Advertisement

Energy Efficiency of 5G Wireless Communications

  • Xiaohu Ge
  • Wuxiong Zhang
Chapter

Abstract

The massive multi-input multi-output (MIMO) antennas and the millimeter wave communication technologies have been widely known as two key technologies for the fifth generation (5G) wireless communication systems [1, 2, 3, 4, 5, 6]. Compared with conventional MIMO antenna technology, massive MIMO can improve more than 10 times spectrum efficiency in wireless communication systems [7]. Moreover, the beamforming gain based on the massive MIMO antenna technology helps to overcome the path loss fading in millimeter wave channels.

References

  1. 1.
    Thompson, J., X. Ge, H.C. Wu, et al. 2014. 5G wireless communication systems: Prospects and challenges. IEEE Communications Magazine 52 (2): 62–64.CrossRefGoogle Scholar
  2. 2.
    Ge, X., H. Cheng, M. Guizani, and T. Han. 2014. 5G wireless backhaul networks: Challenges and research advances. IEEE Network 28 (6): 6–11.CrossRefGoogle Scholar
  3. 3.
    Ge, X., S. Tu, G. Mao, et al. 2016. 5G Ultra-dense cellular networks. IEEE Wireless Communications 23 (1): 72–79.CrossRefGoogle Scholar
  4. 4.
    Wang, C.-X., F. Haider, X. Gao, et al. 2014. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine 52 (2): 122–130.CrossRefGoogle Scholar
  5. 5.
    Chen, M., Y. Zhang, Y. Li, S. Mao, and V. Leung. 2015. EMC: Emotion-aware mobile cloud computing in 5G. IEEE Network 29 (2): 32–38.CrossRefGoogle Scholar
  6. 6.
    Chen, M., Y. Zhang, L. Hu, T. Taleb, and Z. Sheng. 2015. Cloud-based wireless network: Virtualized, reconfigurable, smart wireless network to enable 5G technologies. ACM/Springer Mobile Networks and Applications 20 (6): 704–712.CrossRefGoogle Scholar
  7. 7.
    Marzetta, T.L. 2010. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications 9 (11): 3590–3600.CrossRefGoogle Scholar
  8. 8.
    Vu, M., and A. Paulraj. 2007. MIMO wireless linear precoding. IEEE Signal Processing Magazine 24 (5): 86–105.CrossRefGoogle Scholar
  9. 9.
    Zhang, X., A.F. Molisch, and S.Y. Kung. 2005. Variable-phase-shift-based RF baseband codesign for MIMO antenna selection. IEEE Transactions on Signal Processing 53 (11): 4091–4103.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Björnson, E., L. Sanguinetti, and J. Hoydis. 2015. Optimal design of energy efficient multi-user MIMO systems: Is massive MIMO the answer? IEEE Transactions on Wireless Communications PP (99): 1536–1276.Google Scholar
  11. 11.
    Heath, R.W., N. Gonzlez-Prelcic, S. Rangan, et al. 2016. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing 10 (3): 436–453.CrossRefGoogle Scholar
  12. 12.
    Han, S., I. Chih-Lin, Z. Xu, et al. 2015. Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Communications Magazine 53 (1): 186–194.CrossRefGoogle Scholar
  13. 13.
    Zhang, J.A., X. Huang, V. Dyadyuk, et al. 2015. Massive hybrid antenna array for millimeter-wave cellular communications. IEEE Wireless Communications 22 (1): 79–87.CrossRefGoogle Scholar
  14. 14.
    Auer, G., O. Blume, V. Giannini, et al. 2010. D2. 3: Energy efficiency analysis of the reference systems, areas of improvements and target breakdown. EARTH 1–69.Google Scholar
  15. 15.
    Ge, X., J. Yang, H. Gharavi, et al. 2017. Energy efficiency challenges of 5G small cell networks. IEEE Communications Magazine 55 (5): 184–191.CrossRefGoogle Scholar
  16. 16.
    Ayach, O.E., S. Rajagopal, and S. Abu-Surra. 2014. Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transactions on Wireless Communications 13 (3): 1499–1513.CrossRefGoogle Scholar
  17. 17.
    Bogale, T.E., and L.B. Le. 2014. Beamforming for multiuser massive MIMO systems: Digital versus hybrid analog-digital. In Proceedings of the IEEE GLOBECOM 2014, December 2014, 10–12.Google Scholar
  18. 18.
    Alkhateeb, A., O.E. Ayach, G. Leus, and R. Heath. 2014. Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE Journal of Selected Topics in Signal Processing 4 (5): 831–846.CrossRefGoogle Scholar
  19. 19.
    Alkhateeb, A., O.E. Ayach, G. Leus, and R.W. Heath. 2015. Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE Transactions on Wireless Communications 14 (11): 6481–6494.CrossRefGoogle Scholar
  20. 20.
    Liu, A., and V. Lau. 2014. Phase only RF precoding for massive MIMO systems with limited RF chains. IEEE Transactions on Signal Processing 62 (17): 4505–4515.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Liang, L., W. Xu, and X. Dong. 2014. Low-complexity hybrid precoding in massive multiuser MIMO systems. IEEE Wireless Communications Letters 3 (6): 653–656.CrossRefGoogle Scholar
  22. 22.
    Bogale, T.E., L. Bao Le, and A. Haghighat. 2014. Hybrid analog-digital beamforming: How many RF chains and phase shifters do we need? 2014 [online]. Available: http://arxiv.org/pdf/1410.2609v1.pdf.
  23. 23.
    Ge, X., X. Huang, Y. Wang, et al. 2014. Energy efficiency optimization for MIMO-OFDM mobile multimedia communication systems with QoS constraints. IEEE Transactions on Vehicular Technology 63 (5): 2127–2138.CrossRefGoogle Scholar
  24. 24.
    Belmega, E.V., and S. Lasaulce. 2011. Energy-efficient precoding for multiple antenna terminals. IEEE Transactions on Signal Processing 59 (1): 329–340.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Jiang, C., and L.J. Cimini. 2013. Energy-efficient transmission for MIMO interference channels. IEEE Transactions on Wireless Communications 12 (6): 2988–2999.CrossRefGoogle Scholar
  26. 26.
    Xu, J., and L. Qiu. 2013. Energy efficiency optimization for MIMO broadcast channels. IEEE Transactions on Wireless Communications 12 (2): 690–701.CrossRefGoogle Scholar
  27. 27.
    Ngo, H.Q., E.G. Larsson, and T.L. Marzetta. 2013. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Transactions on Communications 61 (4): 1436–1449.CrossRefGoogle Scholar
  28. 28.
    Ha, D., K. Lee, and J. Kang. 2013. Energy efficiency analysis with circuit power consumption in massive MIMO systems. In IEEE PIMRC 2013, September 2013, 938–942.Google Scholar
  29. 29.
    Mohammed, S. 2014. Impact of transceiver power consumption on the energy efficiency of zero-forcing detector in massive MIMO systems. IEEE Transactions on Wireless Communications 62 (11): 3874–3890.CrossRefGoogle Scholar
  30. 30.
    Yang, H., and T.L. Marzetta. 2013. Total energy efficiency of cellular large scale antenna system multiple access mobile networks. In Proceedings of the IEEE Online Conference on Green Communications (GreenCom), October 2013, 27–32.Google Scholar
  31. 31.
    Ng, D.W.K., E.S. Lo, and R. Schober. 2012. Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas. IEEE Transactions on Wireless Communications 11 (9): 3292–3304.CrossRefGoogle Scholar
  32. 32.
    Xu, H., V. Kukshya, and T. Rappaport. 2002. Spatial and temporal characteristics of 60-GHz indoor channels. IEEE Journal on Selected Areas in Communications 20 (3): 620–630.CrossRefGoogle Scholar
  33. 33.
    Raghavan, V., and A.M. Sayeed. 2011. Sublinear capacity scaling laws for sparse MIMO channels. IEEE Transactions on Information Theory 57 (1): 345–364.MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Balanis, C.A. 2012. Antenna theory: Analysis and design. Wiley.Google Scholar
  35. 35.
    Bogale, T.E., and L.B. Le. 2014. Pilot optimization and channel estimation for multiuser massive MIMO systems. In Proceedings of the IEEE Conference on Information Sciences and Systems, March 2014, 1–6.Google Scholar
  36. 36.
    Bajwa, W.U., J. Haupt, A.M. Sayeed, and R. Nowak. 2010. Compressed channel sensing: A new approach to estimating sparse multipath channels. Proceedings of the IEEE 98 (6): 1058–1076.CrossRefGoogle Scholar
  37. 37.
    Jiang, C., and L.J. Cimini. 2011. Downlink energy-efficient multiuser beamforming with individual SINR constraints. In Proceedings of MILCOM 2011.Google Scholar
  38. 38.
    Lee, J.M. 2012. Introduction to smooth manifolds. Springer Science & Business Media.Google Scholar
  39. 39.
    Boyd, S., and L. Vandenberghe. 2004. Convex optimization. Cambridge University Press.Google Scholar
  40. 40.
    Golub, G., and C. Van Loan. 1996. Matrix computations, 3rd ed. The John Hopkins Univ. Press.Google Scholar
  41. 41.
    He, S., Y. Huang, L. Yang, et al. 2014. Coordinated multicell multiuser precoding for maximizing weighted sum energy efficiency. IEEE Transactions on Signal Processing 62 (3): 741–751.MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Xiang, L., X. Ge, C.-X. Wang, F.Y. Li, and F. Reichert. 2013. Energy efficiency evaluation of cellular networks based on spatial distributions of traffic load and power consumption. IEEE Transactions on Wireless Communications 12 (3): 961–973.CrossRefGoogle Scholar
  43. 43.
    Sulyman, A.I., A.T. Nassar, M.K. Samimi, et al. 2014. Radio propagation path loss models for 5G cellular networks in the 28 GHZ and 38 GHZ millimeter-wave bands. IEEE Communications Magazine 52 (9): 78–86.CrossRefGoogle Scholar
  44. 44.
    Akdeniz, M.R., Y. Liu, and M.K. Samimi, et al. 2014. Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications 1164–1179.CrossRefGoogle Scholar
  45. 45.
    Yong, S.K., and C.C. Chong. 2007. An overview of multigigabit wireless through millimeter wave technology: Potentials and technical challenges. EURASIP Journal on Wireless Communications and Networking 2007 (1): 50.Google Scholar
  46. 46.
    Kalivas, G., M. El-Tanany, and S. Mahmoud. 1995. Millimeter-wave channel measurements with space diversity for indoor wireless communications. IEEE Transactions on Vehicular Technology 44 (3): 494–505.CrossRefGoogle Scholar
  47. 47.
    Tombaz, S., A. Vastberg, and J. Zander. 2011. Energy- and cost-efficient ultrahigh-capacity wireless access. IEEE Wireless Communications 18 (5): 18–24.CrossRefGoogle Scholar
  48. 48.
    Cui, S., A. Goldsmith, and A. Bahai. 2004. Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE Journal on Selected Areas in Communications 22 (6): 1089–1098.CrossRefGoogle Scholar
  49. 49.
    Byers, R. 1988. A bisection method for measuring the distance of a stable matrix to the unstable matrices. SIAM Journal on Scientific and Statistical Computing 9 (5): 875–881.MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Varma, V.S., M. Debbah, and S.E. Elayoubi. 2013. An energy-efficient framework for the analysis of MIMO slow fading channels. IEEE Transactions on Signal Processing 61 (10): 2647–2659.MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Ayach, O.E., S. Rajagopal, S. Abu-Surra, et al. 2013. Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transactions on Wireless Communications 13 (3): 1499–1513.CrossRefGoogle Scholar
  52. 52.
    Rusu, C., R. Mndez-Rial, N. Gonzlez-Prelcic, et al. 2016. Low complexity hybrid precoding strategies for millimeter wave communication systems. IEEE Transactions on Wireless Communications 15 (12): 8380–8393.CrossRefGoogle Scholar
  53. 53.
    Chen, C.E. 2015. An iterative hybrid transceiver design algorithm for millimeter wave MIMO systems. IEEE Wireless Communications Letters 4 (3): 1.MathSciNetCrossRefGoogle Scholar
  54. 54.
    Alkhateeb, A., O.E. Ayach, G. Leus, and R.W. Heath Jr. 2014. Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE Journal of Selected Topics in Signal Processing 8 (5): 831–846.CrossRefGoogle Scholar
  55. 55.
    Ni, W., and X. Dong. 2015. Hybrid block diagonalization for massive multiuser MIMO systems. IEEE Transactions on Communications 64 (1): 201–211.CrossRefGoogle Scholar
  56. 56.
    Sohrabi, F., and W. Yu. 2016. Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE Journal of Selected Topics in Signal Processing 10 (3): 501–513.CrossRefGoogle Scholar
  57. 57.
    Zi, R., X. Ge, J. Thompson, et al. 2016. Energy efficiency optimization of 5G radio frequency chain systems. IEEE Journal on Selected Areas in Communications 34 (4): 758–771.CrossRefGoogle Scholar
  58. 58.
    Roh, W., J.Y. Seol, J. Park, et al. 2014. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine 52 (2): 106–113.CrossRefGoogle Scholar
  59. 59.
    Kim, C., T. Kim, and J.Y. Seol. 2013. Multi-beam transmission diversity with hybrid beamforming for MIMO-OFDM systems. In Proceedings of 2013 IEEE GLOBECOM Workshops, 61–65.Google Scholar
  60. 60.
    Zhou, L. 2016. Hybrid precoding with data stream adaptation for high throughput mmWave MIMO systems. In Proceedings of 2016 IEEE WCNC, 1–6.Google Scholar
  61. 61.
    Yu, X., J.C. Shen, J. Zhang, et al. 2016. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing 10 (3): 485–500.CrossRefGoogle Scholar
  62. 62.
    Lin, C., and G.Y. Li. 2016. Energy-efficient design of indoor mmWave and sub-THz systems with antenna arrays. IEEE Transactions on Wireless Communications 15 (7): 4660–4672.Google Scholar
  63. 63.
    He, S., C. Qi, Y. Wu, et al. 2017. Energy-efficient transceiver design for hybrid sub-array architecture MIMO systems. IEEE Access 4: 2169–3536.Google Scholar
  64. 64.
    Gao, X., L. Dai, S. Han, et al. 2016. Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems With large antenna arrays. IEEE Journal on Selected Areas in Communications 34 (4): 998–1009.CrossRefGoogle Scholar
  65. 65.
    Sayeed, A.M. 2002. Deconstructing multi-antenna fading channels. IEEE Transactions on Signal Processing 50 (10): 2563–2579.CrossRefGoogle Scholar
  66. 66.
    Bogale, T.E., and L.B. Le. 2014. Beamforming for multiuser massive MIMO systems: Digital versus hybrid analog-digital. In Proceedings of 2014 IEEE GLOBECOM, 10–12.Google Scholar
  67. 67.
    Desset, C., B. Debaillie, V. Giannini, et al. 2012. Flexible power modeling of LTE base stations. In Proceedings of 2012 IEEE Wireless Communications and Networking Conference, 2858–2862.Google Scholar
  68. 68.
    Auer, G., V. Giannini, C. Desset, et al. 2011. How much energy is needed to run a wireless network? IEEE Wireless Communications 18 (5): 40–49.CrossRefGoogle Scholar
  69. 69.
    Tang, C.H., C.E. Wu, C.W. Lin, et al. 2012. Network energy efficiency for deployment architectures with base station site model. In Proceedings of 2012 IEEE International Conference on Communications in China Workshops, 85–90.Google Scholar
  70. 70.
    Liu, K., J. He, J. Ding, et al. 2013. Base station power model and application for energy efficient LTE. In Proceedings of 2013 IEEE International Conference on Communication Technology, 86–92.Google Scholar
  71. 71.
    Peters, S.W., and R.W. Heath. 2009. Interference alignment via alternating minimization. In Proceedings of 2009 IEEE International Conference on Acoustics, Speech, and Signal Processing, 19–24, 2445–2448.Google Scholar
  72. 72.
    Ye, P., M.N. Zeilinger, and C.N. Jones. 2016. Complexity certification of the fast alternating minimization algorithm for linear MPC. IEEE Transactions on Automatic Control 62 (2): 888–893.MathSciNetzbMATHGoogle Scholar
  73. 73.
    Luo, Z.Q., W.K. Ma, M.C. So, et al. 2010. Semidefinite relaxation of quadratic optimization problems. IEEE Signal Processing Magazine 27 (3): 20–34.CrossRefGoogle Scholar
  74. 74.
    Sidiropoulos, N.D., T.N. Davidson, and Z.Q. Luo. 2006. Transmit beamforming for physical-layer multicasting. IEEE Transactions on Signal Processing 54 (6): 2239–2251.zbMATHCrossRefGoogle Scholar
  75. 75.
    Tseng, P. 2003. Further results on approximating nonconvex quadratic optimization by semidefinite programming relaxation. SIAM Journal on Optimization 14 (1): 268–283.MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Golub, G., and C.V. Loan. 1996. Matrix computations, 3rd ed. The John Hopkins Univ. Press.Google Scholar
  77. 77.
    Alfano, G., Z. Chong, and E. Jorswieck. 2012. Energy-efficient power control for MIMO channels with partial and full CSI. In Proceedings of International ITG Workshop on Smart Antennas, Dresden, Germany, 2012, 332–337.Google Scholar
  78. 78.
    Liu, L., G. Miao, and J. Zhang. 2012. Energy-efficient scheduling for downlink multi-user MIMO. In Proceedings of IEEE International Conference on Communications (ICC), Ottawa, Canada, 2012, 4394–4394.Google Scholar
  79. 79.
    Jiang, J., M. Dianati, M.A. Imran, et al. 2014. Energy-efficiency analysis and optimization for virtual-MIMO systems. IEEE Transactions on Vehicular Technology 63 (5): 2272–2283.CrossRefGoogle Scholar
  80. 80.
    Chen, L., Y. Yang, X. Chen, et al. 2013. Energy-efficient link adaptation on Rayleigh fading channel for OSTBC MIMO system with imperfect CSIT. IEEE Transactions on Vehicular Technology 62 (4): 1577–1585.CrossRefGoogle Scholar
  81. 81.
    Jiang, C., and L.J. Cimini. 2012. Antenna selection for energy-efficient MIMO transmission. IEEE Wireless Communications Letters 1 (6): 577–580.CrossRefGoogle Scholar
  82. 82.
    Garcia, V., C.S. Chen, N. Lebedev, et al. 2011. Self-optimized precoding and power control in cellular networks. In Proceedings of IEEE 22nd International Symposium on Personal Indoor and Mobile Radio Communications, Toronto, Canada, 2011, 81–85.Google Scholar
  83. 83.
    Chong, Z., and E. Jorswieck. 2011. Energy-efficient power control for MIMO time-varying channels. In Proceedings of IEEE Online Conference on Green Communications (GreenCom), New York, USA, 2011, 92–97.Google Scholar
  84. 84.
    Joung, J., and S. Sun. 2013. Energy efficient power control for distributed transmitters with ZF-based multiuser MIMO precoding. IEEE Communications Letters 17 (9): 1766–1769.CrossRefGoogle Scholar
  85. 85.
    Davaslioglu, K., and E. Ayanoglu. 2014. Quantifying potential energy efficiency gain in green cellular wireless networks. IEEE Communications Surveys and Tutorials 16 (4): 2065–2091.CrossRefGoogle Scholar
  86. 86.
    Hasan, Z., H. Boostanimehr, and V.K. Bhargava. 2011. Green cellular networks: A survey, some research issues and challenges. IEEE ommunications Surveys and Tutorials 13 (4): 524–540.CrossRefGoogle Scholar
  87. 87.
    Zou, Y., J. Zhu, and R. Zhang. 2013. Exploiting network cooperation in green wireless communication. IEEE Transactions on Communications 61 (3): 999–1010.CrossRefGoogle Scholar
  88. 88.
    Han, T., and N. Ansari. 2013. On greening cellular networks via multicell cooperation. IEEE Wireless Communications 20 (1): 82–89.CrossRefGoogle Scholar
  89. 89.
    Li, C., J. Zhang, and K. Letaief. 2014. Throughput and energy efficiency analysis of small cell networks with multi-antenna base stations. IEEE Transactions on Wireless Communications 13 (5): 2505–2517.CrossRefGoogle Scholar
  90. 90.
    Nguyen, T.M., H. Shin, and T.Q.S. Quek. 2012. Network throughput and energy efficiency in MIMO femtocells. In Proceedings of 18th European Wireless Conference, Poznan, Poland, 2012, 1–5.Google Scholar
  91. 91.
    Soh, Y.S., T.Q.S. Quek, M. Kountouris, et al. 2013. Energy efficient heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications 31 (5): 840–850.CrossRefGoogle Scholar
  92. 92.
    Karray, M.K. 2010. Spectral and energy efficiencies of OFDMA wireless cellular networks. In Proceedings of IFIP Wireless Days, Venice, Italy, 2010, 1–5.Google Scholar
  93. 93.
    Yang, X., and A.P. Petropulu. 2003. Co-channel interference modeling and analysis in a Poisson field of interferers in wireless communications. IEEE Transactions on Signal Processing 51 (1): 64–76.MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Ferenc, J.S., and Z. Nda. 2007. On the size distribution of Poisson Voronoi cells. Physica A: Statistical Mechanics and its Applications 385 (2): 518–526.CrossRefGoogle Scholar
  95. 95.
    Stoyan, D., and W.S. Kendall. 1996. Stochastic geometry and its applications, 2nd ed. Hoboken, NJ: Wiley.zbMATHGoogle Scholar
  96. 96.
    Al-Ahmadi, S., and H. Yanikomeroglu. 2009. On the approximation of the generalized-K PDF by a Gamma PDF using the moment matching method. In Proceedings of IEEE Wireless Communications and Networking Conference, Budapest, Hungary, 2009, 1–6.Google Scholar
  97. 97.
    Kostic, I.M. 2005. Analytical approach to performance analysis for channel subject to shadowing and fading. IEE Proceedings Communications 152 (6): 821–827.CrossRefGoogle Scholar
  98. 98.
    Bithas, P.S., N.C. Sagias, P.T. Mathiopoulos, et al. 2006. On the performance analysis of digital communications over generalized-K fading channels. IEEE Communications Letters 10 (5): 353–355.CrossRefGoogle Scholar
  99. 99.
    Simon, M.K., and M.S. Alouini. 2000. Digital communication over fading channels: A unified approach to performance analysis. Wiley.Google Scholar
  100. 100.
    Dai, L., Z. Wang, and Z. Yang. 2012. Time-frequency training OFDM with high spectral efficiency and reliable performance in high speed environments. IEEE Journal on Selected Areas in Communications 30 (4): 695–707.CrossRefGoogle Scholar
  101. 101.
    Annapureddy, V.S., and V.V. Veeravalli. 2011. Sum capacity of MIMO interference channels in the low interference regime. IEEE Transactions on Information Theory 57 (5): 2565–2581.MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    Win, M.Z., P.C. Pinto, and L. Shepp. 2009. A mathematical theory of network interference and its applications. Proceedings of the IEEE 97 (2): 205–230.CrossRefGoogle Scholar
  103. 103.
    Ge, X., K. Huang, C.X. Wang, et al. 2011. Capacity analysis of a multi-cell multi-antenna cooperative cellular network with co-channel interference. IEEE Transactions on Wireless Communications 10 (10): 3298–3309.CrossRefGoogle Scholar
  104. 104.
    Alouini, M.S., and A.J. Goldsmith. 1999. Area spectral efficiency of cellular mobile radio systems. IEEE Transactions on Vehicular Technology 48 (4): 1047–1066.CrossRefGoogle Scholar
  105. 105.
    Abdi, A., and M. Kaveh. 1998. K distribution: An appropriate substitute for Rayleigh-lognormal distribution in fading-shadowing wireless channels. Electronics Letters 34 (9): 851–852.CrossRefGoogle Scholar
  106. 106.
    Gradshteyn, I.S., and I.M. Ryzhik. 2007. Table of integrals, series, and products. New York: Academic Press.zbMATHGoogle Scholar
  107. 107.
    Yu, H., L. Zhong, and A. Sabharwal. 2012. Power management of MIMO network interfaces on mobile systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 20 (7): 1175–1186.CrossRefGoogle Scholar
  108. 108.
    Khoshnevisan, M., and J.N. Laneman. 2012. Power allocation in multi-antenna wireless systems subject to simultaneous power constraints. IEEE Transactions on Communications 60 (12): 3855–3864.CrossRefGoogle Scholar
  109. 109.
    Lu, Y., and W. Zhang. 2013. Water-filling capacity analysis in large MIMO systems. In Proceeding of IEEE Computing, Communications and IT Applications Conference (ComComAp), Hong Kong, China, 2013, 186–190.Google Scholar
  110. 110.
    Xu, J., L. Qiu, and C. Yu. 2011. Improving energy efficiency through multimode transmission in the downlink MIMO systems. EURASIP Journal on Wireless Communications and Networking 1: 1–12.Google Scholar
  111. 111.
    Chen, R., J.G. Andrews, R.W. Heath Jr., et al. 2007. Uplink power control in multi-cell spatial multiplexing wireless systems. IEEE Transactions on Wireless Communications 6 (7): 2700–2711.CrossRefGoogle Scholar
  112. 112.
    Chong, Z., and E. Jorswieck. 2012. Analytical foundation for energy efficiency optimisation in cellular networks with elastic traffic. Mobile Lightweight Wireless Systems 81: 18–29.CrossRefGoogle Scholar
  113. 113.
    Arnold, O., F. Richter, G. Fettweis, et al. 2010. Power consumption modeling of different base station types in heterogeneous cellular networks. In Proceedings of IEEE Future Network and Mobile Summit, Florence, Italy, 2010, 1–8.Google Scholar
  114. 114.
    Silva, A.P., and G.R. Mateus. 2002. Performance analysis for data service in third generation mobile telecommunication networks. In Proceedings of 35th Annual. IEEE Simulation Symposium, 2002, 227–234.Google Scholar
  115. 115.
    Dighe, P., R.K. Mallik, and S.S. Jamuar. 2003. Analysis of transmit-receive diversity in Rayleigh fading. IEEE Transactions on Communications 51 (4): 694–703.CrossRefGoogle Scholar

Copyright information

© Publishing House of Electronics Industry, Beijing and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xiaohu Ge
    • 1
  • Wuxiong Zhang
    • 2
  1. 1.School of Electronic Information and CommunicationsHuazhong University of Science and TechnologyWuhanChina
  2. 2.Shanghai Research Center for Wireless CommunicationsShanghaiChina

Personalised recommendations