Skip to main content

Advances of Mammalian Reproduction and Embryonic Development Under Microgravity

  • Chapter
  • First Online:
Life Science in Space: Experiments on Board the SJ-10 Recoverable Satellite

Part of the book series: Research for Development ((REDE))

Abstract

The development of life beyond the earth is a dream of human being. Human long duration orbital spaceflight, exploration of Mars and other new space frontiers, colonization of the Moon will require understanding of fundamental of embryogenesis and reproductive function in space environment. It is therefore important to study the effect of microgravity environment on the reproductive system of mammals and to determine whether embryos can develop normally in without gravitational cue. It is important to look at the entire process of fertilization, the cleavage of pre-implantation embryos and blastocyst lineage formation under microgravity in space. It is important to investigate the potential mechanisms and at which point the effected stages regulate back to producing normal embryos. This chapter reviews both others and our lab’s research progress about the reproductive science and the mammalian early developmental outcomes under simulated microgravity on earth and real microgravity in space. In addition, we describe the latest experimental results of development of mouse pre-implantation embryos from China’s SJ-10 recoverable microgravity experimental satellite (SJ-10 satellite). Finally, this chapter conclude with perspectives of necessary space research in the area of embryonic development and mammalian reproduction in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Amotl2:

Angiomotin-like 2

bp:

Blastopore

EPI:

Epiblast

FAs:

Focal adhesions

HARV:

High Aspect Ratio Vessel

ICM:

Inner cell mass

IF:

Intermediate filaments

MF:

Microfilaments

miRNA:

MicroRNAs

MT:

Microtubules

NRB:

Natural radiation background

PrE:

Primitive endoderm

PKC:

Protein kinase C

RCCS:

Rotating Cell Culture System

SJ-10 satellite:

SJ-10 recoverable microgravity experimental satellite

TE:

Trophectoderm

3D:

Three-dimensional

UV:

Ultraviolet

References

  • Abramczuk J, Sawicki W (1975) Pronuclear synthesis of DNA in fertilized and parthenogenetically activated mouse eggs. Exp Cell Res 92:361–371

    CAS  PubMed  Google Scholar 

  • Aimar C, Bautz A, Durand D et al (2000) Microgravity and hypergravity effects on fertilization of the salamander Pleurodeles waltl (urodele amphibian). Biol Reprod 63:551–558

    CAS  PubMed  Google Scholar 

  • Alarcon VB (2010) Cell polarity regulator PARD6B is essential for trophectoderm formation in the preimplantation mouse embryo. Biol Reprod 83:347–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Antipov VV, Delone NL, Parfyonov GP et al (1965) Results of biological experiments carried out under conditions of “Vostok” flights with the participation of cosmonauts A.G. Nikolajev, P.R. Popovich and V.F. Bykovsky. Life Sci Space Res 3:215–229

    CAS  PubMed  Google Scholar 

  • Barton SC, Arney KL, Shi W et al (2001) Genome-wide methylation patterns in normal and uniparental early mouse embryos. Hum Mol Genet 10:2983–2987

    CAS  PubMed  Google Scholar 

  • Bedzhov I, Graham SJ, Leung CY et al (2014) Developmental plasticity, cell fate specification and morphogenesis in the early mouse embryo. Philos Trans R Soc Lond B Biol Sci 369

    Google Scholar 

  • Bellairs R (1994) Experiments on embryos in space: an overview. Adv Space Res 14:179–187

    CAS  PubMed  Google Scholar 

  • Burden HW, Zary J, Lawrence IE et al (1997) Effects of space flight on ovarian-hypophyseal function in postpartum rats. J Reprod Fertil 109:193–197

    CAS  PubMed  Google Scholar 

  • Calarco PG (1991) Fertilization of the mouse oocyte. J Electron Microsc Tech 17:401–411

    CAS  PubMed  Google Scholar 

  • Cao YJ, Fan XJ, Shen Z et al (2007) Nitric oxide affects preimplantation embryonic development in a rotating wall vessel bioreactor simulating microgravity. Cell Biol Int 31:24–29

    CAS  PubMed  Google Scholar 

  • Chazaud C, Yamanaka Y (2016) Lineage specification in the mouse preimplantation embryo. Development 143:1063–1074

    CAS  PubMed  Google Scholar 

  • Chen L, Wang D, Wu Z et al (2010) Molecular basis of the first cell fate determination in mouse embryogenesis. Cell Res 20:982–993

    CAS  PubMed  Google Scholar 

  • Chen Z, Luo Q, Lin C et al (2016) Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation. Sci Rep 6:30322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chung Y, Klimanskaya I, Becker S et al (2006) Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature 439:216–219

    CAS  PubMed  Google Scholar 

  • Cockburn K, Rossant J (2010) Making the blastocyst: lessons from the mouse. J Clin Invest 120:995–1003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corydon TJ, Kopp S, Wehland M et al (2016a) Alterations of the cytoskeleton in human cells in space proved by life-cell imaging. Sci Rep 6:20043

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corydon TJ, Mann V, Slumstrup L et al (2016b) Reduced expression of cytoskeletal and extracellular matrix genes in human adult retinal pigment epithelium cells exposed to simulated microgravity. Cell Physiol Biochem 40:1–17

    CAS  PubMed  Google Scholar 

  • Coticchio G, Dal Canto M, Mignini RM et al (2015) Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum Reprod Update 21:427–454

    CAS  PubMed  Google Scholar 

  • Courtine G, Pozzo T (2004) Recovery of the locomotor function after prolonged microgravity exposure. I. Head-trunk movement and locomotor equilibrium during various tasks. Exp Brain Res 158:86–99

    PubMed  Google Scholar 

  • Crawford-Young SJ (2006) Effects of microgravity on cell cytoskeleton and embryogenesis. Int J Dev Biol 50:183–191

    PubMed  Google Scholar 

  • Dey SK, Lim H, Das SK et al (2004) Molecular cues to implantation. Endocr Rev 25:341–373

    CAS  PubMed  Google Scholar 

  • Doherty AS, Mann MR, Tremblay KD et al (2000) Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod 62:1526–1535

    CAS  PubMed  Google Scholar 

  • Eibs HG, Spielmann H (1977) Differential sensitivity of preimplantation mouse embryos to UV irradiation in vitro and evidence for post replication repair. Radiat Res 71:367–376

    CAS  PubMed  Google Scholar 

  • Elinson RP, Pasceri P (1989) Two UV-sensitive targets in dorsoanterior specification of frog embryos. Development 106:511–518

    CAS  PubMed  Google Scholar 

  • Ferlazzo ML, Foray N (2017) Space radiobiology needs realistic hypotheses and relevant methodology. Proc Natl Acad Sci USA 114:E6733

    CAS  PubMed  Google Scholar 

  • Fierro-Gonzalez JC, White MD, Silva JC et al (2013) Cadherin-dependent filopodia control preimplantation embryo compaction. Nat Cell Biol 15:1424–1433

    CAS  PubMed  Google Scholar 

  • Fleming TP, Kwong WY, Porter R et al (2004) The embryo and its future. Biol Reprod 71:1046–1054

    CAS  PubMed  Google Scholar 

  • Frum T, Ralston A (2015) Cell signaling and transcription factors regulating cell fate during formation of the mouse blastocyst. Trends Genet 31:402–410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaboyard S, Blanchard MP, Travo C et al (2002) Weightlessness affects cytoskeleton of rat utricular hair cells during maturation in vitro. NeuroReport 13:2139–2142

    PubMed  Google Scholar 

  • Gardner RL (2002) Experimental analysis of second cleavage in the mouse. Hum Reprod 17:3178–3189

    CAS  PubMed  Google Scholar 

  • Gardner DK, Lane M (2005) Ex vivo early embryo development and effects on gene expression and imprinting. Reprod Fert Develop 17:361–370

    Google Scholar 

  • Gardner DK, Hamilton R, McCallie B et al (2013) Human and mouse embryonic development, metabolism and gene expression are altered by an ammonium gradient in vitro. Reproduction 146:49–61

    CAS  PubMed  Google Scholar 

  • Gazenko OG (1988) Ontogenesis of mammals in microgravity. Nauka Publishers, Moscow

    Google Scholar 

  • Gualandris-Parisot L, Husson D, Bautz A et al (2002) Effects of space environment on embryonic growth up to hatching of salamander eggs fertilized and developed during orbital flights. Uchu Seibutsu Kagaku 16:3–11

    PubMed  Google Scholar 

  • Guo G, Huss M, Tong GQ et al (2010) Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell 18:675–685

    CAS  PubMed  Google Scholar 

  • Heyer BS, MacAuley A, Behrendtsen O et al (2000) Hypersensitivity to DNA damage leads to increased apoptosis during early mouse development. Gene Dev 14:2072–2084

    CAS  PubMed  Google Scholar 

  • Hirate Y, Hirahara S, Inoue K et al (2013) Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr Biol 23:1181–1194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horneck G (1999) Impact of microgravity on radiobiological processes and efficiency of DNA repair. Mutat Res-Fund Mol M 430:221–228

    CAS  Google Scholar 

  • Hughes-Fulford M, Lewis ML (1996) Effects of microgravity on osteoblast growth activation. Exp Cell Res 224:103–109

    CAS  PubMed  Google Scholar 

  • Ijiri K (1998) Development of space-fertilized eggs and formation of primordial germ cells in the embryos of Medaka fish. Adv Space Res 21:1155–1158

    CAS  PubMed  Google Scholar 

  • Ikeuchi T, Sasaki S, Umemoto Y et al (2005) Human sperm motility in a microgravity environment. Reprod Med Biol 4:161–168

    PubMed  PubMed Central  Google Scholar 

  • Ingber D (1999) How cells (might) sense microgravity. FASEB J 13(Suppl):S3–S15

    CAS  PubMed  Google Scholar 

  • Ingber DE (2003) Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci 116:1157–1173

    CAS  PubMed  Google Scholar 

  • Itoi F, Tokoro M, Terashita Y et al (2012) Offspring from mouse embryos developed using a simple incubator-free culture system with a deoxidizing agent. PLoS ONE 7:e47512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Janmaleki M, Pachenari M, Seyedpour SM et al (2016) Impact of simulated microgravity on cytoskeleton and viscoelastic properties of endothelial cell. Sci Rep 6(32418)

    Google Scholar 

  • Jung S, Bowers SD, Willarda ST (2009) Simulated microgravity influences bovine oocyte in vitro fertilization and preimplantation embryo development. J Anim Vet Adv 8:1807–1814

    Google Scholar 

  • Kamiya H, Sasaki S, Ikeuchi T et al (2003) Effect of simulated microgravity on testosterone and sperm motility in mice. J Androl 24:885–890

    CAS  PubMed  Google Scholar 

  • Kapitonova MY, Salim N, Othman S et al (2013) Alteration of cell cytoskeleton and functions of cell recovery of normal human osteoblast cells caused by factors associated with real space flight. Malays J Pathol 35:153–163

    CAS  PubMed  Google Scholar 

  • Khang I, Sonn S, Park JH et al (2005) Expression of epithin in mouse preimplantation development: its functional role in compaction. Dev Biol 281:134–144

    CAS  PubMed  Google Scholar 

  • Kojima Y, Sasaki S, Kubota Y et al (2000) Effects of simulated microgravity on mammalian fertilization and preimplantation embryonic development in vitro. Fertil Steril 74:1142–1147

    CAS  PubMed  Google Scholar 

  • Kojima Y, Tam OH, Tam PP (2014) Timing of developmental events in the early mouse embryo. Semin Cell Dev Biol 34:65–75

    CAS  PubMed  Google Scholar 

  • Kuckenberg P, Peitz M, Kubaczka C et al (2011) Lineage conversion of murine extraembryonic trophoblast stem cells to pluripotent stem cells. Mol Cell Biol 31:1748–1756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larue L, Ohsugi M, Hirchenhain J et al (1994) E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci USA 91:8263–8267

    CAS  PubMed  Google Scholar 

  • Lee SH, Dominguez R (2010) Regulation of actin cytoskeleton dynamics in cells. Mol Cells 29:311–325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lei X, Deng Z, Zhang H et al (2014) Rotary suspension culture enhances mesendoderm differentiation of embryonic stem cells through modulation of Wnt/beta-catenin pathway. Stem Cell Rev 10:526–538

    CAS  Google Scholar 

  • Lewis ML, Reynolds JL, Cubano LA et al (1998) Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). FASEB J 12:1007–1018

    CAS  PubMed  Google Scholar 

  • Lin SC, Gou GH, Hsia CW et al (2016) Simulated microgravity disrupts cytoskeleton organization and increases apoptosis of rat neural crest stem cells via upregulating CXCR56 expression and RhoA-ROCK1-p38 MAPK-p53 signaling. Stem Cells Dev 25:1172–1193

    CAS  PubMed  Google Scholar 

  • Liu H, Wu Z, Shi X et al (2013) Atypical PKC, regulated by Rho GTPases and Mek/Erk, phosphorylates Ezrin during eight-cell embryo compaction. Dev Biol 375:13–22

    CAS  PubMed  Google Scholar 

  • Ma B, Cao Y, Zheng W et al (2008) Real-time micrography of mouse preimplantation embryos in an orbit module on SJ-8 satellite. Microgravity Sci Tec 20:127–136

    CAS  Google Scholar 

  • Macho L, Kvetnansky R, Nemeth S et al (1996) Effects of space flight on endocrine system function in experimental animals. Environ Med 40:95–111

    CAS  PubMed  Google Scholar 

  • Macho L, Kvetnansky R, Fickova M et al (2001) Endocrine responses to space flights. J Gravit Physiol 8:P117–P120

    CAS  PubMed  Google Scholar 

  • Mann MR, Lee SS, Doherty AS et al (2004) Selective loss of imprinting in the placenta following preimplantation development in culture. Development 131:3727–3735

    CAS  PubMed  Google Scholar 

  • Mao X, Chen Z, Luo Q et al (2016) Simulated microgravity inhibits the migration of mesenchymal stem cells by remodeling actin cytoskeleton and increasing cell stiffness. Cytotechnology 68:2235–2243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Market VB, Denomme MM, Mann MR (2012) Loss of genomic imprinting in mouse embryos with fast rates of preimplantation development in culture. Biol Reprod 86(143):1–16

    Google Scholar 

  • Meloni MA, Galleri G, Pani G et al (2011) Space flight affects motility and cytoskeletal structures in human monocyte cell line J-111. Cytoskeleton (Hoboken) 68:125–137

    CAS  Google Scholar 

  • Messerschmidt DM, Knowles BB, Solter D (2014) DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 28:812–828

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morris SA, Graham SJ, Jedrusik A et al (2013) The differential response to Fgf signalling in cells internalized at different times influences lineage segregation in preimplantation mouse embryos. Open Biol 3:130104

    PubMed  PubMed Central  Google Scholar 

  • Neganova IE, Sekirina GG, Eichenlaub-Ritter U et al (2000) Surface-expressed E-cadherin, and mitochondrial and microtubule distribution in rescue of mouse embryos from 2-cell block by aggregation. Mol Hum Reprod 6:454–464

    CAS  PubMed  Google Scholar 

  • Nelson GA, Schubert WW, Kazarians GA et al (1994) Development and chromosome mechanics in nematodes: results from IML-1. Adv Space Res 14:209–214

    CAS  PubMed  Google Scholar 

  • Ning L, Lei X, Cao Y et al (2015) Effect of short-term hypergravity treatment on mouse 2-cell embryo development. Microgravity Sci Tec 27:465–471

    Google Scholar 

  • Nishioka N, Yamamoto S, Kiyonari H et al (2008) Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech Dev 125:270–283

    CAS  PubMed  Google Scholar 

  • Niwa H, Toyooka Y, Shimosato D et al (2005) Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123:917–929

    CAS  PubMed  Google Scholar 

  • O’Farrell PH, Stumpff J, Su TT (2004) Embryonic cleavage cycles: how is a mouse like a fly? Curr Biol 14:R35–R45

    PubMed  PubMed Central  Google Scholar 

  • Ogneva IV (2015) Early development under microgravity conditions. Biofizika 60:1024–1035

    CAS  PubMed  Google Scholar 

  • Paoli P, Giannoni E, Chiarugi P (2013) Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta 1833:3481–3498

    CAS  PubMed  Google Scholar 

  • Parfyonov GP, Platonova RN, Tairbekov MG et al (1979) Biological experiments carried out aboard the biological satellite Cosmos-936. Life Sci Space Res 17:297–299

    CAS  PubMed  Google Scholar 

  • Pauken CM, Capco DG (1999) Regulation of cell adhesion during embryonic compaction of mammalian embryos: roles for PKC and beta-catenin. Mol Reprod Dev 54:135–144

    CAS  PubMed  Google Scholar 

  • Peters J (2014) The role of genomic imprinting in biology and disease: an expanding view. Nat Rev Genet 15:517–530

    CAS  PubMed  Google Scholar 

  • Piliszek A, Grabarek JB, Frankenberg SR et al (2016) Cell fate in animal and human blastocysts and the determination of viability. Mol Hum Reprod 22:681–690

    CAS  PubMed  Google Scholar 

  • Plusa B, Frankenberg S, Chalmers A et al (2005) Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. J Cell Sci 118:505–515

    CAS  PubMed  Google Scholar 

  • Puscheck EE, Awonuga AO, Yang Y et al (2015) Molecular biology of the stress response in the early embryo and its stem cells. Adv Exp Med Biol 843:77–128

    CAS  PubMed  Google Scholar 

  • Ralston A, Cox BJ, Nishioka N et al (2010) Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development 137:395–403

    CAS  PubMed  Google Scholar 

  • Rijken PJ, de Groot RP, Kruijer W et al (1992) Identification of specific gravity sensitive signal transduction pathways in human A431 carcinoma cells. Adv Space Res 12:145–152

    CAS  PubMed  Google Scholar 

  • Riwaldt S, Bauer J, Wehland M et al (2016) Pathways regulating spheroid formation of human follicular thyroid cancer cells under simulated microgravity conditions: a genetic approach. Int J Mol Sci 17:528

    PubMed  PubMed Central  Google Scholar 

  • Ronca AE, Fritzsch B, Bruce LL et al (2008) Orbital spaceflight during pregnancy shapes function of mammalian vestibular system. Behav Neurosci 122:224–232

    PubMed  PubMed Central  Google Scholar 

  • Ruden D, Bolnick A, Awonuga A et al (2018) Effects of gravity, microgravity or microgravity simulation on early mammalian development. Stem Cells Dev [Epub ahead of print]

    Google Scholar 

  • Russ AP, Wattler S, Colledge WH et al (2000) Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature 404:95–99

    CAS  PubMed  Google Scholar 

  • Sabo V, Boda K, Majek S et al (1995) The second generation of the incubator hardware for studying avian embryogenesis under microgravity conditions. Acta Astronaut 35:421–426

    CAS  PubMed  Google Scholar 

  • Sasaki S, Ikeuchi T, Kamiya H et al (2004) Male fertility in space. Hinyokika Kiyo 50:559–563

    PubMed  Google Scholar 

  • Schatten H, Chakrabarti A, Taylor M et al (1999) Effects of spaceflight conditions on fertilization and embryogenesis in the sea urchin Lytechinus pictus. Cell Biol Int 23:407–415

    CAS  PubMed  Google Scholar 

  • Schatten H, Lewis ML, Chakrabarti A (2001) Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells. Acta Astronaut 49:399–418

    CAS  PubMed  Google Scholar 

  • Schenker E, Forkheim K (1998) Mammalian mice embryo early development in weightlessness environment on STS 80 space flight. Israel Aerospace Medicine Institute Report

    Google Scholar 

  • Serova LV (1989) Effect of weightlessness on the reproductive system of mammals. Kosm Biol Aviakosm Med 23:11–16

    CAS  PubMed  Google Scholar 

  • Serova LV, Denisova LA (1982) The effect of weightlessness on the reproductive function of mammals. Physiologist 25:S9–S12

    CAS  PubMed  Google Scholar 

  • Shi L, Wu J (2009) Epigenetic regulation in mammalian preimplantation embryo development. Reprod Biol Endocrinol 7:59

    PubMed  PubMed Central  Google Scholar 

  • Shinde V, Brungs S, Henry M et al (2016) Simulated microgravity modulates differentiation processes of embryonic stem cells. Cell Physiol Biochem 38:1483–1499

    CAS  PubMed  Google Scholar 

  • Sikora-Polaczek M, Hupalowska A, Polanski Z et al (2006) The first mitosis of the mouse embryo is prolonged by transitional metaphase arrest. Biol Reprod 74:734–743

    CAS  PubMed  Google Scholar 

  • Souza KA, Black SD, Wassersug RJ (1995) Amphibian development in the virtual absence of gravity. Proc Natl Acad Sci USA 92:1975–1978

    CAS  PubMed  Google Scholar 

  • Stephenson RO, Yamanaka Y, Rossant J (2010) Disorganized epithelial polarity and excess trophectoderm cell fate in preimplantation embryos lacking E-cadherin. Development 137:3383–3391

    CAS  PubMed  Google Scholar 

  • Swain JE (2011) A self-contained culture platform using carbon dioxide produced from a chemical reaction supports mouse blastocyst development in vitro. J Reprod Dev 57:551–555

    CAS  PubMed  Google Scholar 

  • Sytkowski AJ, Davis KL (2001) Erythroid cell growth and differentiation in vitro in the simulated microgravity environment of the NASA rotating wall vessel bioreactor. Vitro Cell Dev Biol Anim 37:79–83

    CAS  Google Scholar 

  • Szczepanska K, Stanczuk L, Maleszewski M (2011) Isolated mouse inner cell mass is unable to reconstruct trophectoderm. Differentiation 82:1–8

    CAS  PubMed  Google Scholar 

  • Tarkowski AK, Wroblewska J (1967) Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage. J Embryol Exp Morphol 18:155–180

    CAS  PubMed  Google Scholar 

  • Tash JS, Bracho GE (1999) Microgravity alters protein phosphorylation changes during initiation of sea urchin sperm motility. FASEB J 13(Suppl):S43–S54

    CAS  PubMed  Google Scholar 

  • Thomas FC, Sheth B, Eckert JJ et al (2004) Contribution of JAM-1 to epithelial differentiation and tight-junction biogenesis in the mouse preimplantation embryo. J Cell Sci 117:5599–5608

    CAS  PubMed  Google Scholar 

  • Van de Velde H, Cauffman G, Tournaye H et al (2008) The four blastomeres of a 4-cell stage human embryo are able to develop individually into blastocysts with inner cell mass and trophectoderm. Hum Reprod 23:1742–1747

    PubMed  Google Scholar 

  • Vassy J, Portet S, Beil M et al (2001) The effect of weightlessness on cytoskeleton architecture and proliferation of human breast cancer cell line MCF-7. FASEB J 15:1104–1106

    CAS  PubMed  Google Scholar 

  • Vorselen D, Roos WH, MacKintosh FC et al (2014) The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells. FASEB J 28:536–547

    CAS  PubMed  Google Scholar 

  • Wakayama S, Kawahara Y, Li C et al (2009) Detrimental effects of microgravity on mouse preimplantation development in vitro. PLoS ONE 4:e6753

    PubMed  PubMed Central  Google Scholar 

  • Wakayama S, Kamada Y, Yamanaka K et al (2017) Healthy offspring from freeze-dried mouse spermatozoa held on the International Space Station for 9 months. Proc Natl Acad Sci USA 114:5988–5993

    CAS  PubMed  Google Scholar 

  • Wale PL, Gardner DK (2016) The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Hum Reprod Update 22:2–22

    CAS  PubMed  Google Scholar 

  • Wang Y, An L, Jiang Y et al (2011) Effects of simulated microgravity on embryonic stem cells. PLOS ONE 6(e2921412)

    Google Scholar 

  • Wang X, Du J, Wang D et al (2016) Effects of simulated microgravity on human brain nervous tissue. Neurosci Lett 627:199–204

    CAS  PubMed  Google Scholar 

  • Whittingham DG (1971) Culture of mouse ova. J Reprod Fertil Suppl 14:7–21

    CAS  PubMed  Google Scholar 

  • Yang X, Smith SL, Tian XC et al (2007) Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat Genet 39:295–302

    CAS  PubMed  Google Scholar 

  • Yokota H, Neff AW, Malacinski GM (1992) Altering the position of the first horizontal cleavage furrow of the amphibian (Xenopus) egg reduces embryonic survival. Int J Dev Biol 36:527–535

    CAS  PubMed  Google Scholar 

  • Zahir N, Weaver VM (2004) Death in the third dimension: apoptosis regulation and tissue architecture. Curr Opin Genet Dev 14:71–80

    CAS  PubMed  Google Scholar 

  • Zernicka-Goetz M, Morris SA, Bruce AW (2009) Making a firm decision: multifaceted regulation of cell fate in the early mouse embryo. Nat Rev Genet 10:467–477

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank National Space Science Center of the CAS and institute of mechanics of CAS for organizing this program. We are grateful to thank the chief scientist of SJ-10 satellite program, Prof. Wenrui Hu for guiding in science and technology. We also thank Dr. Tao Zhang for providing the embryo culture hardware and vibration platform for our study. This research was supported by the National Natural Science Foundation of China Grants (U1738103, 31600683) and the Strategically Guiding Scientific Special Project from the Chinese Academy of Sciences (XDA04020202-20, XDA15014000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enkui Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lei, X., Cao, Y., Zhang, Y., Duan, E. (2019). Advances of Mammalian Reproduction and Embryonic Development Under Microgravity. In: Duan, E., Long, M. (eds) Life Science in Space: Experiments on Board the SJ-10 Recoverable Satellite. Research for Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-6325-2_11

Download citation

Publish with us

Policies and ethics