Carbon Cycles in Forests

  • Trofim C. MaximovEmail author
  • Ayaal P. Maksimov
  • Alexander V. Kononov
  • Ayumi Kotani
  • A. Johannes Dolman
Part of the Ecological Studies book series (ECOLSTUD, volume 236)


This chapter reports the distinctive features of leaf-scale photosynthesis, soil respiration, and net ecosystem exchange (NEE) of CO2, mainly based on long-term (1998–2014) observations in larch forests and their comparison with results obtained for other boreal forests. During the short growing season in eastern Siberia, the growth and development of woody plants are made possible by high levels of physiological processes (photosynthesis and transpiration), with relatively low dark respiration and night respiration rates supporting growth and maintenance. Soil respiration responses to the hydrothermal conditions of the soil layer are dependent on the season and precipitation regime; therefore, observations of the unique daily, seasonal, and interannual variation in these conditions were conducted. Differences in soil respiration between larch forests with different productivities were found to be influenced by soil physical properties, soil biota, length of the frost season, and hydrothermal conditions. According to long-term eddy-correlation data, the annual NEE in medium-productivity larch forest was 212 ± 34 g C m−2 year−1, that in high-productivity larch forest was 243 ± 23 g C m−2 year−1, and that in tundra was 75 ± 14 g C m−2 year−1. The contribution of Siberian forests (east of the Ural Mountains) to this CO2 sink was estimated to be 55–62% of that from all Russian forests. The annual sink of permafrost larch forests in Siberia was almost half that of all Russian forests (55%), and soil emissions were about 27% of those from all Russian forests.


Permafrost Ecosystems Photosynthesis Soil respiration Net ecosystem exchange 


  1. Abaimov AP, Zyryanova OA, Prokushkin SG (2002) Long-term investigations of larch forests in cryolithic zone of Siberia: brief history, recent results and possible changes under global warming. Eurasian J For Res 5(2):95–106Google Scholar
  2. Arneth A, Kelliher FM, Bauer G, Hollinger DY, Byers JN, Hunt JE, McSeveny TM, Ziegler W, Vygodskaya NN, Milukova I, Sogachov A, Varlagin A, Schulze ED (1996) Environmental regulation of xylem sap flow and total conductance of Larix gmelinii trees in eastern Siberia. Tree Physiol 16:247–255. CrossRefGoogle Scholar
  3. Atkin OK, Bloomfield KJ, Reich PB, Tjoelker MG, Asner GP, Bonal D, Bonisch G, Bradford MG, Cernusak LA, Cosio EG, Creek D, Crous KY, Domingues TF, Dukes JS, Egerton JJG, Evans JR, Farquhar GD, Fyllas NM, Gauthier PPG, Gloor E, Gimeno TE, Griffin KL, Guerrieri R, Heskel MA, Huntingford C, Ishida FY, Kattge J, Lambers H, Liddell MJ, Lloyd J, Lusk CH, Martin RE, Maksimov AP, Maximov TC, Malhi Y, Medlyn BE, Meir P, Mercado LM, Mirotchnick N, Niinemets DN, O‘Sullivan OS, Phillips OL, Poorter L, Poot P, Prentice IC, Salinas N, Rowland LM, Ryan MG, Sitch S, Slot M, Smith NG, Turnbull MH, VanderWel MC, Valladares F, Veneklaas EJ, Weerasinghe LK, Wirth C, Wright IJ, Wythers KR, Xiang J, Xiang S, Zaragoza-Castells J (2015) Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol 206(2):614–637. CrossRefPubMedGoogle Scholar
  4. Benecke U, Schulze ED, Matyssek R, Havnarek WM (1981) Environmental control of СО2-assimilation and leaf conductance in Larix decidua Mill. I. A comparison of contrasting natural environments. Oecologia 50:54–61. CrossRefPubMedGoogle Scholar
  5. Bhupinderpal-Singh NA, Lofvenius MO, Högberg MN, Mellander PE, Högberg P (2003) Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant Cell Environ 26:1287–1296CrossRefGoogle Scholar
  6. Bond-Lamberty B, Wang CK, Gower ST (2004) Contribution of root respiration to soil surface CO2 flux in a boreal black spruce chronosequence. Tree Physiol 24:1387–1395CrossRefGoogle Scholar
  7. Bousquet P, Ciais P, Peylin P, Ramonet M, Monfray P (1999) Inverse modelling of annual atmospheric СО2 sources and sinks: 1 method and control inversion. J Geophys Res 104:26161–26178. CrossRefGoogle Scholar
  8. Bykov OD (1983) Sootnosheniye photosynteza I dykhaniya v CO2-gazoobmene na svety u listyev C3-rasteniy v zavisimosti ot temperatury (Relationship between photosynthesis and respiration in light CO2-exchange of C3-plants depending of temperature). Physiologiya rastenii 30:629–636Google Scholar
  9. Chazdon RL (1998) Sunflecks and their importance to forest understory plants. Adv Ecol Res 18:1–63. CrossRefGoogle Scholar
  10. Dang QL, Lieffers VJ, Rothwell RL (1991) A self-contained freezing chamber for tree ecophysiological studies in the field. For Sci 37:924–930Google Scholar
  11. Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190. CrossRefPubMedGoogle Scholar
  12. Dolman AJ, Maximov TC, Moors EJ, Maximov AP, Elbers JA, Kononov AV, Waterloo MJ, van der Molen MK (2004) Net ecosystem exchange of carbon dioxide and water of far eastern Siberian Larch (Larix Dahurica) on permafrost. Biogeosciences 1:275–309. CrossRefGoogle Scholar
  13. Dolman AJ, Shvidenko A, Schepaschenko D, Ciais P, Tchebakova N, Chen T, van der Molen MK, Belelli Marchesini L, Maksyutov S, Schulze ED (2012) An estimate of the terrestrial carbon budget of Russia: an estimate of the terrestrial carbon budget of Russia using inventory based, eddy covariance and inversion methods. Biogeosciences 9:5323–5340. CrossRefGoogle Scholar
  14. Eliasson PE, McMurtrie RE, Pepper DA, Stromgren M, Linder S, Agren GI (2005) The response of heterotrophic CO2 flux to soil warming. Glob Chang Biol 11:167–181CrossRefGoogle Scholar
  15. Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Plata 149:78–90. CrossRefGoogle Scholar
  16. Fedorov AN, Maximov TC, Gavriliev PP (eds) (2006) Spasskaya Pad: kompleksniye issledovaniya landshaphtov (Spasskaya Pad: complex studies of landscapes). PI Publishing House, Yakutsk, p 210Google Scholar
  17. Fujita N, Yanagisawa N, Sugimoto A (1998) Domination of an East-Siberian taiga around Yakutsk by Larix gmelinii, a deciduous conifer, supported by leafing phenology, photosynthetic characteristics and water use efficiency. Activity Rep GAME-Siberia 14:81–84Google Scholar
  18. Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, Jenkins JC, Kohlmaier GH, Kurz WA, Liu S, Nabuurs GJ, Nilsson S, Shvidenko AZ (2002) Forest carbon sinks in the Northern Hemisphere. Ecol Appl 12(3):891–899.[0891:FCSITN]2.0.CO;2 CrossRefGoogle Scholar
  19. Hiyama T, Ohta T, Tanaka H, Fukushima Y (2001) Flux observations in eastern Siberia. In: Proceedings of International workshop for advanced flux network and flux evaluation Sapporo, 2000, p 43–51Google Scholar
  20. Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Lövenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792CrossRefGoogle Scholar
  21. Hollinger DY, Kelliher FM, Schulze ED, Vygodskaya NN, Varlagin A, Milukova I, Byers JN, Sogatchov A, Hunt JE, McSeveny TM, Kobak KI, Bauer G, Arneth A (1995) Initial assessment of multi-scale measures of СО2 and H2O flux in the Siberian taiga. J Biogeogr 22:425–431. CrossRefGoogle Scholar
  22. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, p 1535. Google Scholar
  23. Isaev AS, Korovin GN, Suhikh VI, Titov SP, Utkin AI, Golub AA, Zamolodchikov DG, Pryazhnikov AA (1995) Ecologicheskiye problemy poglosheniya uglekislogo gaza posredstvom lesovosstanovleniya i lesorazvedeniya (Ecological problems of CO2 uptake due to forest reforestation and regeneration). Center for ecological policy, Moscow, p 156Google Scholar
  24. Ivanov LA, Kossovich NL (1932) O rabote assimilyatsionnogo apparata drevesnikh porod. (About activity of assimilation apparatus of woody species). Bot zhurnal 17(1):3–17Google Scholar
  25. Ivanova TI, Kononova NP, Nikolaeva NV, Chevychelov AP (2006) Microjrganizmy v lesnukh pochvakh Cetralnoy Yakutii (Microorganisms in forest soils of Central Yakutia). Pochvovedenie 6:735–740Google Scholar
  26. Kelliher FM, Hollinger DY, Schulze ED, Vygodskaya NN, Byers JN, Hunt JE, McSeveny TM, Milukova I, Sogatchev A, Varlargin A, Ziegler W, Arneth A, Bauer G (1997) Evaporation from an eastern Siberian larch forest. Agric For Meteorol 85:135–147. CrossRefGoogle Scholar
  27. Kelliher FM, Lloyd J, Arneth A, Luhker B, Byers JN, McSeveny TM, Milukova I, Grigoriev S, Panfyorov M, Sogatchev A, Varlargin A, Ziegler W, Bauer G, Wong SC, Schulze ED (1999) Carbon dioxide efflux density from the floor of a central Siberian pine forest. Agric For Meteorol 94:217–232CrossRefGoogle Scholar
  28. Koike T, Mori S, Matsuura Y, Prokushkin SG, Zyranova OA, Kajimoto T, Abaimov AP (1998) Photosynthesis and foliar nutrient dynamics in larch and spruce grown on contrasting north- and south-facing slopes in the Tura Experiment Forest in Central Siberia. In: Mori S et al (eds) Proceedings of the 6th symposium on the joint Siberian permafrost studies between Japan and Russia in 1997, Sapporo, 1998, p 3–10Google Scholar
  29. Koike T, Mori S, Matsuura Y, Prokushkin SG, Zyryanova OA, Kajimoto T, Sasa K, Abaimov AP (1999) Shoot growth and photosynthetic characteristics in larch and spruce affected by temperature of the contrasting north- and south-facing slopes in eastern Siberia. In: Shibuya M et al (eds) Proceedings of the 7th symposium on the joint Siberian permafrost studies between Japan and Russia in 1998, Sapporo, 1999, p 3–12Google Scholar
  30. Koike T, Yazaki K, Funada R, Kitao M, Maruyama Y, Maximov TC, Takahashi K, Ivanov BI (2000) Photosynthetic characteristics of Dahurian larch, Scotch pine and white birch seedlings native to eastern Siberia raised under elevated СО2. Eurasian J For Res 1:31–37Google Scholar
  31. Kononov AV (2006) Emissiya uglekislogo gasa merzlontnymi pochvami listvennichnykh lesov tsentral’noy Yakutii v zavisimosti ot gidrotermicheskikh uslovyi (The carbon dioxide emissions from permafrost soils of larch forests in Central Yakutia depending on hydrothermal conditions). Abstract of Thesis for a Candidate Degree. YakutskGoogle Scholar
  32. Körner C (2003) Slow in, rapid out–carbon flux studies and Kyoto targets. Science 300:1242–1243. CrossRefPubMedGoogle Scholar
  33. Kudeyarov VN, Khakimova FI, Deyeva NF, Ilyina AA, Kuznetsova TV, Timchenko AV (1995) Otsenka dykhaniya pochv v Rossii (An estimation of Russia soil respirations). Pochvovedeniye 1:33–42Google Scholar
  34. Laisk AK (1977) Kinetica photosynteza i photodykhaniya C3 rastenii (Kinetics of photosynthesis and photorespiration of C3-plants). Nauka, Moskva, p 193Google Scholar
  35. Larcher W (1995) Physiological plant ecology: ecophysiology and stress physiology of functional groups, 3rd edn. Springer, Berlin, Heidelberg, p 506CrossRefGoogle Scholar
  36. Malkina IS (1995) СО2 exchange of young larch trees. Lesovedenie 5:59–66 (in Russian)Google Scholar
  37. Matyssek R, Schulze ED (1987) Heterosis in hybrid larch (Larix decidua x leptolepis). I. The role of leaf characteristics. Trees 1:219–224. CrossRefGoogle Scholar
  38. Maximov TC (1989) Ekolo-fiziologicheskiye issledovaniya fotosinteza yachmenya v usloviyakh Yakutii (Ecological physiological studies of barley photosynthesis under conditions of Yakutia). Abstract of Thesis for a Candidate Degree. YakutskGoogle Scholar
  39. Maximov TC (2007) Circulation of carbon in Larch forests of Yakutian sector of cryolithozone. YSC Publishing house, Yakutsk, p 46Google Scholar
  40. Maximov TC, Ivanov BI (2003) The development of international studies of the regional and global carbon cycle in Yakutia permafrost ecosystems. In: The review of conditions and tendencies of climate changes in Yakutia, Yakutsk, p 34–43Google Scholar
  41. Maximov TC, Ivanov BI (2005) Monitoring sostoyatiya merzlotnikh ecosystems: Spasskaya Pad, Yakutsk (The monitoring of permafrost ecosystems condition: Spasskaya Pad, Yakutsk). Sibirsky ecologichesky zhurnal 12(4):777–781Google Scholar
  42. Maximov TC, Ivanov BI, Maximov AP, Kononov AV (1994) Interim report of joint research between FFPRI and YIB “carbon storage and carbon dioxide budget in Forest ecosystem”, Sapporo, p 106Google Scholar
  43. Maximov TC, Kononov AV, Koike T (1995) Photosynthetic activity of woody plants of Yakutia. In: Symposium on joint permafrost studies between Japan and Russia in 1992–1994, p 24–30Google Scholar
  44. Maximov TC, Maximov AP, Kononov AV (1996) Balance of carbon dioxide and water in permafrost ecosystems of Yakutia. In: Proceedings of the third international study conference on GAWEX in Asia and GAME, Cheju, 1996, p 104–111Google Scholar
  45. Maximov TC, Dolman AJ, van der Molen MK, Moors EJ, Ohta T, Sugimoto A, Maximov AP, Kononov AV, Ivanov BI (2004) The regional and global carbon scales of permafrost-dominated forest ecosystems. In: Proceeding of international semi-open work-shop “C/H2O/energy balance and climate over boreal regions with special emphasis on eastern Eurasia”, Yakutsk, 2004, p 91–94Google Scholar
  46. Maximov TC, Dolman AJ, Moors EJ, Ohta T, Sugimoto А, Ivanov BI (2005a) Parametry krugovorotov ugleroda i vody v lesnylh ecosystemakh cryolitozony (Circulation parameters of carbon and water in the forest ecosystems of cryolithozone). Doklady RAN 408(8):684–686Google Scholar
  47. Maximov TC, Maksimov AP, Kononov AV, Dolman AJ, Sugimoto А, Moors EJ, van der Molen МК, Ivanov BI (2005b) Ecologo-physiologichesky osobennosti photosynteza listvenitsy Larix cajanderi v usloviyakh mnogoletney merzloty Yakutii (Ecophysiological paculiarities of Larix cajanderi photosynthesis in Yakutia permafrost condition). Lesovedeniye 6:3–10Google Scholar
  48. Maximov TC, Kononov AV, Petrov KA, Ivanov BI (2010) Structural and functional peculiarities of the plants of Yakutia. In: Troyeva E, Isaev A, Cherosov M, Karpov N (eds) The far north: plant biodiversity and ecology of Yakutia. Springer, Dordrecht, pp 317–354CrossRefGoogle Scholar
  49. Meidner H, Mansfield TA (1968) In: Meidner H, Mansfield TA (eds) Physiology of stomata. McGraw-Hill Book Company, London, 179 pGoogle Scholar
  50. Mokronosov AT (1983) Fotosinteticheskaya funktsiya i tselostnost rastitelnogo organizma (Photosynthetic function and integrity of the plant organism). 42d Timiryazev Readings. Nauka, MoscowGoogle Scholar
  51. Moren AS, Lindroth A (2000) CO2 exchange at the floor of a boreal forest. Agric For Meteorol 101:1–14CrossRefGoogle Scholar
  52. Oberman NG, Shesler IG (2009) Observed and projected changes in permafrost conditions within the European north-east of the Russian Federation. Problemy Severa I Arctiki Rossiiskoy Federacii (Problems and challenges of the North and the Arctic of the Russian Federation) 9:96–106Google Scholar
  53. Pearcy RW (1987) Photosynthetic gas exchange responses of Australian tropical forest trees in canopy, gap and understory micro-environments. Funct Ecol 1:169–178. CrossRefGoogle Scholar
  54. Pearcy RW, Calkin H (1983) Carbon dioxide exchange of C3 and C4 tree species in the understory of a Hawaiian forest. Oecologia 58:26–32. CrossRefPubMedGoogle Scholar
  55. Pearcy RW, Pfitsch WA (1995) The consequences of sunflecks for photosynthesis and growth of forest understory plants. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Heidelberg, pp 343–359CrossRefGoogle Scholar
  56. Prokushkin SG, Masyagina OV, Mori S et al. (2000a). CO2-emission of soil and vegetation cover in larch stands of continuous permafrost area of Central Siberia. In: Inoue G, Takenaka A (eds) Proceedings of the 8th symposium on the joint Siberian permafrost studies between Japan and Russia in 1999. Tsukuba, 2000, p 183–188Google Scholar
  57. Prokushkin SG, Masyagina OV, Mori S et al. (2000b) Peculiarities of permafrost soil respiration in the Middle Siberia. In: Inoue G, Takenaka A (eds) Proceedings of the 8th symposium on the joint Siberian permafrost studies between Japan and Russia in 1999. Tsukuba, 2000, p 189–194Google Scholar
  58. Rödenbeck C, Houweling S, Gloor M, Heimann M (2003) СО2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos Chem Phys Discuss 3:2575–2659. CrossRefGoogle Scholar
  59. Romanovsky VE, Drozdov DS, Oberman NG, Malkova GV, Kholodov AL, Marchenko SS, Moskalenko NG, Sergeev DO, Ukraintseva NG, Abramov AA, Gilichinsky DA, Vasiliev AA (2010) Thermal state of permafrost in Russia. Permafr Periglac Process 21:136–155. CrossRefGoogle Scholar
  60. Röser C, Montagnani L, Schulze ED, Mollicone D, Kolle O, Meroni D, Papale D, Marchesini LB, Frederici S, Valentini R (2002) Net CO2 exchange rates in three different successional stages of the “Dark Taiga” of central Siberia. Tellus 54(5):642–654. CrossRefGoogle Scholar
  61. Saito H, Yamamuro K, Tsuno Y, Iijima H, Shibuya M, Maximov TC, Takahashi K (2003) Spatial variations of light intensity and photosynthetic properties within a Larix gmelinii tree crown in eastern Siberia. In: Fukuda M, Saito H (eds) Proceedings of the 10th symposium on the joint Siberian permafrost studies between Japan and Russia in 2001, Tsukuba, 2001, p 7–14Google Scholar
  62. Sassa T (1993) Nutrient analysis in tree leaves. In: Fukuda M (ed) Proceedings of first symposium on joint Siberian permafrost studies between Japan and Russia in 1992, Sapporo, 1992, p 66Google Scholar
  63. Shcherbatyuk AS, Rusakova LV, Suvorova GG, Yankova LS (1991) Uglekislotny gazoobmen khvoinikh Predbaikalya (Carbon dioxide exchange of Predbaikalya conifers). Nauka, Novosibirsk, p 135Google Scholar
  64. Schimel D, House J, Hibbard K, Bousquet P, Ciais P, Peylin P, Apps M, Baker D, Bondeau A, Brasswell R, Canadell J, Churkina G, Cramer W, Denning S, Field C, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo J, Moore B III, Murdiyarso D, Noble I, Pacala S, Prentice C, Raupach M, Rayner P, Scholes B, Steffen W, Wirth C (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–172. CrossRefPubMedGoogle Scholar
  65. Schulze ED (1972) Die wirkung von licht und temperatur auf den CO2-gaswechsel verschiedener lebensformen aus der krautschicht eines montanen buchenwaldes (The effect of light and temperature of the CO2 exchange of different life forms in the ground vegetation of a montane beech forest). Oecologia 9:223–234CrossRefGoogle Scholar
  66. Schulze ED, Schulze W, Kelliher FM, Vygodskaya NN, Ziegler W, Kobak KI, Koch H, Arneth A, Kusnetsova WA, Sogatchev A, Issajev A, Bauer G, Hollinger DY (1995) Aboveground biomass and nitrogen nutrition in a chronosequence of pristine Dahurian Larix stands in eastern Siberia. Can J For Res 25:943–960. CrossRefGoogle Scholar
  67. Schulze ED, Lloyd J, Kelliher FM, Wirth C, Rebmann C, Lühker B, Mund M, Knohl A, Milyukova I, Schulze W, Ziegler W, Varlagin A, Valentini R, Dore S, Grigoriev S, Kolle O, Vygodskaya NN (1999) Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink – a synthesis. Glob Chang Biol 5:703–722. CrossRefGoogle Scholar
  68. Sherbatyuk AS (1976) Uglekislotnyi rezhim i photosynteticheskaya aktivnost sosnovykh molodnyakov (Carbon dioxide regime and photosynthetic activity of young Pine forests). In: Biophysicheskiye i systemnyie issledovaniya v lesnoy biogeotsenologii. Petrozavodsk, p 112–113Google Scholar
  69. Shibuya M, Tsuno Y, Saito H, Takahashi K, Sawamoto T, Hatano R, Isaev AP, Maximov TC (2001) Chronosequental analysis of aboveground biomass and the carbon and nitrogen contents in natural Larix stands in eastern Siberia. In: Proceedings of the second international workshop on global change: connection to the Arctic. Bulletin of research center for North Eurasia and North Pacific Regions, Hokkaido University 1:5766Google Scholar
  70. Shvidenko A, Nilsson S (1994) What do we know about the Siberian forests. Ambio 23:396–404Google Scholar
  71. Stepanov GN (1976) Vodiy rezhim v usloviyakh Centralnoy Yakutii (Water exchange in Central Yakutia). PhD thesis (Biology), Leningrad, p 26Google Scholar
  72. Sugimoto A, Yanagisawa N, Naito D, Fujita N, Maximov TC (2002) Importance of permafrost as a source of water for plants in east Siberian taiga. Ecol Res 17:493–503. CrossRefGoogle Scholar
  73. Sugimoto A, Naito D, Yanagisawa N, Ichiyanagi K, Kurita N, Kubota J, Kotake T, Ohata T, Maximov TC, Fedorov AN (2003) Characteristics of soil moisture in permafrost observed in East Siberian taiga with stable isotopes of water. Hydrol Process 17:1073–1092. CrossRefGoogle Scholar
  74. Suzuki M, Saito H, Iijima H, Onoe T, Maximov TC, Takahashi K (2003) Photosynthetic and stomatal responses to air vapor deficit within a larch canopy in East Siberia. In: Fukuda M et al (eds) Proceedings of the 10th symposium on the joint Siberian permafrost studies between Japan and Russia in 2001, Tsukuba, 2001, p 15–19Google Scholar
  75. Tabuchi R, Koike T, Maximov TC, Ivanov BI, Takahashi K (1994) Gas exchange measurements on some major tree species in Siberian permafrost region in summer. In: Takahashi K (ed) Carbon storage and carbon dioxide budget in forest ecosystems. Interim report on joint research project between Japan and Russia. Forestry and Forest Products Research Institute, Sapporo, p 47–51Google Scholar
  76. Tselniker YL, Malkina IS, Yakshina AM (1990) Vertikalny gradient dykhaniya stvolv eli, duba I beryozy (Vergical gradient of stem respiration of spruce, oak and birch). Lesovedeniye 4:11–18Google Scholar
  77. Vygodskaya NN, Milyukova I, Varlagin A, Tatarinov F, Sogachev A, Kobak KI, Desyatkin R, Bauer G, Hollinger DY, Kelliher FM, Schulze ED (1997) Leaf conductance and CO2 assimilation of Larix gmelinii growing in an eastern Siberian boreal forest. Tree Physiol 17:607–615. CrossRefGoogle Scholar
  78. Weber JA, Jurik TW, Tenhunen JD, Gates DM (1985) Analysis of gas exchange in seedlings of Acer saccharum: integration of field and laboratory studies. Oecologia 65:338–347. CrossRefPubMedGoogle Scholar
  79. Widen B, Majdi H (2001) Soil CO2 efflux and root respiration at three sites in a mixed pine and spruce forest: seasonal and diurnal variation. Can J For Res 31:786–796CrossRefGoogle Scholar
  80. Woodward FI, Smith TM (1995) Predictions and measurements of the maximum photosynthetic rate, Amax, at the global scale. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, BerlinGoogle Scholar
  81. Wullschleger SD (1993) Biochemical limitations to carbon assimilation in C3 plants – a retrospective analysis of the A/Ci curves from 109 species. J Exp Bot 44:907–920. CrossRefGoogle Scholar
  82. Zabuga GA, Sherbatyuk AS (1982) Ecologiya photosynteza sosny obyknovennoi lesostepnogo Predbaikalya (Pine ecology of photosynthesis of forest-steppe Predbaikalya). Nauka, Novosibirsk, p 135Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Trofim C. Maximov
    • 1
    Email author
  • Ayaal P. Maksimov
    • 1
  • Alexander V. Kononov
    • 1
  • Ayumi Kotani
    • 2
  • A. Johannes Dolman
    • 3
  1. 1.Institute for Biological Problems of Cryolithozone, RASYakutskRussia
  2. 2.Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
  3. 3.Vrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations