Advertisement

Wireless Resource Management for Green Communications

  • Xiaohu Ge
  • Wuxiong Zhang
Chapter

Abstract

The time-frequency spatial distribution of multi-network radiant energy \( {\mathbf{e}}(t,f,{\mathbf{s}}) \) depends on the topology of the network, the location of the base station, the transmit power of the antenna, and the physical environment of the wireless communication.

References

  1. 1.
    Beaulieu, N., and Q. Xie. 2004. An optimal lognormal approximation to log-normal sum distributions. IEEE Transactions on Vehicular Technology 53 (2): 479–489.CrossRefGoogle Scholar
  2. 2.
    Fischione, C., F. Graziosi, and F. Santucc. 2007. Approximation for a sum of on-off lognormal processes with wireless applications. IEEE Transactions on Communications 55 (10): 1984–1993.CrossRefGoogle Scholar
  3. 3.
    Zhu, Y., J. Xu, Y. Yang, and J. Wang. 2013. Statistical analysis of the uplink inter-cell interference for cellular systems. Journal of Electronics & Information Technology 35 (8): 1971–1976.CrossRefGoogle Scholar
  4. 4.
    Pijcke, B., M. Zwingelstein-Colin, M. Gazalet, et al. 2011. An analytical model for the inter-cell interference power in the downlink of wireless cellular networks. EURASIP Journal on Wireless Communications and Networking 2011: 1–20.CrossRefGoogle Scholar
  5. 5.
    Seol, C., and K. Cheun. 2009. A statistical inter-cell interference model for downlink cellular OFDMA networks under log-normal shadowing and multipath rayleigh fading. IEEE Transactions on Communications 57 (10): 3069–3077.CrossRefGoogle Scholar
  6. 6.
    Seol, C., and K. Cheun. 2010. A statistical inter-cell interference model for downlink cellular OFDMA networks under log-normal shadowing and ricean fading. IEEE Communication Letters 14 (11): 1011–1013.CrossRefGoogle Scholar
  7. 7.
    Sung, K.W., H. Haas, and S. McLaughlin. 2010. A semi-analytical PDF of downlink SINR for femtocell networks. EURASIP Journal on Wireless Communications and Networking: Special Issue on Femtocell Networks 2010: 1–9.CrossRefGoogle Scholar
  8. 8.
    Moiseev, S., S. Filin, M. Kondakov, et al. 2006. Analysis of the statistical properties of the SINR in the IEEE 802.16 OFDMA network. Proceedings of IEEE International Conference on Communications (ICC) 12: 5595–5599.Google Scholar
  9. 9.
    Hamdi, K. 2009. On the statistics of signal-to-interference plus noise ratio in wireless communications. IEEE Transactions on Communications 57 (11): 3199–3204.CrossRefGoogle Scholar
  10. 10.
    Singh, S., N. Mehta, A. Molisch, et al. 2010. Moment-matched log-normal modeling of uplink interference with power control and cell selection. IEEE Transactions on Wireless Communications 9 (3): 932–938.CrossRefGoogle Scholar
  11. 11.
    Viering, I., A. Klein, M. Ivrlac, et al. 2006. On uplink intercell interference in a cellular system. In Proceedings of IEEE International Conference on Communications (ICC), vol.5, 2095–2100.Google Scholar
  12. 12.
    Jain, R. 2011. An analytical model for reverse link outage probability in OFDMA wireless system. In Proceedings of 2011 International Conference on Emerging Trends in Networks and Computer Communications (ETNCC), 173–177.Google Scholar
  13. 13.
    Tabassum, H., F. Yilmaz, Z. Dawy, et al. 2013. A framework for uplink intercell interference modeling with channel-based scheduling. IEEE Transactions on Wireless Communications 12 (1): 206–217.CrossRefGoogle Scholar
  14. 14.
    Zhu, Y., J. Xu,Y. Yang, et al. 2012. Inter-cell interference statistics of uplink OFDM systems with soft frequency reuse. In Proceedings of IEEE Global Telecommunications Conference (GLOBECOM), 4764–4769.Google Scholar
  15. 15.
    Zhu, Y., J. Xu, J. Wang, and Y. Yang. 2013. Statistical analysis of inter-cell interference in uplink OFDMA networks with soft frequency reuse. EURASIP Journal on Advances in Signal Processing 2013: 1–12.CrossRefGoogle Scholar
  16. 16.
    Jing, Z., X. Ge, Z. Li, et al. 2013. Analysis of the uplink maximum achievable rate with location-dependent intercell signal interference factors based on linear wyner model. IEEE Transactions on Vehicular Technology 62 (9): 4615–4628.CrossRefGoogle Scholar
  17. 17.
    Xu, J., J. Zhang, and J. Andrews. 2011. On the accuracy of the wyner model in cellular networks. IEEE Transactions on Wireless Communications 10 (9): 3098–3109.CrossRefGoogle Scholar
  18. 18.
    Novlan, T., H. Dhillon, and J. Andrews. 2013. Analytical modeling of uplink cellular networks. IEEE Transactions on Wireless Communications 12 (6): 2669–2679.CrossRefGoogle Scholar
  19. 19.
    Novlan, T., and J. Andrews. 2013. Analytical evaluation of uplink fractional frequency reuse. IEEE Transactions on Communications 61 (5): 2098–2108.CrossRefGoogle Scholar
  20. 20.
    Novlan, T., R. Ganti, A. Ghosh, et al. 2011. Analytical evaluation of fractional frequency reuse for OFDMA cellular networks. IEEE Transactions on Wireless Communications 10 (12): 4294–4305.CrossRefGoogle Scholar
  21. 21.
    Novlan, T., R. Ganti, A. Ghosh, et al. 2012. Analytical evaluation of fractional frequency reuse for heterogeneous cellular networks. IEEE Transactions on Communications 60 (7): 2029–2039.CrossRefGoogle Scholar
  22. 22.
    Dhillon, H., R. Ganti, F. Baccelli, and J. Andrews. 2012. Modeling and analysis of k-tier downlink heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications 30 (3): 550–560.CrossRefGoogle Scholar
  23. 23.
    Mukherjee, S. 2012. Distribution of downlink SINR in heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications 30 (3): 575–585.CrossRefGoogle Scholar
  24. 24.
    Jo, H., Y. Sang, P. Xia, and J. Andrews. 2012. Heterogeneous cellular networks with flexible cell association: a comprehensive downlink SINR analysis. IEEE Transactions on Wireless Communications 11 (10): 3484–3495.CrossRefGoogle Scholar
  25. 25.
    Dhillon, H., and J. Andrews. 2014. Downlink rate distribution in heterogeneous cellular networks under generalized cell selection. IEEE Wireless Communications Letters 3 (1): 42–45.CrossRefGoogle Scholar
  26. 26.
    Singh, S., and J. Andrews. 2014. Joint resource partitioning and offloading in heterogeneous cellular networks. IEEE Transactions on Wireless Communications 13 (2): 888–901.CrossRefGoogle Scholar
  27. 27.
    Elsawy, H., E. Hossain, and M. Haenggi. 2013. Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: a survey. IEEE Communications Surveys & Tutorials 15 (3), 996–1019, Third Quarter.CrossRefGoogle Scholar
  28. 28.
    Beaulieu, N.C., and Q. Xie. 2004. An optimal lognormal approximation to lognormal sum distributions. IEEE Transactions on Vehicular Technology 53 (2): 479–489.CrossRefGoogle Scholar
  29. 29.
    Lam, C., and T. Le-Ngoc. 2007. Log-shifted gamma approximation to lognormal sum distributions. IEEE Transactions on Vehicular Technology 56 (4): 2121–2129.CrossRefGoogle Scholar
  30. 30.
    Nie, H., and S. Chen. 2007. Lognormal sum approximation with type IV pearson distribution. IEEE Communications Letters 11 (10): 790–792.CrossRefGoogle Scholar
  31. 31.
    Wu, Z., X. Li, R. Husnay, V. Chakravarthy, B. Wang, and Z. Wu. 2009. A novel highly accurate log skew normal approximation method to lognormal sum distributions. In Proceedings of IEEE Wireless Communications and Networking Conference, 1–6.Google Scholar
  32. 32.
    Li, X., Z. Wu, V. Chakravarthy, and Z. Wu. 2011. A low-complexity approximation to lognormal sum distributions via transformed log skew normal distribution. IEEE Transactions on Vehicular Technology 60 (8): 4040–4045.CrossRefGoogle Scholar
  33. 33.
    Zhuang, W., and M. Ismail. 2012. Cooperation in wireless communication networks. IEEE Wireless Communications 19 (2): 10–20.CrossRefGoogle Scholar
  34. 34.
    Kim, S., B. Lee, and D. Park. 2014. Energy-per-bit minimized radio resource allocation in heterogeneous networks. IEEE Transactions on Wireless Communications 13 (4): 1862–1873.CrossRefGoogle Scholar
  35. 35.
    Razaviyayn, M., M. Hong, and Z. Luo. 2013. A unified convergence analysis of block successive minimization methods for nonsmooth optimization. SIAM Journal on Optimization 23 (2): 1126–1153.MathSciNetCrossRefGoogle Scholar
  36. 36.
    Rossi, M., A. M. Tulino, O. Simeone, and A.M. Haimovich. 2011. Nonconvex utility maximization in Gaussian MISO broadcast and interference channels. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2960–2963.Google Scholar
  37. 37.
    Babich, F., and G. Lombardi. 2000. Statistical analysis and characterization of the indoor propagation channel. IEEE Transactions on Communications 48 (3): 455–464.CrossRefGoogle Scholar
  38. 38.
    Zheng, G., K.-K. Wong, and T.-S. Ng. 2008. Throughput maximization in linear multiuser MIMO-OFDM downlink systems. IEEE Transactions on Vehicular Technology 57 (3): 1993–1998.CrossRefGoogle Scholar
  39. 39.
    Ismail, M., and W. Zhuang. 2012. A distributed multi-service resource allocation algorithm in heterogeneous wireless access medium. IEEE Journal on Selected Areas in Communications 30 (2): 425–432.CrossRefGoogle Scholar
  40. 40.
    Ismail, M., A. Abdrabou, and W. Zhuang. 2013. Cooperative decentralized resource allocation in heterogeneous wireless access medium. IEEE Transactions on Wireless Communications 12 (2): 714–724.CrossRefGoogle Scholar
  41. 41.
    Tachwali, Y., B.F. Lo, I.F. Akyildiz, and R. Agusti. 2013. Multiuser resource allocation optimization using bandwidth-power product in cognitive radio networks. IEEE Journal on Selected Areas in Communications 31 (3): 451–463.CrossRefGoogle Scholar
  42. 42.
    Wang, S., Z. Zhou, M. Ge, and C. Wang. 2013. Resource allocation for heterogeneous cognitive radio networks with imperfect spectrum sensing. IEEE Journal on Selected Areas in Communications 31 (3): 464–475.CrossRefGoogle Scholar
  43. 43.
    Liao, W., M. Hong, Y. Liu, and Z. Luo. 2013. Base station activation and linear transceiver design for optimal resource management in heterogeneous networks. arXiv: 1309.4138 [cs.IT]. Available online: http://arxiv.org/abs/1309.4138.
  44. 44.
    Hong, M., and Z. Luo. 2012. Signal processing and optimal resource allocation for the interference channel. arXiv:1206.5144v1 [cs.IT]. Available online: http://arxiv.org/abs/1206.5144.
  45. 45.
    Devolder, O., F. Glineur, and Y. Nesterov. 2012. Double smoothing technique for large-scale linearly constrained convex optimization. SIAM Journal on Optimization 22 (2): 702–727.MathSciNetCrossRefGoogle Scholar
  46. 46.
    Dinh, Q.T., I. Necoara, and M. Diehl. 2013. Fast inexact decomposition algorithms for largescale separable convex optimization. arXiv:1212.4275v2 [math.OC]. Available online: http://arxiv.org/abs/1212.4275.
  47. 47.
    Koshal, J., A. Nedic, and U.V. Shanbhag. 2011. Multiuser optimization: distributed algorithms and error analysis. SIAM Journal on Optimization 21 (3): 1046–1081.MathSciNetCrossRefGoogle Scholar
  48. 48.
    Tseng, P. 2010. Approximation accuracy, gradient methods, and error bound for structured convex optimization. Mathematical Programming 125 (2): 263–295.MathSciNetCrossRefGoogle Scholar
  49. 49.
    Srivastava, K., A. Nedíc, and D. Stipanovíc. 2013. Distributed bregman distance algorithms for min-max optimization. In Agent-Based Optimization. Springer Studies in Computational Intelligence (SCI), 143–174.Google Scholar

Copyright information

© Publishing House of Electronics Industry, Beijing and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xiaohu Ge
    • 1
  • Wuxiong Zhang
    • 2
  1. 1.School of Electronic Information and CommunicationsHuazhong University of Science and TechnologyWuhanChina
  2. 2.Shanghai Research Center for Wireless CommunicationsShanghaiChina

Personalised recommendations