scholar
  450. Singh V, Bedi GK, Shri R (2017) In vitro and in vivo antidiabetic evaluation of selected culinary-medicinal mushrooms (Agaricomycetes). Int J Med Mushrooms 19(1):17–25.  https://doi.org/10.1615/IntJMedMushrooms.v19.i1.20 CrossRefPubMedPubMedCentralGoogle Scholar
  451. Sivanandhan S, Khusro A, Paulraj MG et al (2017) Biocontrol properties of Basidiomycetes: an overview. J Fungi 3:2.  https://doi.org/10.3390/jof3010002 CrossRefGoogle Scholar
  452. Sknepnek A, Pantić M, Matijašević D et al (2018) Novel kombucha beverage from Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum, with antibacterial and antioxidant effects. Int J Med Mushrooms 20(3):243–258.  https://doi.org/10.1615/IntJMedMushrooms.2018025833 CrossRefPubMedGoogle Scholar
  453. Smith JE, Rowan NJ, Sullivan R (2002a) Medicinal mushrooms: a rapidly developing area of biotechnology for cancer therapy and other bioactivities. Biotechnol Lett 24:1839–1845.  https://doi.org/10.1023/A:1020994628109 CrossRefGoogle Scholar
  454. Smith JF, Rowan NJ, Sullivan R (2002b) Medicinal mushrooms: their therapeutic properties and current medical usage with special emphasis on cancer treatment. University of Strathclyde Press, GlasgowGoogle Scholar
  455. Soković M, Ciric A, Glamočlija J et al (2014) Agaricus blazei hot water extract shows anti quorum sensing activity in the nosocomial human pathogen Pseudomonas aeruginosa. Molecules 19:4189–4199.  https://doi.org/10.3390/molecules19044189 CrossRefPubMedPubMedCentralGoogle Scholar
  456. Souilem F, Fernandes Â, Calhelha RC et al (2017) Wild mushrooms and their mycelia as sources of bioactive compounds: antioxidant, anti-inflammatory and cytotoxic properties. Food Chem 230:40–48.  https://doi.org/10.1016/j.foodchem.2017.03.026 CrossRefPubMedGoogle Scholar
  457. Souza Dias E, Abe C, Schwan RF (2004) Truths and myths about the mushroom Agaricus blazei. Sci Agric 61(5):545–549.  https://doi.org/10.1590/S0103-90162004000500014 CrossRefGoogle Scholar
  458. Srikram A, Supapvanich S (2016) Proximate compositions and bioactive compounds of edible wild and cultivated mushrooms from Northeast Thailand. Agric Nat Res 50:432–436.  https://doi.org/10.1016/j.anres.2016.08.001 CrossRefGoogle Scholar
  459. Stachowiak B, Reguła J (2012) Health-promoting potential of edible macromycetes under special consideration of polysaccharides: a review. Eur Food Res Technol 234(3):369–380.  https://doi.org/10.1007/s00217-011-1656-9 CrossRefGoogle Scholar
  460. Stadler M, Hoffmeister D (2015) Fungal natural products – the mushroom perspective. Front Microbiol 6:127.  https://doi.org/10.3389/fmicb.2015.00127 CrossRefPubMedPubMedCentralGoogle Scholar
  461. Stamets P (2000) Growing gourmet and medicinal mushrooms. Ten Speed Press, TorontoGoogle Scholar
  462. Standish LJ, Wenner CA, Sweet ES et al (2008) Trametes versicolor mushroom immune therapy in breast cancer. J Soc Integr Oncol 6(3):122–128PubMedPubMedCentralGoogle Scholar
  463. Stanikunaite R, Trappe JM, Khan SI et al (2007) Evaluation of therapeutic activity of hypogeous Ascomycetes and Basidiomycetes from North America. Int J Med Mushrooms 9:7–14.  https://doi.org/10.1615/IntJMedMushr.v9.i1.20 CrossRefGoogle Scholar
  464. Stojković DS, Barros L, Calhelha RC et al (2014a) A detailed comparative study between chemical and bioactive properties of Ganoderma lucidum from different origins. Int J Food Sci Nutr 65(1):42–47.  https://doi.org/10.3109/09637486.2013.832173 CrossRefPubMedGoogle Scholar
  465. Stojković DS, Reis FS, Glamočlija J et al (2014b) Cultivated strains of Agaricus bisporus and A. brasiliensis: chemical characterization and evaluation of antioxidant and antimicrobial properties for the final healthy product – natural preservatives in yoghurt. Food Funct 5(7):1602.  https://doi.org/10.1039/c4fo00054d CrossRefPubMedGoogle Scholar
  466. Stojković DS, Kovacevic-Grujicic N, Reis FS et al (2017) Chemical composition of the mushroom Meripilus giganteus Karst. and bioactive properties of its methanolic extract. LWT Food Sci Technol 79:454–462.  https://doi.org/10.1016/j.lwt.2017.01.045 CrossRefGoogle Scholar
  467. Streith J (2011) Ergotisme, mal des ardents ou feu de Saint-Antoine du Moyen Âge aux temps modernes. Actual Chim (358):40–46Google Scholar
  468. Suárez-Arroyo IJ, Loperena-Alvarez Y, Rosario-Acevedo R et al (2017) Ganoderma spp.: a promising adjuvant treatment for breast cancer. Medicines 4:15.  https://doi.org/10.3390/medicines4010015 CrossRefPubMedPubMedCentralGoogle Scholar
  469. Suay I, Arenal F, Asensio FJ et al (2000) Screening of basidiomycetes for antimicrobial activities. Antonie Leeuwenhoek 78:129–139.  https://doi.org/10.1023/A:1026552024021 CrossRefPubMedGoogle Scholar
  470. Subramaniam S, Raman J, Sabaratnam V et al (2017) Functional properties of partially characterized polysaccharide from the medicinal mushroom Ganoderma neo-japonicum (Agaricomycetes). Int J Med Mushooms 19(10):849–859.  https://doi.org/10.1615/IntJMedMushrooms.2017024355 CrossRefGoogle Scholar
  471. Süfer O, Bozok F, Demir H (2016) Usage of edible mushrooms in various food products. Turkish J Agri: Food Sci Technol 4(3):144–149.  https://doi.org/10.24925/turjaf.v4i3.144-149.599 CrossRefGoogle Scholar
  472. Sullivan R, Smith JE, Rowan NJ (2006) Medicinal mushrooms and cancer therapy: translating a traditional practice into Western medicine. Perspect Biol Med 49(2):159–170.  https://doi.org/10.1353/pbm.2006.0034 CrossRefPubMedGoogle Scholar
  473. Surup F, Kuhnert E, Böhm A et al (2018) The rickiols, 20-, 22-, and 24-membered macrolides from the ascomycete Hypoxylon rickii. Chemistry 24(9):2200–2213.  https://doi.org/10.1002/chem.201704928 CrossRefPubMedGoogle Scholar
  474. Suzuki N, Takimoto Y, Suzuki R et al (2013) Efficacy of oral administration of Lentinula edodes mycelia extract for breast cancer patients undergoing postoperative hormone therapy. Asian Pac J Cancer Prev 14(6):3469–3472.  https://doi.org/10.7314/APJCP.2013.14.6.3469 CrossRefPubMedGoogle Scholar
  475. Talcott JA, Clark JA, Lee IP (2007) Measuring perceived effects of drinking an extract of basidiomycetes Agaricus blazei Murrill: a survey of Japanese consumers with cancer. BMC Complement Altern Med 7:246.  https://doi.org/10.1186/1472-6882-7-32 CrossRefGoogle Scholar
  476. Tan VP, Miyamoto S (2015) HK2/hexokinase-II integrates glycolysis and autophagy to confer cellular protection. Autophagy 11(6):963–964.  https://doi.org/10.1080/15548627.2015.1042195 CrossRefPubMedPubMedCentralGoogle Scholar
  477. Tanaka A, Nishimura M, Sato Y et al (2016) Enhancement of the Th1-phenotype immune system by the intake of oyster mushroom (Tamogitake) extract in a double-blind, placebo-controlled study. J Tradit Complement Med 6:424–430.  https://doi.org/10.1016/j.jtcme.2015.11.004 CrossRefPubMedGoogle Scholar
  478. Tangen JM, Tierens A, Caers J et al (2015) Immunomodulatory effects of the Agaricus blazei Murrill-based mushroom extract AndoSan in patients with multiple myeloma undergoing high dose chemotherapy and autologous stem cell transplantation: a randomized, double blinded clinical study. Biomed Res Int 2015:718539.  https://doi.org/10.1155/2015/718539 CrossRefPubMedPubMedCentralGoogle Scholar
  479. Tao QQ, Ma K, Bao L et al (2016) New sesquiterpenoids from the edible mushroom Pleurotus cystidiosus and their inhibitory activity against α-glucosidase and PTP1B. Fitoterapia 111:29–35.  https://doi.org/10.1016/j.fitote.2016.04.007 CrossRefPubMedGoogle Scholar
  480. Taofiq O, Martins A, Barreiro MF et al (2016a) Anti-inflammatory potential of mushroom extracts and isolated metabolites. Trends Food Sci Technol 50:193–210.  https://doi.org/10.1016/j.tifs.2016.02.005 CrossRefGoogle Scholar
  481. Taofiq O, González-Paramás AM, Martins A et al (2016b) Mushrooms extracts and compounds in cosmetics, cosmeceuticals and nutricosmetics – a review. Ind Crop Prod 90:38–48.  https://doi.org/10.1016/j.indcrop.2016.06.012 CrossRefGoogle Scholar
  482. Taofiq O, Heleno S, Calhelha R et al (2016c) Development of mushroom-based cosmeceutical formulations with anti-inflammatory, anti-tyrosinase, antioxidant, and antibacterial properties. Molecules 21(10):1372.  https://doi.org/10.3390/molecules21101372 CrossRefPubMedCentralGoogle Scholar
  483. Taofiq O, Heleno SA, Calhelha RC et al (2017a) The potential of Ganoderma lucidum extracts as bioactive ingredients in topical formulations, beyond its nutritional benefits. Food Chem Toxicol 108:139–147.  https://doi.org/10.1016/j.fct.2017.07.051 CrossRefPubMedGoogle Scholar
  484. Taofiq O, Fernandes Â, Barros L et al (2017b) UV-irradiated mushrooms as a source of vitamin D2: a review. Trends Food Sci Technol 70:82–94.  https://doi.org/10.1016/j.tifs.2017.10.008 CrossRefGoogle Scholar
  485. Tedersoo L, Bahram M, Põlme S et al (2014) Global diversity and geography of soil fungi. Science 346(6213):1256688.  https://doi.org/10.1126/science.1256688 CrossRefPubMedPubMedCentralGoogle Scholar
  486. Teklit GA (2015) Chemical composition and nutritional value of the most widely used mushrooms cultivated in Mekelle Tigray Ethiopia. J Nutr Food Sci 5:408.  https://doi.org/10.4172/2155-9600.1000408 CrossRefGoogle Scholar
  487. Teo CP (2014) In-vitro investigation of anticoagulant activities in edible and medicinal mushrooms. Dissertation, University of Malaya. http://studentsrepo.um.edu.my/id/eprint/4773.
  488. Teplyakova TV, Kosogova TA (2016) Antiviral effect of Agaricomycetes mushrooms (review). Int J Med Mushrooms 18(5):375–386.  https://doi.org/10.1615/IntJMedMushrooms.v18.i5.10 CrossRefPubMedGoogle Scholar
  489. Teplyakova TV, Psurtseva NV, Kosogova TA et al (2012) Antiviral activity of polyporoid mushrooms (higher Basidiomycetes) from Altai Mountains (Russia). Int J Med Mushrooms 14(1):37–45.  https://doi.org/10.1615/IntJMedMushr.v14.i1.40 CrossRefPubMedGoogle Scholar
  490. Thaper S, Lakshmi T (2017) Effects of mushroom on dental caries. JAPER 7(3):197–199Google Scholar
  491. Therkelsen SP, Hetland G, Lyberg T et al (2016) Effect of the medicinal Agaricus blazei Murill-based mushroom extract, AndoSan™, on symptoms, fatigue and quality of life in patients with Crohn’s disease in a randomized single-blinded placebo controlled study. PLoS One 11(7):e0159288.  https://doi.org/10.1371/journal.pone.0159288 CrossRefPubMedPubMedCentralGoogle Scholar
  492. Thongbai B, Rapior S, Hyde KD et al (2015) Hericium erinaceus, an amazing medicinal mushroom. Mycol Prog 14:91.  https://doi.org/10.1007/s11557-015-1105-4 CrossRefGoogle Scholar
  493. Thongklang N, Hoang E, Rodriguez Estrada AE et al (2014) Evidence for amphithallism and broad geographical hybridization potential among Agaricus subrufescens isolates from Brazil, France, and Thailand. Fungal Biol 118(12):1013–1023.  https://doi.org/10.1016/j.funbio.2014.10.004 CrossRefPubMedGoogle Scholar
  494. Thongklang N, Chen J, Bandara AR et al (2016) Studies on Agaricus subtilipes, a new cultivatable species from Thailand, incidentally reveal the presence of Agaricus subrufescens in Africa. Mycoscience:239–250.  https://doi.org/10.1016/j.myc.2016.02.003 Google Scholar
  495. Thongklang N, Thongbai B, Chamyuang S et al (2017) Blazeispirol A, a chemotaxonomic marker from mycelia of the medicinal mushroom Agaricus subrufescens. Chiang Mai J Sci 44(2):298–308Google Scholar
  496. Tohtahon Z, Xue J, Han J et al (2017) Cytotoxic lanostane triterpenoids from the fruiting bodies of Piptoporus betulinus. Phytochem 143:98–103.  https://doi.org/10.1016/j.phytochem.2017.07.013 CrossRefGoogle Scholar
  497. Tsai MY, Hung YC, Chen YH et al (2016) A preliminary randomised controlled study of short-term Antrodia cinnamomea treatment combined with chemotherapy for patients with advanced cancer. BMC Complement Altern Med 16(1):322.  https://doi.org/10.1186/s12906-016-1312-9 CrossRefPubMedPubMedCentralGoogle Scholar
  498. Tsuk S, Lev YH, Rotstein A et al (2018) Effects of a commercial supplement of Ophiocordyceps sinensis and Ganoderma lucidum on physiological responses to maximal exercise in healthy young participants. Int J Med Mushrooms 20(4):359–367.  https://doi.org/10.1615/IntJMedMushrooms.2018025989 CrossRefPubMedGoogle Scholar
  499. Twardowski P, Kanaya N, Frankel P et al (2015) A phase 1 trial of mushroom powder in patients with biochemically recurrent prostate cancer: roles of cytokines and myeloid-derived suppressor cells for Agaricus bisporus-induced prostate-specific antigen responses. Cancer 121:2949–2950.  https://doi.org/10.1002/cncr.29421 CrossRefGoogle Scholar
  500. Tylš F, Páleníček T, Horáček J (2014) Psilocybin – summary of knowledge and new perspectives. Eur Neuropsychopharmacol 24:342–356.  https://doi.org/10.1016/j.euroneuro.2013.12.006 CrossRefPubMedGoogle Scholar
  501. Uzunov BA, Stoyneva-Gärtner MP (2015) Mushrooms and lichens in Bulgarian ethnomycology. J Mycol 2015:361053.:7 p.  https://doi.org/10.1155/2015/361053 CrossRefGoogle Scholar
  502. Valverde ME, Hernández-Pérez T, Paredes-López O (2015) Edible mushrooms: improving human health and promoting quality life. Intern J Microbiol 2015:376387.):14 p.  https://doi.org/10.1155/2015/376387 CrossRefGoogle Scholar
  503. Vasdekis EP, Karkabounas A, Giannakopoulos I (2018) Screening of mushrooms bioactivity: Piceatannol was identified as a bioactive ingredient in the order Cantharellales. Eur Food Res Technol 244:861–871.  https://doi.org/10.1007/s00217-017-3007-y CrossRefGoogle Scholar
  504. Venkatachalapathi A, Paulsamy S (2016) Exploration of wild medicinal mushroom species in Walayar valley, the southern Western Ghats of Coimbatore District Tamil Nadu. Mycosphere 7(2):118–130.  https://doi.org/10.5943/mycosphere/7/2/3 CrossRefGoogle Scholar
  505. Venturella G, Zervakis GI, Polemis E et al (2016) Taxonomic identity, geographic distribution, and commercial exploitation of the culinary-medicinal mushroom Pleurotus nebrodensis (Basidiomycetes). Int J Med Mushrooms 18(1):59–65.  https://doi.org/10.1615/IntJMedMushrooms.v18.i1.70 CrossRefPubMedGoogle Scholar
  506. Vetvicka V, Vetvickova J (2015) Glucan supplementation enhances the immune response against an influenza challenge in mice. Ann Transl Med 3(2):22.  https://doi.org/10.3978/j.issn.2305-5839.2015.01.08 CrossRefPubMedPubMedCentralGoogle Scholar
  507. Vitak T, Yurkiv B, Wasser S et al (2017) Effect of medicinal mushrooms on blood cells under conditions of diabetes mellitus. World J Diabetes 8(5):187–201.  https://doi.org/10.4239/wjd.v8.i5.187 CrossRefPubMedPubMedCentralGoogle Scholar
  508. Volman JJ, Mensink RP, van Griensven LJLD et al (2010) Effects of alpha-glucans from Agaricus bisporus on ex vivo cytokine production by LPS and PHA-stimulated PBMCs; a placebo-controlled study in slightly hypercholesterolemic subjects. Eur J Clin Nutr 64(7):720–726.  https://doi.org/10.1038/ejcn.2010.32 CrossRefPubMedGoogle Scholar
  509. Waithaka PN, Gathuru EM, Githaiga BM et al (2017) Antimicrobial activity of mushroom (Agaricus bisporus) and fungal (Trametes gibbosa) extracts from mushrooms and fungi of Egerton Main campus, Njoro Kenya. J Biomed Sci 6(3):20.  https://doi.org/10.4172/2254-609X.100064 CrossRefGoogle Scholar
  510. Wang XL, Yao YJ (2011) Host insect species of Ophiocordyceps sinensis: a review. ZooKeys 127:43–59.  https://doi.org/10.3897/zookeys.127.802 CrossRefGoogle Scholar
  511. Wang J, Liu YM, Cao W et al (2012) Anti-inflammation and antioxidant effect of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis, in middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Metab Brain Dis 27(2):159–165.  https://doi.org/10.1007/s11011-012-9282-1 CrossRefPubMedGoogle Scholar
  512. Wang H, Fu Z, Han C (2013) The medicinal values of culinary-medicinal royal sun mushroom (Agaricus blazei Murrill). Evid Based Complement Alternat Med 2013:842619.:6 p.  https://doi.org/10.1155/2013/842619 CrossRefPubMedPubMedCentralGoogle Scholar
  513. Wang K, Bao L, Ma K et al (2015a) Eight new alkaloids with PTP1B and α-glucosidase inhibitory activities from the medicinal mushroom Hericium erinaceus. Tetrahedron 71:9557–9563.  https://doi.org/10.1016/j.tet.2015.10.0.68 CrossRefGoogle Scholar
  514. Wang K, Bao L, Xiong W et al (2015b) Lanostane triterpenes from the Tibetan medicinal mushroom Ganoderma leucocontextum and their inhibitory effects on HMG-CoA reductase and α-glucosidase. J Nat Prod 78:1977–1989.  https://doi.org/10.1021/acs.jnatprod.5b00331 CrossRefPubMedGoogle Scholar
  515. Wang XL, Ding ZY, Zhao Y et al (2017a) Efficient accumulation and in vitro antitumor activities of triterpene acids from submerged batch-cultured Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes). Int J Med Mushrooms 19(5):419–431.  https://doi.org/10.1615/IntJMedMushrooms.v19.i5.40 CrossRefPubMedGoogle Scholar
  516. Wang Q, Wang F, Xu Z, Ding Z (2017b) Bioactive mushroom polysaccharides: a review on monosaccharide composition, biosynthesis and regulation. Molecules 22:955.  https://doi.org/10.3390/molecules22060955 CrossRefPubMedCentralGoogle Scholar
  517. Wang Y, Tian Y, Shao J et al (2018) Macrophage immunomodulatory activity of the polysaccharide isolated from Collybia radicata mushroom. Int J Biol Macromol 108:300–306.  https://doi.org/10.1016/j.ijbiomac.2017.12.025 CrossRefPubMedGoogle Scholar
  518. Wasser SP (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60:258–274.  https://doi.org/10.1007/s00253-002-1076-7 CrossRefGoogle Scholar
  519. Wasser SP (2010) Medicinal mushroom science: history, current status, future trends, and unsolved problems. Int J Med Mushrooms 12(1):1–16.  https://doi.org/10.1615/IntJMedMushr.v12.i1.10 CrossRefGoogle Scholar
  520. Wasser SP (2011) Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl Microbiol Biotechnol 89:1323–1332.  https://doi.org/10.1007/s00253-010-3067-4 CrossRefPubMedGoogle Scholar
  521. Wasser SP (2014) Medicinal mushroom science: current perspectives, advances, evidences, and challenges. Biom J 37(6):345–356.  https://doi.org/10.4103/2319-4170.138318 CrossRefGoogle Scholar
  522. Wasser SP (2017) Medicinal mushrooms in human clinical studies. Part I. Anticancer, oncoimmunological, and immunomodulatory activities: a review. Int J Med Mushrooms 19(4):279–317.  https://doi.org/10.1615/IntJMedMushrooms.v19.i4.10 CrossRefPubMedGoogle Scholar
  523. Wasser SP, Didukh MY (2005) Mushroom polysaccharides in human health care. In: Deshmukh SK, Rai MK (eds) Biodiversity of fungi: their role in human life. Oxford & IBH Publishing, pp 289–328Google Scholar
  524. Wasser SP, Weis AL (1999) Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol 19:65–96.  https://doi.org/10.1615/CritRevImmunol.v19.i1.30 CrossRefPubMedPubMedCentralGoogle Scholar
  525. Wasser SP, Nevo E, Sokolov D et al (2000) Dietary supplements from medicinal mushrooms: diversity of types and variety of regulations. Int J Med Mushrooms 2:1–19.  https://doi.org/10.1615/IntJMedMushr.v2.i1.10 CrossRefGoogle Scholar
  526. Welti S, Moreau PA, Azaroual N et al (2010) Antiproliferative activities of methanolic extracts from a neotropical Ganoderma species (Aphyllophoromycetideae): identification and characterization of a novel ganoderic acid. Int J Med Mushrooms 12(1):17–31.  https://doi.org/10.1615/IntJMedMushr.v12.i1.20 CrossRefGoogle Scholar
  527. Welti S, Moreau PA, Decock C et al (2015) Oxygenated lanostane-type triterpenes profiling in laccate Ganoderma chemotaxonomy. Mycol Prog 14:45.  https://doi.org/10.1007/s11557-015-1066-7 CrossRefGoogle Scholar
  528. Wesa KM, Cunningham-Rundles S, Klimek VM et al (2015) Maitake mushroom extract in myeolodysplastic syndromes (MDS): a phase II study. Cancer Immunol Immunother 64(2):237–247.  https://doi.org/10.1007/s00262-014-1628-6 CrossRefPubMedGoogle Scholar
  529. Wisitrassameewong K, Karunarathna SC, Thongklang N et al (2012) Agaricus subrufescens: a review. Saudi J Biol Sci 19:131–146.  https://doi.org/10.1016/j.sjbs.2012.01.003 CrossRefPubMedPubMedCentralGoogle Scholar
  530. Wittstein K, Rascher M, Rupcic Z et al (2016) Corallocins A–C, nerve growth and brain-derived neurotrophic factor inducing metabolites from the mushroom Hericium coralloides. J Nat Prod 79:2264–2269.  https://doi.org/10.1021/acs.jnatprod.6b00371 CrossRefPubMedGoogle Scholar
  531. Wong KH, Ng CC, Kanagasabapathy G et al (2017) An overview of culinary and medicinal mushrooms in neurodegeneration and neurotrauma research. Int J Med Mushrooms 19(3):191–202.  https://doi.org/10.1615/IntJMedMushrooms.v19.i3.10 CrossRefPubMedGoogle Scholar
  532. Wu Y, Choi MH, Li J et al (2016) Mushroom cosmetics: the present and future. Cosmetics 3:22.  https://doi.org/10.3390/cosmetics3030022 CrossRefGoogle Scholar
  533. Xiao Y, Huang XZ, Zhu JS (2004) Randomized double-blind placebo-controlled clinical trial and assessment of fermentation product of Cordyceps sinensis (Cs-4) in enhancing aerobic capacity and respiratory function of the healthy elderly volunteers. CJLM 10(3):187–192Google Scholar
  534. Xu X, Yan H, Chen J et al (2011) Bioactive proteins from mushrooms. Biotechnol Adv 29(6):667–674.  https://doi.org/10.1016/j.biotechadv.2011.05.003 CrossRefGoogle Scholar
  535. Xu H, Kong YY, Chen X et al (2016a) Recombinant FIP-gat, a fungal immunomodulatory protein from Ganoderma atrum, induces growth inhibition and cell death in breast cancer cells. J Agric Food Chem 64:2690–2698.  https://doi.org/10.1021/acs.jafc.6b00539 CrossRefPubMedGoogle Scholar
  536. Xu J, Huang Y, Chen XX et al (2016b) The mechanisms of pharmacological activities of Ophiocordyceps sinensis fungi. Phytother Res 30:1572–1583.  https://doi.org/10.1002/ptr.5673 CrossRefPubMedGoogle Scholar
  537. Yamac M, Kanbak G, Zeytinoglu M et al (2010) Pancreas protective effect of button mushroom Agaricus bisporus (J.E. Lange) Imbach (Agaricomycetidae) extract on rats with Streptozotocin-induced diabetes. Int J Med Mushrooms 12(4):379–389.  https://doi.org/10.1615/IntJMedMushr.v12.i4.50 CrossRefGoogle Scholar
  538. Yamac M, Zeytinoglu M, Swenturk H et al (2016) Effects of black hoof medicinal mushroom, Phellinus linteus (Agaricomycetes), polysaccharide extract in streptozotocin-induced diabetic rats. Int J Med Mushrooms 18(4):301–311.  https://doi.org/10.1615/IntJMedMushrooms.v18.i4.30 CrossRefPubMedGoogle Scholar
  539. Yang H, Hwang I, Kim S et al (2013) Lentinus edodes promotes fat removal in hypercholesteremic mice. Exp Ther Med 6(6):1409–1413.  https://doi.org/10.3892/etm.2013.1333 PubMedPubMedCentralGoogle Scholar
  540. Yang YL, Tao QQ, Han JJ et al (2017) Recent advance on bioactive compounds from the edible and medicinal fungi in China. In: Agrawal DC, Tsay HS, Shyur LF, Wu YC, Wang SY (eds) Medicinal plants and fungi: recent advances in research and development, Medicinal and aromatic plants of the world, vol 4. Springer, New York, pp 253–313.  https://doi.org/10.1007/978-981-10-5978-0_9 CrossRefGoogle Scholar
  541. Yang H, Sun W, Zhang J et al (2018) Autophagy inhibition enhances SPCA-1 cell proliferation inhibition induced by By-1 from the stout camphor medicinal mushroom, Taiwanofungus camphoratus (Agaricomycetes). Int J Med Mushrooms 20(4):321–335.  https://doi.org/10.1615/IntJMedMushrooms.2018025836 CrossRefPubMedGoogle Scholar
  542. Yao HM, Wang G, Liu YP et al (2016) Phenolic acids isolated from the fungus Schizophyllum commune exerts analgesic activity by inhibiting voltage-gated sodium channels. Chin J Nat Med 14(9):661–670.  https://doi.org/10.1016/S1875-5364(16)30078-4 CrossRefPubMedGoogle Scholar
  543. Yap HY, Chooi YH, Firdaus-Raih M et al (2014) The genome of the tiger milk mushroom, Lignosus rhinocerotis, provides insights into the genetic basis of its medicinal properties. BMC Genomics 15:635.  https://doi.org/10.1186/1471-2164-15-635 CrossRefPubMedPubMedCentralGoogle Scholar
  544. Yap HY, Fung SY, Ng ST et al (2015) Genome-based proteomic analysis of Lignosus rhinocerotis (Cooke) Ryvarden sclerotium. Int J Med Sci 12:23–31.  https://doi.org/10.7150/ijms.10019 CrossRefPubMedPubMedCentralGoogle Scholar
  545. Yen MT, Tseng YH, Lee CE et al (2015) Quality of singhtake supplemented bun. Am J Adv Food Sci Technol 3(1):1–13.  https://doi.org/10.7726/ajafst.2015.1001 CrossRefGoogle Scholar
  546. Yen MT, Chang YH, Huang SJ et al (2018) Extraction of ergothioneine from Pleurotus eryngii and P. citrinopileatus (Agaricomycetes) and preparation of its product. Int J Med Mushrooms 20(4):381–392.  https://doi.org/10.1615/IntJMedMushrooms.2018025953 CrossRefPubMedGoogle Scholar
  547. Yoon TJ, Koppula S, Lee KH (2013) The effects of β-glucans on cancer metastasis. Anti Cancer Agents Med Chem 13(5):699–708.  https://doi.org/10.2174/1871520611313050004 CrossRefGoogle Scholar
  548. Yuan B, Zhao L, Yang W et al (2017) Enrichment of bread with nutraceutical-rich mushrooms: impact of Auricularia auricula (mushroom) flour upon quality attributes of wheat dough and bread. J Food Sci 82(9):2041–2050.  https://doi.org/10.1111/1750-3841.13812 CrossRefPubMedGoogle Scholar
  549. Yuyama KT, Fortkamp D, Abraham WR (2017a) Eremophilane-type sesquiterpenes from fungi and their medicinal potential. Biol Chem 399(1):13–−28.  https://doi.org/10.1515/hsz-2017-0171 CrossRefPubMedGoogle Scholar
  550. Yuyama KT, Chepkirui C, Wendt L et al (2017b) Bioactive compounds produced by Hypoxylon fragiforme against Staphylococcus aureus biofilms. Microorganisms 5(80).  https://doi.org/10.3390/microorganisms5040080 PubMedCentralGoogle Scholar
  551. Zeng P, Guo Z, Zeng X et al (2018) Chemical, biochemical, preclinical and clinical studies of Ganoderma lucidum polysaccharide as an approved drug for treating myopathy and other diseases in China. J Cell Mol Med:1–20.  https://doi.org/10.1111/jcmm.13613 PubMedPubMedCentralGoogle Scholar
  552. Zhang M, Cui SW, Cheung PCK et al (2007) Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci Technol 18:4–19.  https://doi.org/10.1016/j.tifs.2006.07.013 CrossRefGoogle Scholar
  553. Zhang M, Huang J, Xie X et al (2009) Dietary intakes of mushrooms and green tea combine to reduce the risk of breast cancer in Chinese women. Int J Cancer 124(6):1404–1408.  https://doi.org/10.1002/ijc.24047 PubMedGoogle Scholar
  554. Zhang C, Li S, Zhang J et al (2016) Antioxidant and hepatoprotective activities of intracellular polysaccharide from Pleurotus eryngii SI-04. Int J Biol Macromol 91:568–577.  https://doi.org/10.1016/j.ijbiomac.2016.05.104 CrossRefPubMedGoogle Scholar
  555. Zhang Y, Liu W, Xu C et al (2017) Characterization and antiproliferative effect of novel acid polysaccharides from the spent substrate of shiitake culinary-medicinal mushroom Lentinus edodes (Agaricomycetes) cultivation. Int J Med Mushrooms 19(5):395–403.  https://doi.org/10.1615/IntJMedMushrooms.v19.i5.20 CrossRefPubMedGoogle Scholar
  556. Zhang SB, Li ZH, Stadler M et al (2018) Lanostane triterpenoids from Tricholoma pardinum with NO production inhibitory and cytotoxic activities. Phytochem 152:105–112.  https://doi.org/10.1016/j.phytochem.2018.05.002 CrossRefGoogle Scholar
  557. Zhao XR, Huo XK, Dong PP et al (2015) Inhibitory effects of highly oxygenated lanostane derivatives from the fungus Ganoderma lucidum on P-glycoprotein and α-glucosidase. J Nat Prod 78:1868–1876.  https://doi.org/10.1021/acs.jnatprod.5b00132 CrossRefPubMedGoogle Scholar
  558. Zhao ZZ, Chen HP, Huang Y et al (2016) Lanostane triterpenoids from fruiting bodies of Ganoderma leucocontextum. Nat Prod Bioprospect 6:103–109.  https://doi.org/10.1007/s13659-016-0089-3 CrossRefPubMedPubMedCentralGoogle Scholar
  559. Zhao J, Yang Y, Yu M et al (2018) Lanostane-type triterpenoid derivatives from the fruiting bodies of cultivated Fomitopsis palustris. Phytochem 152:10–21.  https://doi.org/10.1016/j.phytochem.2018.04.012 CrossRefGoogle Scholar
  560. Zhou LW, Cao Y, Wu SH et al (2015) Global diversity of the Ganoderma lucidum complex (Ganodermataceae, Polyporales) inferred from morphology and multilocus phylogeny. Phytochem 114:7–15.  https://doi.org/10.1016/j.phytochem.2014.09.023 CrossRefGoogle Scholar
  561. Zhu F, Dua B, Bian Z et al (2015) Beta-glucans from edible and medicinal mushrooms: characteristics, physicochemical and biological activities. J Food Compos Anal 41:165–173.  https://doi.org/10.1016/j.jfca.2015.01.019 CrossRefGoogle Scholar
  562. Zjawiony JK (2004) Biologically active compounds from Aphyllophorales (polypore) fungi. J Nat Prod 67(2):300–310.  https://doi.org/10.1021/np030372w CrossRefPubMedGoogle Scholar
  563. Zmitrovich IV, Belova NV, Balandaykin ME, Bondartseva MA, Wasser SP (2019) Cancer without pharmacological illusions and a niche for Mycotherapy (review). Int J Med Mushrooms 21(2):105–119.  https://doi.org/10.1615/IntJMedMushrooms.2019030047 PubMedGoogle Scholar
  564. Zong A, Cao H, Wang F (2012) Anticancer polysaccharides from natural resources: a review of recent research. Carbohydr Polym 90:1395–1410.  https://doi.org/10.1016/j.carbpol.2012.07.026 CrossRefPubMedGoogle Scholar
  565. Zotti M, Persiani AM, Ambrosio E et al (2013) Macrofungi as ecosystem resources: conservation versus exploitation. Plant Biosyst 147(1):219–225.  https://doi.org/10.1080/11263504.2012.753133 CrossRefGoogle Scholar
  566. Zuomin Y, Puming H, Jianhui C et al (1998) Hyperglycemic effect of water-soluble polysaccharide from Auricularia auricularia-judae Quél. on genetic diabetic KK-Ay mice. Biosci Biotechnol Biochem 62:1898–1903.  https://doi.org/10.1271/bbb.62.1898 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Susanna M. Badalyan
    • 1
    Email author
  • Anush Barkhudaryan
    • 2
  • Sylvie Rapior
    • 3
  1. 1.Laboratory of Fungal Biology and Biotechnology, Institute of Pharmacy, Department of BiomedicineYerevan State UniversityYerevanArmenia
  2. 2.Department of Cardiology, Clinic of General and Invasive Cardiology, University Clinical Hospital No 1Yerevan State Medical UniversityYerevanArmenia
  3. 3.Laboratoire de Botanique, Phytochimie et Mycologie, Faculté de PharmacieCEFE CNRS – Université de Montpellier – Université Paul-Valéry Montpellier – EPHE – IRDMontpellier Cedex 5France

Personalised recommendations