Nanostructures and Nanomaterials for Solid-State Batteries

  • Junpei Yue
  • Shu-Hua Wang
  • Yu-Guo GuoEmail author


(All-)solid-state batteries promise higher energy densities, longer shelf life, and lower packaging cost than batteries with conventional liquid electrolytes. The fast development of superionic conductors flourishes the studies on all-solid-state batteries, and therefore the history and general knowledge about solid-state electrolytes (SSEs) are firstly summarized in this chapter. And then, more attentions are paid to the application of nanostructures and nanomaterials to deal with the incompatibility between electrode and SSEs and the limited kinetic process in composite electrodes. Last but not the least, an overall consideration on constructing all-solid-state batteries including temperature and stress is illustrated.



Solid-state electrolytes




Poly(ethylene oxide)




Poly(methyl methacrylate)


Poly(vinylidene fluoride)


Poly(vinylidene fluoride-hexafluoropropylene)


Lithium bis(trifluoromethanesulfonyl)imide


Lithium phosphorus oxynitride


Li+ super ion conductor


Na+ super ion conductor










Linear sweep voltammetry


Cyclic voltammetry


Electrochemical impedance spectroscopy


Lithium nickel cobalt manganese oxide


Lithium nickel cobalt aluminum oxide




Reduced graphene oxide


Carbon nanotube


Lithium ion batteries


Atomic force microscopy


  1. 1.
    Kamaya, N., Homma, K., Yamakawa, Y., et al. (2011). A lithium superionic conductor. Nature Materials, 10, 682–686.CrossRefGoogle Scholar
  2. 2.
    Hull, S. (2004). Superionics: Crystal structures and conduction processes. Reports on Progress in Physics, 67, 1233–1314.CrossRefGoogle Scholar
  3. 3.
    Owens, B. B., & Argue, G. R. (1967). High conductivity solid electrolytes-MAg4I5. Science, 157, 308–310.CrossRefGoogle Scholar
  4. 4.
    Bradley, J. N., & Greene, P. D. (1967). Solids with high ionic conductivity in group 1 halide systems. Transactions of the Faraday Society, 63, 424–430.CrossRefGoogle Scholar
  5. 5.
    Chen, C.-C., Fu, L., & Maier, J. (2016). Synergistic, ultrafast mass storage and removal in artificial mixed conductors. Nature, 536, 159–164.CrossRefGoogle Scholar
  6. 6.
    Whitting, M. S., & Huggins, R. A. (1971). Measurement of sodium ion transport in beta alumina using reversible solid electrodes. Journal of Chemical Physics, 54, 414–416.Google Scholar
  7. 7.
    Whittingham, M. S., & Huggins, R. A. (1971). Transport properties of silver beta-alumina. Journal of the Electrochemical Society, 118, 1–6.CrossRefGoogle Scholar
  8. 8.
    Bachman, J. C., Muy, S., Grimaud, A., et al. (2016). Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction. Chemical Reviews, 116, 140–162.CrossRefGoogle Scholar
  9. 9.
    Fenton, D. E., Parker, J. M., & Wright, P. V. (1973). Complexes of alkali-metal ions with poly(ethylene oxide). Polymer, 14, 589–589.Google Scholar
  10. 10.
    Armand, M. (1994). The history of polymer electrolytes. Solid State Ionics, 69, 309–319.CrossRefGoogle Scholar
  11. 11.
    Meyer, W. H. (1998). Polymer electrolytes for lithium-ion batteries. Advanced Materials, 10, 439–448.CrossRefGoogle Scholar
  12. 12.
    Croce, F., Appetecchi, G. B., Persi, L., et al. (1998). Nanocomposite polymer electrolytes for lithium batteries. Nature, 394, 456–458.CrossRefGoogle Scholar
  13. 13.
    Chazalviel, J. N. (1990). Electrochemical aspects of the generation of ramifield metallic electrodeposits. Physical Review A, 42, 7355–7367.CrossRefGoogle Scholar
  14. 14.
    Bouchet, R., Maria, S., Meziane, R., et al. (2013). Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nature Materials, 12, 452–457.CrossRefGoogle Scholar
  15. 15.
    Seino, Y., Ota, T., Takada, K., et al. (2014). A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy & Environmental Science, 7, 627–631.CrossRefGoogle Scholar
  16. 16.
    Li, J., Ma, C., Chi, M., et al. (2015). Solid electrolyte: The key for high-voltage lithium batteries. Advanced Energy Materials, 5, 1401408.CrossRefGoogle Scholar
  17. 17.
    Bates, J. B., Dudney, N. J., Gruzalski, G. R., et al. (1992). Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics, 53–56, 647–654.CrossRefGoogle Scholar
  18. 18.
    Kanno, R., Hata, T., Kawamoto, Y., et al. (2000). Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system. Solid State Ionics, 130, 97–104.CrossRefGoogle Scholar
  19. 19.
    Hong, H. Y. P. (1978). Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors. Materials Research Bulletin, 13, 117–124.CrossRefGoogle Scholar
  20. 20.
    Kato, Y., Hori, S., Saito, T., et al. (2016). High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy, 1, 16030.CrossRefGoogle Scholar
  21. 21.
    Goodenough, J. B., Hong, H. Y. P., & Kafalas, J. A. (1976). Fast Na +-ion transport in skeleton structures. Materials Research Bulletin, 11, 203–220.CrossRefGoogle Scholar
  22. 22.
    Inaguma, Y., Liquan, C., Itoh, M., et al. (1993). High ionic conductivity in lithium lanthanum titanate. Solid State Communications, 86, 689–693.CrossRefGoogle Scholar
  23. 23.
    Murugan, R., Thangadurai, V., & Weppner, W. (2007). Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angewandte Chemie International Edition, 46, 7778–7781.CrossRefGoogle Scholar
  24. 24.
    Aono, H., Sugimoto, E., Sadaoka, Y., et al. (1990). Ionic conductivity of solid electrolytes based on lithium titanium phosphate. Journal of the Electrochemical Society, 137, 1023–1027.CrossRefGoogle Scholar
  25. 25.
    Blanchard, D., Nale, A., Sveinbjörnsson, D., et al. (2015). Nanoconfined LiBH4 as a fast lithium ion conductor. Advanced Functional Materials, 25, 184–192.CrossRefGoogle Scholar
  26. 26.
    Boukamp, B. A., & Huggins, R. A. (1978). Fast ionic conductivity in lithium nitride. Materials Research Bulletin, 13, 23–32.CrossRefGoogle Scholar
  27. 27.
    He, X., Zhu, Y., & Mo, Y. (2017). Origin of fast ion diffusion in super-ionic conductors. Nature Communications, 8, 15893.CrossRefGoogle Scholar
  28. 28.
    Zugmann, S., Fleischmann, M., Amereller, M., et al. (2011). Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochimica Acta, 56, 3926–3933.CrossRefGoogle Scholar
  29. 29.
    Hebb, M. H. (1952). Electrical conductivity of silver sulfide. The Journal of Chemical Physics, 20, 185–190.CrossRefGoogle Scholar
  30. 30.
    Wagner, C. (1953). Investigations on silver sulfide. The Journal of Chemical Physics, 21, 1819–1827.CrossRefGoogle Scholar
  31. 31.
    Sata, N., Eberman, K., Eberl, K., et al. (2000). Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature, 408, 946–949.CrossRefGoogle Scholar
  32. 32.
    Guo, Y.-G., Hu, Y.-S., Lee, J.-S., et al. (2006). High-performance rechargeable all-solid-state silver battery based on superionic AgI nanoplates. Electrochemistry Communications, 8, 1179–1184.CrossRefGoogle Scholar
  33. 33.
    Maekawa, H., Iwatani, T., Shen, H., et al. (2008). Enhanced lithium ion conduction and the size effect on interfacial phase in Li2ZnI4–mesoporous alumina composite electrolyte. Solid State Ionics, 178, 1637–1641.CrossRefGoogle Scholar
  34. 34.
    Maekawa, H., Tanaka, R., Sato, T., et al. (2004). Size-dependent ionic conductivity observed for ordered mesoporous alumina-LiI composite. Solid State Ionics, 175, 281–285.CrossRefGoogle Scholar
  35. 35.
    Guo, X. (2011). Can we achieve significantly higher ionic conductivity in nanostructured zirconia? Scripta Materialia, 65, 96–101.CrossRefGoogle Scholar
  36. 36.
    Hu, Y. W., Raistrick, I. D., & Huggins, R. A. (1977). Ionic Conductivity of lithium orthosilicate—lithium phosphate solid solutions. Journal of the Electrochemical Society, 124, 1240–1242.CrossRefGoogle Scholar
  37. 37.
    Rodger, A. R., Kuwano, J., & West, A. R. (1985). Li+ ion conducting γ solid solutions in the systems Li4XO4-Li3YO4: X = Si, Ge, Ti; Y = P, As, V; Li4XO4-LiZO2: Z = Al, Ga, Cr and Li4GeO4-Li2CaGeO4. Solid State Ionics, 15, 185–198.CrossRefGoogle Scholar
  38. 38.
    Kanno, R., & Maruyama, M. (2001). Lithium ionic conductor thio-LISICON—The Li2S-GeS2-P2S5 system. Journal of the Electrochemical Society, 148, A742–A746.CrossRefGoogle Scholar
  39. 39.
    Takada, K., Inada, T., Kajiyama, A., et al. (2003). Solid-state lithium battery with graphite anode. Solid State Ionics, 158, 269–274.CrossRefGoogle Scholar
  40. 40.
    Weber, D. A., Senyshyn, A., Weldert, K. S., et al. (2016). Structural insights and 3D diffusion pathways within the lithium superionic conductor Li10GeP2S12. Chemistry of Materials, 28, 5905–5915.CrossRefGoogle Scholar
  41. 41.
    Bron, P., Johansson, S., Zick, K., et al. (2013). Li10SnP2S12: An affordable lithium superionic conductor. Journal of the American Chemical Society, 135, 15694–15697.CrossRefGoogle Scholar
  42. 42.
    Deiseroth, H.-J., Kong, S.-T., Eckert, H., et al. (2008). Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility. Angewandte Chemie International Edition, 47, 755–758.CrossRefGoogle Scholar
  43. 43.
    Kraft, M. A., Culver, S. P., Calderon, M., et al. (2017). Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I). Journal of the American Chemical Society, 139, 10909–10918.CrossRefGoogle Scholar
  44. 44.
    Yu, C., Ganapathy, S., de Klerk, N. J. J., et al. (2016). Unravelling Li-Ion Transport from picoseconds to seconds: Bulk versus interfaces in an argyrodite Li6PS5Cl–Li2S All-solid-state Li-Ion battery. Journal of the American Chemical Society, 138, 11192–11201.CrossRefGoogle Scholar
  45. 45.
    Aono, H., Sugimoto, E., Sadaoka, Y., et al. (1993). The electrical properties of ceramic electrolytes for LiM x Ti2 − x ( PO 4) 3+ yLi2 O, M = Ge, Sn, Hf, and Zr systems. Journal of the Electrochemical Society, 140, 1827–1833.CrossRefGoogle Scholar
  46. 46.
    Aono, H., Sugimoto, E., Sadaoka, Y., et al. (1991). Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3). Solid State Ionics, 47, 257–264.CrossRefGoogle Scholar
  47. 47.
    Adachi, G.-Y., Imanaka, N., & Aono, H. (1996). Fast Li conducting ceramic electrolytes. Advanced Materials, 8, 127–135.Google Scholar
  48. 48.
    Thangadurai, V., Kaack, H., & Weppner, W. J. F. (2003). Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). Journal of the American Ceramic Society, 86, 437–440.CrossRefGoogle Scholar
  49. 49.
    Awaka, J., Kijima, N., Takahashi, Y., et al. (2009). Synthesis and crystallographic studies of garnet-related lithium-ion conductors Li6CaLa2Ta2O12 and Li6BaLa2Ta2O12. Solid State Ionics, 180, 602–606.CrossRefGoogle Scholar
  50. 50.
    Thangadurai, V., Narayanan, S., & Pinzaru, D. (2014). Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review. Chemical Society Reviews, 43, 4714–4727.Google Scholar
  51. 51.
    Geiger, C. A., Alekseev, E., Lazic, B., et al. (2011). Crystal chemistry and stability of “Li7La3Zr2O12” Garnet: A fast lithium-ion conductor. Inorganic Chemistry, 50, 1089–1097.CrossRefGoogle Scholar
  52. 52.
    Bernuy-Lopez, C., Manalastas, W., del Amo, J. M. L., et al. (2014). Atmosphere controlled processing of Ga-substituted garnets for high Li-Ion conductivity ceramics. Chemistry of Materials, 26, 3610–3617.CrossRefGoogle Scholar
  53. 53.
    Li, Y., Han, J.-T., Wang, C.-A., et al. (2012). Optimizing Li+ conductivity in a garnet framework. Journal of Materials Chemistry, 22, 15357–15361.CrossRefGoogle Scholar
  54. 54.
    Unemoto, A., Matsuo, M., & Orimo, S.-I. (2014). Complex hydrides for electrochemical energy storage. Advanced Functional Materials, 24, 2267–2279.CrossRefGoogle Scholar
  55. 55.
    Maekawa, H., Matsuo, M., Takamura, H., et al. (2009). Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor. Journal of the American Chemical Society, 131, 894–895.CrossRefGoogle Scholar
  56. 56.
    Matsuo, M., Remhof, A., Martelli, P., et al. (2009). Complex hydrides with (BH4)− and (NH2)−anions as new lithium fast-ion conductors. Journal of the American Chemical Society, 131, 16389–16391.CrossRefGoogle Scholar
  57. 57.
    Friedrichs, O., Remhof, A., Hwang, S. J., et al. (2010). Role of Li2B12H12 for the formation and decomposition of LiBH4. Chemistry of Materials, 22, 3265–3268.CrossRefGoogle Scholar
  58. 58.
    Zhao, Y., & Daemen, L. L. (2012). Superionic conductivity in lithium-rich anti-perovskites. Journal of the American Chemical Society, 134, 15042–15047.CrossRefGoogle Scholar
  59. 59.
    Emly, A., Kioupakis, E., & Van der Ven, A. (2013). Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors. Chemistry of Materials, 25, 4663–4670.CrossRefGoogle Scholar
  60. 60.
    Braga, M. H., Murchison, A. J., Ferreira, J. A., et al. (2016). Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells. Energy & Environmental Science, 9, 948–954.CrossRefGoogle Scholar
  61. 61.
    Braga, M. H., Ferreira, J. A., Stockhausen, V., et al. (2014). Novel Li3ClO based glasses with superionic properties for lithium batteries. Journal of Materials Chemistry A, 2, 5470–5480.CrossRefGoogle Scholar
  62. 62.
    Braga, M. H., Grundish, N. S., Murchison, A. J., et al. (2017). Alternative strategy for a safe rechargeable battery. Energy & Environmental Science, 10, 331–336.CrossRefGoogle Scholar
  63. 63.
    Fang, H., & Jena, P. (2017). Li-rich antiperovskite superionic conductors based on cluster ions. Proceedings of the National Academy of Sciences, 114, 11046–11051.CrossRefGoogle Scholar
  64. 64.
    Steingart, D. A., & Viswanathan, V. (2018). Comment on “Alternative strategy for a safe rechargeable battery” by M. H. Braga, N. S. Grundish, A. J. Murchison, & J. B. Goodenough. (2017). Energy & Environmental Science, 10, 331–336. Energy & Environmental Science, 11, 221–222.Google Scholar
  65. 65.
    Braga, M. H., Subramaniyam, C. M., Murchison, A. J., et al. (2018). Nontraditional, safe, high voltage rechargeable cells of long cycle life. Journal of the American Chemical Society, 140, 6343–6352.CrossRefGoogle Scholar
  66. 66.
    Groce, F., Gerace, F., Dautzemberg, G., et al. (1994). Synthesis and characterization of highly conducting gel electrolytes. Electrochimica Acta, 39, 2187–2194.CrossRefGoogle Scholar
  67. 67.
    Dautzenberg, G., Croce, F., Passerini, S., et al. (1994). Characterization of PAN-based gel electrolytes. electrochemical stability and lithium cyclability. Chemistry of Materials, 6, 538–542.CrossRefGoogle Scholar
  68. 68.
    Appetecchi, G. B., Croce, F., & Scrosati, B. (1995). Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochimica Acta, 40, 991–997.CrossRefGoogle Scholar
  69. 69.
    Choe, H. S., Giaccai, J., Alamgir, M., et al. (1995). Preparation and characterization of poly(vinyl sulfone)- and poly(vinylidene fluoride)-based electrolytes. Electrochimica Acta, 40, 2289–2293.CrossRefGoogle Scholar
  70. 70.
    Muramatsu, H., Hayashi, A., Ohtomo, T., et al. (2011). Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics, 182, 116–119.CrossRefGoogle Scholar
  71. 71.
    Sahu, G., Lin, Z., Li, J., et al. (2014). Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. Energy & Environmental Science, 7, 1053–1058.CrossRefGoogle Scholar
  72. 72.
    Busche, M. R., Weber, D. A., Schneider, Y., et al. (2016). In situ monitoring of fast Li-Ion conductor Li7P3S11 crystallization inside a hot-press setup. Chemistry of Materials, 28, 6152–6165.CrossRefGoogle Scholar
  73. 73.
    Buschmann, H., Dolle, J., Berendts, S., et al. (2011). Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”. Physical Chemistry Chemical Physics, 13, 19378–19392.CrossRefGoogle Scholar
  74. 74.
    Sharafi, A., Kazyak, E., Davis, A. L., et al. (2017). Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chemistry of Materials, 29, 7961–7968.CrossRefGoogle Scholar
  75. 75.
    Han, X., Gong, Y., Fu, K., et al. (2016). Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nature Materials, 16, 572–579.CrossRefGoogle Scholar
  76. 76.
    Hartmann, P., Leichtweiss, T., Busche, M. R., et al. (2013). Degradation of NASICON-type materials in contact with lithium metal: Formation of mixed conducting interphases (MCI) on solid electrolytes. The Journal of Physical Chemistry C, 117, 21064–21074.CrossRefGoogle Scholar
  77. 77.
    Han, F., Zhu, Y., He, X., et al. (2016). Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes. Advanced Energy Materials, 6, 1501590.CrossRefGoogle Scholar
  78. 78.
    Han, F., Gao, T., Zhu, Y., et al. (2015). A battery made from a single material. Advanced Materials, 27, 3473–3483.CrossRefGoogle Scholar
  79. 79.
    Tian, Y., Shi, T., Richards, W. D., et al. (2017). Compatibility issues between electrodes and electrolytes in solid-state batteries. Energy & Environmental Science, 10, 1150–1166.CrossRefGoogle Scholar
  80. 80.
    Richards, W. D., Miara, L. J., Wang, Y., et al. (2016). Interface stability in solid-state batteries. Chemistry of Materials, 28, 266–273.CrossRefGoogle Scholar
  81. 81.
    Luo, W., Gong, Y., Zhu, Y., et al. (2017). Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Advanced Materials, 29, 1606042.CrossRefGoogle Scholar
  82. 82.
    Fu, K., Gong, Y., Fu, Z., et al. (2017). Transient behavior of the metal interface in lithium metal-garnet batteries. Angewandte Chemie International Edition, 56, 14942–14947.CrossRefGoogle Scholar
  83. 83.
    Reinacher, J., Berendts, S., & Janek, J. (2014). Preparation and electrical properties of garnet-type Li6BaLa2Ta2O12 lithium solid electrolyte thin films prepared by pulsed laser deposition. Solid State Ionics, 258, 1–7.CrossRefGoogle Scholar
  84. 84.
    Duan, H., Yin, Y.-X., Shi, Y., et al. (2018). Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers. Journal of the American Chemical Society, 140, 82–85.CrossRefGoogle Scholar
  85. 85.
    Luntz, A. C., Voss, J., & Reuter, K. (2015). Interfacial challenges in solid-state Li ion batteries. Journal of Physical Chemistry Letters, 6, 4599–4604.CrossRefGoogle Scholar
  86. 86.
    Zhou, W., Wang, S., Li, Y., et al. (2016). Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. Journal of the American Chemical Society, 138, 9385–9388.CrossRefGoogle Scholar
  87. 87.
    Grey, C. P., & Tarascon, J. M. (2016). Sustainability and in situ monitoring in battery development. Nature Materials, 16, 45–56.CrossRefGoogle Scholar
  88. 88.
    Irvine, J. T. S., Sinclair, D. C., & West, A. R. (1990). Electroceramics: Characterization by impedance spectroscopy. Advanced Materials, 2, 132–138.CrossRefGoogle Scholar
  89. 89.
    Evans, J., Vincent, C. A., & Bruce, P. G. (1987). Electrochemical measurement of transference numbers in polymer electrolytes. Polymer, 28, 2324–2328.CrossRefGoogle Scholar
  90. 90.
    Lin, Z., Liu, Z., Dudney, N. J., et al. (2013). Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. ACS Nano, 7, 2829–2833.CrossRefGoogle Scholar
  91. 91.
    Zhu, Z., Hong, M., Guo, D., et al. (2014). All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode. Journal of the American Chemical Society, 136, 16461–16464.CrossRefGoogle Scholar
  92. 92.
    Yin, Y.-X., Xin, S., Guo, Y.-G., et al. (2013). Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angewandte Chemie International Edition, 52, 13186–13200.CrossRefGoogle Scholar
  93. 93.
    Yao, X., Huang, N., Han, F., et al. (2017). High-performance all-solid-state lithium–sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Advanced Energy Materials, 7, 1602923.CrossRefGoogle Scholar
  94. 94.
    Yue, J., Yan, M., Yin, Y. -X., et al. Progress of the interface design in all-solid-state Li–S batteries. Advanced Functional Materials 1707533.Google Scholar
  95. 95.
    Kobayashi, T., Imade, Y., Shishihara, D., et al. (2008). All solid-state battery with sulfur electrode and thio-LISICON electrolyte. Journal of Power Sources, 182, 621–625.CrossRefGoogle Scholar
  96. 96.
    Han, F., Yue, J., Fan, X., et al. (2016). High-performance all-solid-state lithium–sulfur battery enabled by a mixed-conductive Li2S nanocomposite. Nano Letters, 16, 4521–4527.CrossRefGoogle Scholar
  97. 97.
    Yao, X., Liu, D., Wang, C., et al. (2016). High-energy all-solid-state lithium batteries with ultralong cycle life. Nano Letters, 16, 7148–7154.CrossRefGoogle Scholar
  98. 98.
    Lin, Z., Liu, Z., Fu, W., et al. (2013). Lithium polysulfidophosphates: A family of lithium-conducting sulfur-rich compounds for lithium–sulfur batteries. Angewandte Chemie International Edition, 52, 7460–7463.CrossRefGoogle Scholar
  99. 99.
    Tanibata, N., Tsukasaki, H., Deguchi, M., et al. (2017). A novel discharge-charge mechanism of a S-P2S5 composite electrode without electrolytes in all-solid-state Li/S batteries. Journal of Materials Chemistry A, 5, 11224–11228.CrossRefGoogle Scholar
  100. 100.
    Unemoto, A., Ikeshoji, T., Yasaku, S., et al. (2015). Stable interface formation between TiS2 and LiBH4 in bulk-type all-solid-state lithium batteries. Chemistry of Materials, 27, 5407–5416.CrossRefGoogle Scholar
  101. 101.
    Kim, S., Toyama, N., Oguchi, H., et al. (2018). Fast lithium-ion conduction in atom-deficient closo-type complex hydride solid electrolytes. Chemistry of Materials, 30, 386–391.CrossRefGoogle Scholar
  102. 102.
    Fu, K., Gong, Y., Hitz, G. T., et al. (2017). Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries. Energy & Environmental Science, 10, 1568–1575.CrossRefGoogle Scholar
  103. 103.
    Tao, X., Liu, Y., Liu, W., et al. (2017). Solid-state lithium–sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Letters, 17, 2967–2972.CrossRefGoogle Scholar
  104. 104.
    Xu, G., Kushima, A., Yuan, J., et al. (2017). Ad hoc solid electrolyte on acidized carbon nanotube paper improves cycle life of lithium–sulfur batteries. Energy & Environmental Science, 10, 2544–2551.CrossRefGoogle Scholar
  105. 105.
    Abraham, K. M., & Jiang, Z. (1996). A polymer electrolyte-based rechargeable lithium/oxygen battery. Journal of the Electrochemical Society, 143, 1–5.CrossRefGoogle Scholar
  106. 106.
    Hassoun, J., Croce, F., Armand, M., et al. (2011). Investigation of the O2 electrochemistry in a polymer electrolyte solid-state cell. Angewandte Chemie International Edition, 50, 2999–3002.CrossRefGoogle Scholar
  107. 107.
    Kumar, B., Kumar, J., Leese, R., et al. (2010). A solid-state, rechargeable, long cycle life lithium-air battery. Journal of the Electrochemical Society, 157, A50–A54.CrossRefGoogle Scholar
  108. 108.
    Kitaura, H., & Zhou, H. (2012). Electrochemical performance and reaction mechanism of all-solid-state lithium–air batteries composed of lithium, Li1+xAlyGe2−y(PO4)3 solid electrolyte and carbon nanotube air electrode. Energy & Environmental Science, 5, 9077–9084.CrossRefGoogle Scholar
  109. 109.
    Bruce, P. G., Freunberger, S. A., Hardwick, L. J., et al. (2011). Li–O2 and Li–S batteries with high energy storage. Nature Materials, 11, 19–29.CrossRefGoogle Scholar
  110. 110.
    Li, F., Kitaura, H., & Zhou, H. (2013). The pursuit of rechargeable solid-state Li–air batteries. Energy & Environmental Science, 6, 2302–2311.CrossRefGoogle Scholar
  111. 111.
    Koerver, R., Aygün, I., Leichtweiß, T., et al. (2017). Capacity fade in solid-state batteries: Interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chemistry of Materials, 29, 5574–5582.CrossRefGoogle Scholar
  112. 112.
    Miyashiro, H., Kobayashi, Y., Seki, S., et al. (2005). Fabrication of all-solid-state lithium polymer secondary batteries using Al2O3-coated LiCoO2. Chemistry of Materials, 17, 5603–5605.CrossRefGoogle Scholar
  113. 113.
    Liang, J.-Y., Zeng, X.-X., Zhang, X.-D., et al. (2018). Mitigating interfacial potential drop of cathode-solid electrolyte via ionic conductor layer to enhance interface dynamics for solid batteries. Journal of the American Chemical Society, 140, 6767–6770.CrossRefGoogle Scholar
  114. 114.
    Woo, J. H., Trevey, J. E., Cavanagh, A. S., et al. (2012). Nanoscale interface modification of LiCoO2 by Al2O3 atomic layer deposition for solid-state Li batteries. Journal of the Electrochemical Society, 159, A1120–A1124.CrossRefGoogle Scholar
  115. 115.
    Okumura, T., Nakatsutsumi, T., Ina, T., et al. (2011). Depth-resolved X-ray absorption spectroscopic study on nanoscale observation of the electrode–solid electrolyte interface for all solid state lithium ion batteries. Journal of Materials Chemistry, 21, 10051–10060.CrossRefGoogle Scholar
  116. 116.
    Zhang, W., Leichtweiß, T., Culver, S. P., et al. (2017). The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS Applied Materials & Interfaces, 9, 35888–35896.CrossRefGoogle Scholar
  117. 117.
    Park, K., Yu, B.-C., Jung, J.-W., et al. (2016). Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: Interface between LiCoO2 and garnet-Li7La3Zr2O12. Chemistry of Materials, 28, 8051–8059.CrossRefGoogle Scholar
  118. 118.
    Han, F., Yue, J., Chen, C., et al. (2018). interphase engineering enabled all-ceramic lithium battery. Joule, 2, 497–508.CrossRefGoogle Scholar
  119. 119.
    Dong, T., Zhang, J., Xu, G., et al. (2018). A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy & Environmental Science, 11, 1197–1203.CrossRefGoogle Scholar
  120. 120.
    Wakayama, H., Yonekura, H., & Kawai, Y. (2016). Three-dimensional bicontinuous nanocomposite from a self-assembled block copolymer for a high-capacity all-solid-state lithium battery cathode. Chemistry of Materials, 28, 4453–4459.CrossRefGoogle Scholar
  121. 121.
    Liu, F. -Q., Wang, W. -P., Yin, Y. -X., et al. (2018). Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Science Advances, 4, eaat5383.CrossRefGoogle Scholar
  122. 122.
    Dong, W., Zeng, X.-X., Zhang, X.-D., et al. (2018). Gradiently polymerized solid electrolyte meets with micro-/nanostructured cathode array. ACS Applied Materials & Interfaces, 10, 18005–18011.CrossRefGoogle Scholar
  123. 123.
    Oh, D. Y., Kim, D. H., Jung, S. H., et al. (2017). Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries. Journal of Materials Chemistry A, 5, 20771–20779.CrossRefGoogle Scholar
  124. 124.
    Park, K. H., Oh, D. Y., Choi, Y. E., et al. (2016). Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-Ion batteries. Advanced Materials, 28, 1874–1883.CrossRefGoogle Scholar
  125. 125.
    Monroe, C., & Newman, J. (2005). The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. Journal of the Electrochemical Society, 152, A396–A404.CrossRefGoogle Scholar
  126. 126.
    Monroe, C., & Newman, J. (2004). The effect of interfacial deformation on electrodeposition kinetics. Journal of the Electrochemical Society, 151, A880–A886.CrossRefGoogle Scholar
  127. 127.
    Zeng, X.-X., Yin, Y.-X., Li, N.-W., et al. (2016). Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries. Journal of the American Chemical Society, 138, 15825–15828.CrossRefGoogle Scholar
  128. 128.
    Zekoll, S., Marriner-Edwards, C., Hekselman, A. K. O., et al. (2018). Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy & Environmental Science, 11, 185–201.CrossRefGoogle Scholar
  129. 129.
    Fu, K., Gong, Y., Dai, J., et al. (2016). Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proceedings of the National Academy of Sciences, 113, 7094–7099.CrossRefGoogle Scholar
  130. 130.
    Bai, P., Li, J., Brushett, F. R., et al. (2016). Transition of lithium growth mechanisms in liquid electrolytes. Energy & Environmental Science, 9, 3221–3229.CrossRefGoogle Scholar
  131. 131.
    Zhao, C.-Z., Zhang, X.-Q., Cheng, X.-B., et al. (2017). An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proceedings of the National Academy of Sciences, 114, 11069–11074.CrossRefGoogle Scholar
  132. 132.
    Wang, S., Xu, H., Li, W., et al. (2018). Interfacial chemistry in solid-state batteries: Formation of interphase and its consequences. Journal of the American Chemical Society, 140, 250–257.CrossRefGoogle Scholar
  133. 133.
    Porz, L., Swamy, T., Sheldon, B. W., et al. (2017). Mechanism of lithium metal penetration through inorganic solid electrolytes. Advanced Energy Materials, 7, 1701003.CrossRefGoogle Scholar
  134. 134.
    Sharafi, A., Haslam, C. G., Kerns, R. D., et al. (2017). Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte. Journal of Materials Chemistry A, 5, 21491–21504.CrossRefGoogle Scholar
  135. 135.
    Sharafi, A., Meyer, H. M., Nanda, J., et al. (2016). Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. Journal of Power Sources, 302, 135–139.CrossRefGoogle Scholar
  136. 136.
    Kerman, K., Luntz, A., Viswanathan, V., et al. (2017). Review-practical challenges hindering the development of solid state Li ion batteries. Journal of the Electrochemical Society, 164, A1731–A1744.CrossRefGoogle Scholar
  137. 137.
    Han, F., Westover, A. S., Yue, J., et al. (2019). High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nature Energy, 4, 187–196.CrossRefGoogle Scholar
  138. 138.
    Fan, X., Ji, X., Han, F., et al. (2018). Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Science Advances, 4, eaau9245.CrossRefGoogle Scholar
  139. 139.
    Yang, C., Zhang, L., Liu, B., et al. (2018). Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. Proceedings of the National Academy of Sciences, 115, 3770–3775.CrossRefGoogle Scholar
  140. 140.
    Tanibata, N., Deguchi, M., Hayashi, A., et al. (2017). All-solid-state Na/S batteries with a Na3PS4 electrolyte operating at room temperature. Chemistry of Materials, 29, 5232–5238.CrossRefGoogle Scholar
  141. 141.
    Gao, H., Xin, S., Xue, L., et al. (2018). Stabilizing a high-energy-density rechargeable sodium battery with a solid electrolyte. Chem, 4, 833–844.CrossRefGoogle Scholar
  142. 142.
    Zhao, C., Liu, L., Qi, X., et al. (2018). Solid-state sodium batteries. Advanced Energy Materials, 8, 1703012.CrossRefGoogle Scholar
  143. 143.
    Gao, H., Xue, L., Xin, S., et al. (2018). A high-energy-density potassium battery with a polymer-gel electrolyte and a polyaniline cathode. Angewandte Chemie International Edition, 57, 5449–5453.CrossRefGoogle Scholar
  144. 144.
    Liu, B., Fu, K., Gong, Y., et al. (2017). Rapid thermal annealing of cathode-garnet interface toward high-temperature solid state batteries. Nano Letters, 17, 4917–4923.CrossRefGoogle Scholar
  145. 145.
    Jin, Y., Liu, K., Lang, J., et al. (2018). An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage. Nature Energy, 3, 732–738.CrossRefGoogle Scholar
  146. 146.
    Kato, A., Yamamoto, M., Sakuda, A., et al. (2018). Mechanical properties of Li2S–P2S5 glasses with lithium halides and application in all-solid-state batteries. ACS Applied Energy Materials, 1, 1002–1007.CrossRefGoogle Scholar
  147. 147.
    Koerver, R., Zhang, W., de Biasi, L., et al. (2018). Chemo-mechanical expansion of lithium electrode materials—On the route to mechanically optimized all-solid-state batteries. Energy & Environmental Science, 11, 2142–2158.CrossRefGoogle Scholar
  148. 148.
    Chung, H., & Kang, B. (2017). Mechanical and thermal failure induced by contact between a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte and Li metal in an all solid-state Li cell. Chemistry of Materials, 29, 8611–8619.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Chemistry, Chinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.Shandong UniversityJinanPeople’s Republic of China

Personalised recommendations