Nanostructures and Nanomaterials for Lithium Metal Batteries

  • Chun-Peng Yang
  • Yu-Guo GuoEmail author


Lithium metal batteries consist of a high-capacity cathode (such as oxygen and sulfur) and a Li metal anode and can deliver extremely high theoretical energy densities. The Li metal batteries were proposed earlier than the Li-ion batteries, but the Li metal anode was considered unsafe and the cathodes were hardly reversible. To meet the ever-increasing demand for the high energy density in batteries, Li metal batteries have been recently revisited and gained great interest. The nanotechnology plays a critical role in improving the performance and safety of the Li metal batteries. This chapter introduces the nano engineering in Li metal batteries, including nanostructures and nanomaterials utilized in oxygen cathodes, sulfur cathodes, and Li metal anodes. Rationally designed nanostructures with micropores, mesopores, or macropores are essential to host, constrain, protect, and improve the electrodes per electrode material properties. The nanomaterials, such as porous carbon, carbon nanotubes, graphene, polymer nanofilms, and inorganic nanomaterials, all show different functions such as constructing 3D conductive networks, interface protection, catalysis, and so on. This chapter reviews the nanostructures and nanomaterials in promoting the Li metal batteries, as well as their drawbacks, to provide insights to the nanotechnology in boosting the development of high-energy-density Li metal batteries.


Li–S battery

Lithium-sulfur battery

Li-air battery

Lithium-air battery

Li–O2 battery

Lithium–oxygen battery


Lithium Super Ionic Conductor


International Union of Pure and Applied Chemistry


Oxygen reduction reaction


Oxygen evolution reaction


Bis(trifluoromethylsulfonyl)amine lithium salt






Tetraethylene glycol dimethyl ether


Fluoroethylene carbonate




Poly(methyl methacrylate)


Carbon nanotube


Carbon nanofiber


Chemical vapor deposition


Anodic aluminum oxide


Multiwall carbon nanotube


Graphene oxide


Reduced graphene oxide


Atomic layer deposition


Metal-organic framework


Solid electrolyte interphase


Massive artificial graphite


Scanning electron microscopy


Polyphosphoric acid




Polyethylene glycol




Poly(vinylidene fluoride-co-hexafluoropropylene)


Composite protective layer


  1. 1.
    Abraham, K. M., & Jiang, Z. (1996). A polymer electrolyte-based rechargeable lithium/oxygen battery. Journal of the Electrochemical Society, 143, 1–5.CrossRefGoogle Scholar
  2. 2.
    Hasegawa, S., Imanishi, N., Zhang, T., et al. (2009). Study on lithium/air secondary batteries—Stability of NASICON-type lithium ion conducting glass-ceramics with water. Journal of Power Sources, 189, 371–377.CrossRefGoogle Scholar
  3. 3.
    Shao, Y., Ding, F., Xiao, J., et al. (2013). Making Li-air batteries rechargeable: Material challenges. Advanced Functional Materials, 23, 987–1004.CrossRefGoogle Scholar
  4. 4.
    Wang, J., Li, Y., & Sun, X. (2013). Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–air batteries. Nano Energy, 2, 443–467.CrossRefGoogle Scholar
  5. 5.
    Ottakam Thotiyl, M. M., Freunberger, S. A., Peng, Z., et al. (2013). The carbon electrode in nonaqueous Li–O2 cells. Journal of the American Chemical Society, 135, 494–500.CrossRefGoogle Scholar
  6. 6.
    Ottakam Thotiyl, M. M., Freunberger, S. A., Peng, Z., et al. (2013). A stable cathode for the aprotic Li–O2 battery. Nature Materials, 12, 1050–1056.CrossRefGoogle Scholar
  7. 7.
    Peng, Z., Freunberger, S. A., Chen, Y., et al. (2012). A reversible and higher-rate Li-O2 battery. Science, 337, 563–566.CrossRefGoogle Scholar
  8. 8.
    Yin, Y.-X., Xin, S., Guo, Y.-G., et al. (2013). Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angewandte Chemie International Edition, 52, 13186–13200.CrossRefGoogle Scholar
  9. 9.
    Evers, S., & Nazar, L. F. (2012). New approaches for high energy density lithium-sulfur battery cathodes. Accounts of Chemical Research, 46, 1135–1143.CrossRefGoogle Scholar
  10. 10.
    Ji, X., Lee, K., & Nazar, L. F. (2009). A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nature Materials, 8, 500–506.CrossRefGoogle Scholar
  11. 11.
    Xin, S., Gu, L., Zhao, N.-H., et al. (2012). Smaller sulfur molecules promise better lithium-sulfur batteries. Journal of the American Chemical Society, 134, 18510–18513.CrossRefGoogle Scholar
  12. 12.
    Gao, J., Lowe, M. A., Kiya, Y., et al. (2011). Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: Electrochemical and in-situ X-ray absorption spectroscopic studies. The Journal of Physical Chemistry C, 115, 25132–25137.CrossRefGoogle Scholar
  13. 13.
    Li, Z., Jiang, Y., Yuan, L., et al. (2014). A highly ordered meso@ microporous carbon-supported sulfur@ smaller sulfur core–shell structured cathode for Li–S batteries. ACS Nano, 8, 9295–9303.CrossRefGoogle Scholar
  14. 14.
    Xin, S., Yin, Y. X., Wan, L. J., et al. (2013). Encapsulation of sulfur in a hollow porous carbon substrate for superior Li-S batteries with long lifespan. Particle & Particle Systems Characterization, 30, 321–325.CrossRefGoogle Scholar
  15. 15.
    Ye, H., Yin, Y.-X., Xin, S., et al. (2013). Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li–S batteries. Journal of Materials Chemistry A, 1, 6602–6608.CrossRefGoogle Scholar
  16. 16.
    Zheng, G., Yang, Y., Cha, J. J., et al. (2011). Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Letters, 11, 4462–4467.CrossRefGoogle Scholar
  17. 17.
    Lee, J. T., Zhao, Y., Thieme, S., et al. (2013). Sulfur-infiltrated micro- and mesoporous silicon carbide-derived carbon cathode for high-performance lithium sulfur batteries. Advanced Materials, 25, 4573–4579.CrossRefGoogle Scholar
  18. 18.
    Liang, C., Dudney, N. J., & Howe, J. Y. (2009). Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chemistry of Materials, 21, 4724–4730.CrossRefGoogle Scholar
  19. 19.
    He, G., Ji, X., & Nazar, L. (2011). High “C” rate Li-S cathodes: Sulfur imbibed bimodal porous carbons. Energy & Environmental Science, 4, 2878–2883.CrossRefGoogle Scholar
  20. 20.
    Rybarczyk, M. K., Peng, H.-J., Tang, C., et al. (2016). Porous carbon derived from rice husks as sustainable bioresources: Insights into the role of micro-/mesoporous hierarchy in hosting active species for lithium–sulphur batteries. Green Chemistry, 18, 5169–5179.CrossRefGoogle Scholar
  21. 21.
    Sun, Q., He, B., Zhang, X.-Q., et al. (2015). Engineering of hollow core-shell interlinked carbon spheres for highly stable lithium-sulfur batteries. ACS Nano, 9, 8504–8513.CrossRefGoogle Scholar
  22. 22.
    Zhang, B., Qin, X., Li, G. R., et al. (2010). Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy & Environmental Science, 3, 1531–1537.CrossRefGoogle Scholar
  23. 23.
    Wang, J., Chew, S. Y., Zhao, Z. W., et al. (2008). Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon, 46, 229–235.CrossRefGoogle Scholar
  24. 24.
    Schuster, J., He, G., Mandlmeier, B., et al. (2012). Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. Angewandte Chemie International Edition, 51, 3591–3595.CrossRefGoogle Scholar
  25. 25.
    Jayaprakash, N., Shen, J., Moganty, S. S., et al. (2011). Porous hollow Carbon@Sulfur composites for high-power lithium-sulfur batteries. Angewandte Chemie International Edition, 50, 5904–5908.CrossRefGoogle Scholar
  26. 26.
    Su, Y.-S., Fu, Y., & Manthiram, A. (2012). Self-weaving sulfur–carbon composite cathodes for high rate lithium–sulfur batteries. Physical Chemistry Chemical Physics, 14, 14495–14499.CrossRefGoogle Scholar
  27. 27.
    Guo, J., Xu, Y., & Wang, C. (2011). Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Letters, 11, 4288–4294.CrossRefGoogle Scholar
  28. 28.
    Ji, L., Rao, M., Aloni, S., et al. (2011). Porous carbon nanofiber–sulfur composite electrodes for lithium/sulfur cells. Energy & Environmental Science, 4, 5053–5059.CrossRefGoogle Scholar
  29. 29.
    He, G., Mandlmeier, B., Schuster, J., et al. (2014). Bimodal mesoporous carbon nanofibers with high porosity: Freestanding and embedded in membranes for lithium-sulfur batteries. Chemistry of Materials, 26, 3879–3886.CrossRefGoogle Scholar
  30. 30.
    Dörfler, S., Hagen, M., Althues, H., et al. (2012). High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium–sulfur batteries. Chemical Communications, 48, 4097–4099.CrossRefGoogle Scholar
  31. 31.
    Cheng, X.-B., Huang, J.-Q., Zhang, Q., et al. (2014). Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries. Nano Energy, 4, 65–72.CrossRefGoogle Scholar
  32. 32.
    Mkhoyan, K. A., Contryman, A. W., Silcox, J., et al. (2009). Atomic and electronic structure of graphene-oxide. Nano Letters, 9, 1058–1063.CrossRefGoogle Scholar
  33. 33.
    Wang, H., Yang, Y., Liang, Y., et al. (2011). Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Letters, 11, 2644–2647.CrossRefGoogle Scholar
  34. 34.
    Ji, L., Rao, M., Zheng, H., et al. (2011). Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. Journal of the American Chemical Society, 133, 18522–18525.CrossRefGoogle Scholar
  35. 35.
    Xu, H., Deng, Y., Shi, Z., et al. (2013). Graphene-encapsulated sulfur (GES) composites with a core–shell structure as superior cathode materials for lithium–sulfur batteries. Journal of Materials Chemistry A, 1, 15142–15149.CrossRefGoogle Scholar
  36. 36.
    Wang, J.-Z., Lu, L., Choucair, M., et al. (2011). Sulfur-graphene composite for rechargeable lithium batteries. Journal of Power Sources, 196, 7030–7034.CrossRefGoogle Scholar
  37. 37.
    Wei, Z.-K., Chen, J.-J., Qin, L.-L., et al. (2012). Two-step hydrothermal method for synthesis of sulfur-graphene hybrid and its application in lithium sulfur batteries. Journal of the Electrochemical Society, 159, A1236–A1239.CrossRefGoogle Scholar
  38. 38.
    Xu, J., Shui, J., Wang, J., et al. (2014). Sulfur-graphene nanostructured cathodes via ball-milling for high-performance lithium-sulfur batteries. ACS Nano, 8, 10920–10930.CrossRefGoogle Scholar
  39. 39.
    Zhou, G., Yin, L.-C., Wang, D.-W., et al. (2013). Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. ACS Nano, 7, 5367–5375.CrossRefGoogle Scholar
  40. 40.
    Zu, C., & Manthiram, A. (2013). Hydroxylated graphene-sulfur nanocomposites for high-rate lithium-sulfur batteries. Advanced Energy Materials, 3, 1008–1012.CrossRefGoogle Scholar
  41. 41.
    Hou, Y., Li, J., Gao, X., et al. (2016). 3D dual-confined sulfur encapsulated in porous carbon nanosheets and wrapped with graphene aerogels as a cathode for advanced lithium sulfur batteries. Nanoscale, 8, 8228–8235.CrossRefGoogle Scholar
  42. 42.
    Li, H., Yang, X., Wang, X., et al. (2015). Dense integration of graphene and sulfur through the soft approach for compact lithium/sulfur battery cathode. Nano Energy, 12, 468–475.CrossRefGoogle Scholar
  43. 43.
    Zhang, C., Liu, D.-H., Lv, W., et al. (2015). A high-density graphene–sulfur assembly: A promising cathode for compact Li–S batteries. Nanoscale, 7, 5592–5597.CrossRefGoogle Scholar
  44. 44.
    Lu, S., Cheng, Y., Wu, X., et al. (2013). Significantly improved long-cycle stability in high-rate Li–S batteries enabled by coaxial graphene wrapping over sulfur-coated carbon nanofibers. Nano Letters, 13, 2485–2489.CrossRefGoogle Scholar
  45. 45.
    Xi, K., Kidambi, P. R., Chen, R., et al. (2014). Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries. Nanoscale, 6, 5746–5753.CrossRefGoogle Scholar
  46. 46.
    Zhou, G., Li, L., Ma, C., et al. (2015). A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries. Nano Energy, 11, 356–365.CrossRefGoogle Scholar
  47. 47.
    Deng, W., Zhou, X., Fang, Q., et al. (2016). Graphene/sulfur composites with a foam-like porous architecture and controllable pore size for high performance lithium-sulfur batteries. ChemNanoMat, 2, 952–958.CrossRefGoogle Scholar
  48. 48.
    Zhang, K., Xie, K., Yuan, K., et al. (2017). Enabling effective polysulfide trapping and high sulfur loading via a pyrrole modified graphene foam host for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 5, 7309–7315.CrossRefGoogle Scholar
  49. 49.
    Li, N., Zheng, M., Lu, H., et al. (2012). High-rate lithium–sulfur batteries promoted by reduced graphene oxide coating. Chemical Communications, 48, 4106–4108.CrossRefGoogle Scholar
  50. 50.
    Moon, J., Park, J., Jeon, C., et al. (2015). An electrochemical approach to graphene oxide coated sulfur for long cycle life. Nanoscale, 7, 13249–13255.CrossRefGoogle Scholar
  51. 51.
    Ding, B., Yuan, C., Shen, L., et al. (2013). Chemically tailoring the nanostructure of graphene nanosheets to confine sulfur for high-performance lithium-sulfur batteries. Journal of Materials Chemistry A, 1, 1096–1101.CrossRefGoogle Scholar
  52. 52.
    Zhao, M.-Q., Liu, X.-F., Zhang, Q., et al. (2012). Graphene/single-walled carbon nanotube hybrids: One-step catalytic growth and applications for high-rate Li–S batteries. ACS Nano, 6, 10759–10769.CrossRefGoogle Scholar
  53. 53.
    Du, W.-C., Yin, Y.-X., Zeng, X.-X., et al. (2016). Wet chemistry synthesis of multidimensional nanocarbon-sulfur hybrid materials with ultrahigh sulfur loading for lithium-sulfur batteries. ACS Applied Materials & Interfaces, 8, 3584–3590.CrossRefGoogle Scholar
  54. 54.
    Song, J., Gordin, M. L., Xu, T., et al. (2015). Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes. Angewandte Chemie International Edition, 54, 4325–4329.CrossRefGoogle Scholar
  55. 55.
    Yang, C.-P., Yin, Y.-X., Ye, H., et al. (2014). Insight into the effect of boron doping on sulfur/carbon cathode in lithium–sulfur batteries. ACS Applied Materials & Interfaces, 6, 8789–8795.CrossRefGoogle Scholar
  56. 56.
    Balach, J., Singh, H. K., Gomoll, S., et al. (2016). Synergistically enhanced polysulfide chemisorption using a flexible hybrid separator with N and S dual-doped mesoporous carbon coating for advanced lithium-sulfur batteries. ACS Applied Materials & Interfaces, 8, 14586–14595.CrossRefGoogle Scholar
  57. 57.
    Evers, S., Yim, T., & Nazar, L. F. (2012). Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li–S battery. The Journal of Physical Chemistry C, 116, 19653–19658.CrossRefGoogle Scholar
  58. 58.
    Wei Seh, Z., Li, W., Cha, J. J., et al. (2013). Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nature Communications, 4, 1331.CrossRefGoogle Scholar
  59. 59.
    Pang, Q., Kundu, D., Cuisinier, M., et al. (2014). Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nature Communications, 5, 4759.CrossRefGoogle Scholar
  60. 60.
    Tao, X., Wang, J., Ying, Z., et al. (2014). Strong sulfur binding with conducting magnéli-phase TinO2n–1 nanomaterials for improving lithium-sulfur batteries. Nano Letters, 14, 5288–5294.CrossRefGoogle Scholar
  61. 61.
    Ji, X., Evers, S., Black, R., et al. (2011). Stabilizing lithium–sulphur cathodes using polysulphide reservoirs. Nature Communications, 2, 325.CrossRefGoogle Scholar
  62. 62.
    Han, X., Xu, Y., Chen, X., et al. (2013). Reactivation of dissolved polysulfides in Li–S batteries based on atomic layer deposition of Al2O3 in nanoporous carbon cloth. Nano Energy, 2, 1197–1206.CrossRefGoogle Scholar
  63. 63.
    Zhao, T., Ye, Y., Peng, X., et al. (2016). Advanced lithium-sulfur batteries enabled by a bio-inspired polysulfide adsorptive brush. Advanced Functional Materials, 26, 8418–8426.CrossRefGoogle Scholar
  64. 64.
    He, J., Luo, L., Chen, Y., et al. (2017). Yolk-shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries. Advanced Materials, 29, 1702707.CrossRefGoogle Scholar
  65. 65.
    Liang, X., Kwok, C. Y., Lodi-Marzano, F., et al. (2016). Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: The “Goldilocks” principle. Advanced Energy Materials, 6, 1501636.CrossRefGoogle Scholar
  66. 66.
    Kim, H., Lee, J. T., Lee, D.-C., et al. (2013). Plasma-enhanced atomic layer deposition of ultrathin oxide coatings for stabilized lithium-sulfur batteries. Advanced Energy Materials, 3, 1308–1315.CrossRefGoogle Scholar
  67. 67.
    Liu, X., Huang, J.-Q., Zhang, Q., et al. (2017). Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Advanced Materials, 29, 1601759.CrossRefGoogle Scholar
  68. 68.
    Seh, Z. W., Yu, J. H., Li, W., et al. (2014). Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nature Communications, 5, 5017.CrossRefGoogle Scholar
  69. 69.
    Ma, L., Wei, S., Zhuang, H. L., et al. (2015). Hybrid cathode architectures for lithium batteries based on TiS2 and sulfur. Journal of Materials Chemistry A, 3, 19857–19866.CrossRefGoogle Scholar
  70. 70.
    Xu, H., & Manthiram, A. (2017). Hollow cobalt sulfide polyhedra-enabled long-life, high areal-capacity lithium-sulfur batteries. Nano Energy, 33, 124–129.CrossRefGoogle Scholar
  71. 71.
    Pang, Q., Kundu, D., & Nazar, L. F. (2016). A graphene-like metallic cathode host for long-life and high-loading lithium–sulfur batteries. Materials Horizons, 3, 130–136.CrossRefGoogle Scholar
  72. 72.
    Yuan, Z., Peng, H.-J., Hou, T.-Z., et al. (2016). Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Letters, 16, 519–527.CrossRefGoogle Scholar
  73. 73.
    Zhang, S. S., & Tran, D. T. (2016). Pyrite FeS2 as an efficient adsorbent of lithium polysulphide for improved lithium–sulphur batteries. Journal of Materials Chemistry A, 4, 4371–4374.CrossRefGoogle Scholar
  74. 74.
    Tang, W., Chen, Z., Tian, B., et al. (2017). In situ observation and electrochemical study of encapsulated sulfur nanoparticles by MoS2 flakes. Journal of the American Chemical Society, 139, 10133–10141.CrossRefGoogle Scholar
  75. 75.
    Liang, X., Garsuch, A., & Nazar, L. F. (2015). Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angewandte Chemie International Edition, 54, 3907–3911.CrossRefGoogle Scholar
  76. 76.
    Cui, Z., Zu, C., Zhou, W., et al. (2016). Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Advanced Materials, 28, 6926–6931.CrossRefGoogle Scholar
  77. 77.
    Zhou, J., Li, R., Fan, X., et al. (2014). Rational design of a metal–organic framework host for sulfur storage in fast, long-cycle Li–S batteries. Energy & Environmental Science, 7, 2715–2724.CrossRefGoogle Scholar
  78. 78.
    Li, Z., Zhang, J., & Lou, X. W. (2015). Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angewandte Chemie International Edition, 54, 12886–12890.CrossRefGoogle Scholar
  79. 79.
    Chung, S.-H., & Manthiram, A. (2013). Nano-cellular carbon current collectors with stable cyclability for Li–S batteries. Journal of Materials Chemistry A, 1, 9590–9596.CrossRefGoogle Scholar
  80. 80.
    Zhang, S. S., & Tran, D. T. (2012). A proof-of-concept lithium/sulfur liquid battery with exceptionally high capacity density. Journal of Power Sources, 211, 169–172.CrossRefGoogle Scholar
  81. 81.
    Fu, Y., Su, Y.-S., & Manthiram, A. (2013). Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes. Angewandte Chemie International Edition, 52, 6930–6935.CrossRefGoogle Scholar
  82. 82.
    Barchasz, C., Mesguich, F., Dijon, J., et al. (2012). Novel positive electrode architecture for rechargeable lithium/sulfur batteries. Journal of Power Sources, 211, 19–26.CrossRefGoogle Scholar
  83. 83.
    Chung, S.-H., & Manthiram, A. (2014). Carbonized eggshell membrane as a natural polysulfide reservoir for highly reversible Li-S batteries. Advanced Materials, 26, 1360–1365.CrossRefGoogle Scholar
  84. 84.
    Huang, X., Sun, B., Li, K., et al. (2013). Mesoporous graphene paper immobilised sulfur as a flexible electrode for lithium–sulfur batteries. Journal of Materials Chemistry A, 1, 13484–13489.CrossRefGoogle Scholar
  85. 85.
    Sun, L., Kong, W., Jiang, Y., et al. (2015). Super-aligned carbon nanotube/graphene hybrid materials as a framework for sulfur cathodes in high performance lithium sulfur batteries. Journal of Materials Chemistry A, 3, 5305–5312.CrossRefGoogle Scholar
  86. 86.
    Chen, Y., Lu, S., Wu, X., et al. (2015). Flexible carbon nanotube–graphene/sulfur composite film: Free-standing cathode for high-performance lithium/sulfur batteries. The Journal of Physical Chemistry C, 119, 10288–10294.CrossRefGoogle Scholar
  87. 87.
    Zhu, L., Peng, H.-J., Liang, J., et al. (2015). Interconnected carbon nanotube/graphene nanosphere scaffolds as free-standing paper electrode for high-rate and ultra-stable lithium–sulfur batteries. Nano Energy, 11, 746–755.CrossRefGoogle Scholar
  88. 88.
    Su, Y.-S., & Manthiram, A. (2012). Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nature Communications, 3, 1166.CrossRefGoogle Scholar
  89. 89.
    Su, Y.-S., Fu, Y., Cochell, T., et al. (2013). A strategic approach to recharging lithium-sulphur batteries for long cycle life. Nature Communications, 4, 2985.CrossRefGoogle Scholar
  90. 90.
    Su, J., Wu, X.-L., Yang, C.-P., et al. (2012). Self-assembled LiFePO4/C nano/microspheres by using phytic acid as phosphorus source. The Journal of Physical Chemistry C, 116, 5019–5024.CrossRefGoogle Scholar
  91. 91.
    Zu, C., Su, Y.-S., Fu, Y., et al. (2013). Improved lithium-sulfur cells with a treated carbon paper interlayer. Physical Chemistry Chemical Physics, 15, 2291–2297.CrossRefGoogle Scholar
  92. 92.
    Manthiram, A., Fu, Y., Chung, S.-H., et al. (2014). Rechargeable lithium-sulfur batteries. Chemical Reviews, 114, 11751–11787.CrossRefGoogle Scholar
  93. 93.
    Zhou, G., Pei, S., Li, L., et al. (2014). A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Advanced Materials, 26, 625–631.CrossRefGoogle Scholar
  94. 94.
    Bai, S., Liu, X., Zhu, K., et al. (2016). Metal–organic framework-based separator for lithium–sulfur batteries. Nature Energy, 1, 16094.CrossRefGoogle Scholar
  95. 95.
    Xu, Z.-L., Kim, J.-K., & Kang, K. (2018). Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today, 19, 84–107.CrossRefGoogle Scholar
  96. 96.
    Yang, C. P., Yin, Y. X., Zhang, S. F., et al. (2015). Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nature Communications, 6, 8058.CrossRefGoogle Scholar
  97. 97.
    Yun, Q., He, Y.-B., Lv, W., et al. (2016). Chemical dealloying derived 3D porous current collector for Li metal anodes. Advanced Materials, 28, 6932–6939.CrossRefGoogle Scholar
  98. 98.
    Lu, L.-L., Ge, J., Yang, J.-N., et al. (2016). Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Letters, 16, 4431–4437.CrossRefGoogle Scholar
  99. 99.
    Ke, X., Cheng, Y., Liu, J., et al. (2018). Hierarchically bicontinuous porous copper as advanced 3D skeleton for stable lithium storage. ACS Applied Materials & Interfaces, 10, 13552–13561.CrossRefGoogle Scholar
  100. 100.
    Wang, S.-H., Yin, Y.-X., Zuo, T.-T., et al. (2017). Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels. Advanced Materials, 29, 1703729.CrossRefGoogle Scholar
  101. 101.
    Sun, Y., Zheng, G., Seh, Zhi W., et al. (2016). Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries. Chem, 1, 287–297.CrossRefGoogle Scholar
  102. 102.
    Mukherjee, R., Thomas, A. V., Datta, D., et al. (2014). Defect-induced plating of lithium metal within porous graphene networks. Nature Communications, 5, 3710.CrossRefGoogle Scholar
  103. 103.
    Cheng, X.-B., Peng, H.-J., Huang, J.-Q., et al. (2015). Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium-sulfur batteries. ACS Nano, 9, 6373–6382.CrossRefGoogle Scholar
  104. 104.
    Zhang, R., Cheng, X.-B., Zhao, C.-Z., et al. (2016). Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Advanced Materials, 28, 2155–2162.CrossRefGoogle Scholar
  105. 105.
    Xie, K., Wei, W., Yuan, K., et al. (2016). Toward dendrite-free lithium deposition via structural and interfacial synergistic effects of 3D Graphene@Ni scaffold. ACS Applied Materials & Interfaces, 8, 26091–26097.CrossRefGoogle Scholar
  106. 106.
    Liu, L., Yin, Y.-X., Li, J.-Y., et al. (2017). Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes. Joule, 1, 563–575.CrossRefGoogle Scholar
  107. 107.
    Zuo, T. T., Wu, X. W., Yang, C. P., et al. (2017). Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Advanced Materials, 29, 1700389.CrossRefGoogle Scholar
  108. 108.
    Jin, C., Sheng, O., Lu, Y., et al. (2018). Metal oxide nanoparticles induced step-edge nucleation of stable Li metal anode working under an ultrahigh current density of 15 mA cm−2. Nano Energy, 45, 203–209.CrossRefGoogle Scholar
  109. 109.
    Cheng, X.-B., Hou, T.-Z., Zhang, R., et al. (2016). Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Advanced Materials, 28, 2888–2895.CrossRefGoogle Scholar
  110. 110.
    Bai, P., Li, J., Brushett, F. R., et al. (2016). Transition of lithium growth mechanisms in liquid electrolytes. Energy & Environmental Science, 9, 3221–3229.CrossRefGoogle Scholar
  111. 111.
    Zuo, T.-T., Yin, Y.-X., Wang, S.-H., et al. (2018). Trapping lithium into hollow silica microspheres with a carbon nanotube core for dendrite-free lithium metal anodes. Nano Letters, 18, 297–301.CrossRefGoogle Scholar
  112. 112.
    Yan, K., Lu, Z., Lee, H.-W., et al. (2016). Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nature Energy, 1, 16010.CrossRefGoogle Scholar
  113. 113.
    Deng, W., Zhu, W., Zhou, X., et al. (2018). Highly reversible Li plating confined in three-dimensional interconnected microchannels toward high-rate and stable metallic lithium anodes. ACS Applied Materials & Interfaces, 10, 20387–20395.CrossRefGoogle Scholar
  114. 114.
    Jin, C., Sheng, O., Luo, J., et al. (2017). 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy, 37, 177–186.CrossRefGoogle Scholar
  115. 115.
    Zhang, Y., Luo, W., Wang, C., et al. (2017). High capacity, low tortuosity and channel-guided lithium metal anode. Proceedings of the National Academy of Sciences, 114, 3584–3589.CrossRefGoogle Scholar
  116. 116.
    Zhang, Y., Wang, C., Pastel, G., et al. (2018). 3D wettable framework for dendrite-free alkali metal anodes. Advanced Energy Materials, 8, 1800635.CrossRefGoogle Scholar
  117. 117.
    Zhang, R., Chen, X.-R., Chen, X., et al. (2017). Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angewandte Chemie International Edition, 56, 7764–7768.CrossRefGoogle Scholar
  118. 118.
    Liang, Z., Lin, D., Zhao, J., et al. (2016). Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proceedings of the National Academy of Sciences, 113, 2862–2867.CrossRefGoogle Scholar
  119. 119.
    Liu, Y., Lin, D., Liang, Z., et al. (2016). Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nature Communications, 7, 10992.CrossRefGoogle Scholar
  120. 120.
    Lin, D., Liu, Y., Liang, Z., et al. (2016). Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nature Nanotechnology, 11, 626–632.CrossRefGoogle Scholar
  121. 121.
    Liu, W., Lin, D., Pei, A., et al. (2016). Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement. Journal of the American Chemical Society, 138, 15443–15450.CrossRefGoogle Scholar
  122. 122.
    Lu, D., Shao, Y., Lozano, T., et al. (2015). Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Advanced Energy Materials, 5, 1400993.CrossRefGoogle Scholar
  123. 123.
    Wood, K. N., Kazyak, E., Chadwick, A. F., et al. (2016). Dendrites and pits: Untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Central Science, 2, 790–801.CrossRefGoogle Scholar
  124. 124.
    Kim, H., Jeong, G., Kim, Y.-U., et al. (2013). Metallic anodes for next generation secondary batteries. Chemical Society Reviews, 42, 9011–9034.CrossRefGoogle Scholar
  125. 125.
    Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews, 104, 4303–4418.CrossRefGoogle Scholar
  126. 126.
    Xu, D., Wang, Z. L., Xu, J. J., et al. (2012). Novel DMSO-based electrolyte for high performance rechargeable Li-O2 batteries. Chemical Communications, 48, 6948–6950.CrossRefGoogle Scholar
  127. 127.
    Johnson, L., Li, C., Liu, Z., et al. (2014). The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nature Chemistry, 6, 1091–1099.CrossRefGoogle Scholar
  128. 128.
    MacFarlane, D. R., Forsyth, M., Howlett, P. C., et al. (2007). Ionic liquids in electrochemical devices and processes: Managing interfacial electrochemistry. Accounts of Chemical Research, 40, 1165–1173.CrossRefGoogle Scholar
  129. 129.
    Armand, M., Endres, F., MacFarlane, D. R., et al. (2009). Ionic-liquid materials for the electrochemical challenges of the future. Nature Materials, 8, 621–629.CrossRefGoogle Scholar
  130. 130.
    Lu, Y., Das, S. K., Moganty, S. S., et al. (2012). Ionic liquid-nanoparticle hybrid electrolytes and their application in secondary lithium-metal batteries. Advanced Materials, 24, 4430–4435.CrossRefGoogle Scholar
  131. 131.
    Hu, J. J., Long, G. K., Liu, S., et al. (2014). A LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and cycle stability for a Li-S battery. Chemical Communications, 50, 14647–14650.CrossRefGoogle Scholar
  132. 132.
    Miao, R., Yang, J., Feng, X., et al. (2014). Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. Journal of Power Sources, 271, 291–297.CrossRefGoogle Scholar
  133. 133.
    Aurbach, D., & Zaban, A. (1993). Impedance spectroscopy of lithium electrodes: Part 1. General behavior in propylene carbonate solutions and the correlation to surface chemistry and cycling efficiency. Journal of Electroanalytical Chemistry, 348, 155–179.CrossRefGoogle Scholar
  134. 134.
    Qian, J., Henderson, W. A., Xu, W., et al. (2015). High rate and stable cycling of lithium metal anode. Nature Communications, 6, 6362.CrossRefGoogle Scholar
  135. 135.
    Suo, L., Hu, Y.-S. S., Li, H., et al. (2013). A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nature Communications, 4, 1481.CrossRefGoogle Scholar
  136. 136.
    Xiong, S., Xie, K., Diao, Y., et al. (2014). Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries. Journal of Power Sources, 246, 840–845.CrossRefGoogle Scholar
  137. 137.
    Li, W., Yao, H., Yan, K., et al. (2015). The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nature Communications, 6, 7436.CrossRefGoogle Scholar
  138. 138.
    Yan, C., Cheng, X.-B., Zhao, C.-Z., et al. (2016). Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: The role of polysulfides on lithium anode. Journal of Power Sources, 327, 212–220.CrossRefGoogle Scholar
  139. 139.
    Ding, F., Xu, W., Graff, G. L., et al. (2013). Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. Journal of the American Chemical Society, 135, 4450–4456.CrossRefGoogle Scholar
  140. 140.
    Wu, F., Qian, J., Chen, R., et al. (2014). An effective approach to protect lithium anode and improve cycle performance for Li-S batteries. ACS Applied Materials & Interfaces, 6, 15542–15549.CrossRefGoogle Scholar
  141. 141.
    Jia, W., Fan, C., Wang, L., et al. (2016). Extremely accessible potassium nitrate (KNO3) as the highly efficient electrolyte additive in lithium battery. ACS Applied Materials & Interfaces, 8, 15399–15405.CrossRefGoogle Scholar
  142. 142.
    Zhang, S. S. (2012). Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochimica Acta, 70, 344–348.CrossRefGoogle Scholar
  143. 143.
    Zhao, C.-Z., Cheng, X.-B., Zhang, R., et al. (2016). Li2S5-based ternary-salt electrolyte for robust lithium metal anode. Energy Storage Materials, 3, 77–84.CrossRefGoogle Scholar
  144. 144.
    Liu, Q. C., Xu, J. J., Yuan, S., et al. (2015). Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries. Advanced Materials, 27, 5241–5247.CrossRefGoogle Scholar
  145. 145.
    Cheng, X.-B., Yan, C., Chen, X., et al. (2017). Implantable solid electrolyte interphase in lithium-metal batteries. Chem, 2, 258–270.CrossRefGoogle Scholar
  146. 146.
    Li, N. W., Yin, Y. X., Yang, C. P., et al. (2016). An artificial solid electrolyte interphase layer for stable lithium metal anodes. Advanced Materials, 28, 1853–1858.CrossRefGoogle Scholar
  147. 147.
    Monroe, C., & Newman, J. (2005). The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. Journal of the Electrochemical Society, 152, A396–A404.CrossRefGoogle Scholar
  148. 148.
    Stone, G. M., Mullin, S. A., Teran, A. A., et al. (2012). Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries. Journal of the Electrochemical Society, 159, A222–A227.CrossRefGoogle Scholar
  149. 149.
    Basile, A., Bhatt, A. I., & O’Mullane, A. P. (2016). Stabilizing lithium metal using ionic liquids for long-lived batteries. Nature Communications, 7, 11794.CrossRefGoogle Scholar
  150. 150.
    Umeda, G. A., Menke, E., Richard, M., et al. (2011). Protection of lithium metal surfaces using tetraethoxysilane. Journal of Materials Chemistry, 21, 1593–1599.CrossRefGoogle Scholar
  151. 151.
    Wu, M., Wen, Z., Liu, Y., et al. (2011). Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries. Journal of Power Sources, 196, 8091–8097.CrossRefGoogle Scholar
  152. 152.
    Ma, G., Wen, Z., Wu, M., et al. (2014). A lithium anode protection guided highly-stable lithium-sulfur battery. Chemical Communications, 50, 14209–14212.CrossRefGoogle Scholar
  153. 153.
    Wu, M., Wen, Z., Jin, J., et al. (2016). Trimethylsilyl chloride-modified Li anode for enhanced performance of Li–S cells. ACS Applied Materials & Interfaces, 8, 16386–16395.CrossRefGoogle Scholar
  154. 154.
    Kozen, A. C., Lin, C. F., Pearse, A. J., et al. (2015). Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano, 9, 5884–5892.CrossRefGoogle Scholar
  155. 155.
    Kazyak, E., Wood, K. N., & Dasgupta, N. P. (2015). Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments. Chemistry of Materials, 27, 6457–6462.CrossRefGoogle Scholar
  156. 156.
    Cao, Y., Meng, X., & Elam, J. W. (2016). Atomic layer deposition of LixAlyS solid-state electrolytes for stabilizing lithium-metal anodes. ChemElectroChem, 3, 858–863.CrossRefGoogle Scholar
  157. 157.
    Chen, L., Chen, K.-S., Chen, X., et al. (2018). Novel ALD chemistry enabled low-temperature synthesis of lithium fluoride coatings for durable lithium anodes. ACS Applied Materials & Interfaces, 10, 26972–26981.CrossRefGoogle Scholar
  158. 158.
    Wang, L., Wang, Q., Jia, W., et al. (2017). Li metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries. Journal of Power Sources, 342, 175–182.CrossRefGoogle Scholar
  159. 159.
    Zheng, G., Lee, S., Liang, Z., et al. (2014). Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nature Nanotechnology, 9, 618–623.CrossRefGoogle Scholar
  160. 160.
    Yan, K., Lee, H.-W., Gao, T., et al. (2014). Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Letters, 14, 6016–6022.CrossRefGoogle Scholar
  161. 161.
    Tian, H., Seh, Z. W., Yan, K., et al. (2017). Theoretical investigation of 2D layered materials as protective films for lithium and sodium metal anodes. Advanced Energy Materials, 7, 1602528.CrossRefGoogle Scholar
  162. 162.
    Zheng, G., Wang, C., Pei, A., et al. (2016). High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS Energy Letters, 1, 1247–1255.CrossRefGoogle Scholar
  163. 163.
    Liang, Z., Zheng, G., Liu, C., et al. (2015). Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Letters, 15, 2910–2916.CrossRefGoogle Scholar
  164. 164.
    Wang, Y., He, P., & Zhou, H. (2011). A lithium–air capacitor–battery based on a hybrid electrolyte. Energy & Environmental Science, 4, 4994–4999.CrossRefGoogle Scholar
  165. 165.
    Wang, X., Hou, Y., Zhu, Y., et al. (2013). An aqueous rechargeable lithium battery using coated Li metal as anode. Scientific Reports, 3, 1401.CrossRefGoogle Scholar
  166. 166.
    Lee, H., Lee, D. J., Kim, Y.-J., et al. (2015). A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. Journal of Power Sources, 284, 103–108.CrossRefGoogle Scholar
  167. 167.
    Liu, Y., Lin, D., Yuen, P. Y., et al. (2017). An artificial solid electrolyte interphase with high Li-Ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Advanced Materials, 29, 1605531.CrossRefGoogle Scholar
  168. 168.
    Yang, C., Liu, B., Jiang, F., et al. (2017). Garnet/polymer hybrid ion-conducting protective layer for stable lithium metal anode. Nano Research, 10, 4256–4265.CrossRefGoogle Scholar
  169. 169.
    Choi, J., & Aurbach, D. (2016). Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials, 1, 16013.CrossRefGoogle Scholar
  170. 170.
    Busche, M., Adelhelm, P., Sommer, H., et al. (2014). Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates. Journal of Power Sources, 259, 289–299.CrossRefGoogle Scholar
  171. 171.
    Zhu, B., Jin, Y., Hu, X., et al. (2016). Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Advanced Materials, 29, 1603755.CrossRefGoogle Scholar
  172. 172.
    Lim, H.-D., Park, K.-Y., Song, H., et al. (2013). Enhanced power and rechargeability of a Li−O2 battery based on a hierarchical-fibril CNT electrode. Advanced Materials, 25, 1348–1352.CrossRefGoogle Scholar
  173. 173.
    Mitchell, R. R., Gallant, B. M., Thompson, C. V., et al. (2011). All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries. Energy & Environmental Science, 4, 2952–2958.CrossRefGoogle Scholar
  174. 174.
    Sun, B., Wang, B., Su, D., et al. (2012). Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance. Carbon, 50, 727–733.CrossRefGoogle Scholar
  175. 175.
    Xiao, J., Mei, D., Li, X., et al. (2011). Hierarchically porous graphene as a lithium-air battery electrode. Nano Letters, 11, 5071–5078.CrossRefGoogle Scholar
  176. 176.
    Guo, Z., Zhou, D., Dong, X., et al. (2013). Ordered hierarchical mesoporous/macroporous carbon: A high-performance catalyst for rechargeable Li–O2 batteries. Advanced Materials, 25, 5668–5672.CrossRefGoogle Scholar
  177. 177.
    Zhao, G., Zhang, L., Lv, J., et al. (2016). A graphitic foam framework with hierarchical pore structure as self-supported electrodes of Li–O2 batteries and Li ion batteries. Journal of Materials Chemistry A, 4, 1399–1407.CrossRefGoogle Scholar
  178. 178.
    Shen, Y., Sun, D., Yu, L., et al. (2013). A high-capacity lithium–air battery with Pd modified carbon nanotube sponge cathode working in regular air. Carbon, 62, 288–295.CrossRefGoogle Scholar
  179. 179.
    Shui, J., Du, F., Xue, C., et al. (2014). Vertically aligned N-doped coral-like carbon fiber arrays as efficient air electrodes for high-performance nonaqueous Li–O2 batteries. ACS Nano, 8, 3015–3022.CrossRefGoogle Scholar
  180. 180.
    Han, J., Guo, X., Ito, Y., et al. (2016). Effect of chemical doping on cathodic performance of bicontinuous nanoporous graphene for Li-O2 batteries. Advanced Energy Materials, 6, 1501870.CrossRefGoogle Scholar
  181. 181.
    Zhao, C., Yu, C., Liu, S., et al. (2015). 3D porous N-doped graphene frameworks made of interconnected nanocages for ultrahigh-rate and long-life Li–O2 batteries. Advanced Functional Materials, 25, 6913–6920.CrossRefGoogle Scholar
  182. 182.
    Li, Y., Wang, J., Li, X., et al. (2011). Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries. Electrochemistry Communications, 13, 668–672.CrossRefGoogle Scholar
  183. 183.
    Ding, N., Chien, S. W., Hor, T. S. A., et al. (2014). Influence of carbon pore size on the discharge capacity of Li–O2 batteries. Journal of Materials Chemistry A, 2, 12433–12441.CrossRefGoogle Scholar
  184. 184.
    Su, D., Dou, S., & Wang, G. (2015). Gold nanocrystals with variable index facets as highly effective cathode catalysts for lithium–oxygen batteries. NPG Asia Materials, 7, e155.CrossRefGoogle Scholar
  185. 185.
    Lu, Y.-C., Xu, Z., Gasteiger, H. A., et al. (2010). Platinum−gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium−air batteries. Journal of the American Chemical Society, 132, 12170–12171.CrossRefGoogle Scholar
  186. 186.
    Luo, W.-B., Gao, X.-W., Chou, S.-L., et al. (2015). Porous AgPd–Pd composite nanotubes as highly efficient electrocatalysts for lithium-oxygen batteries. Advanced Materials, 27, 6862–6869.CrossRefGoogle Scholar
  187. 187.
    Liao, K., Wang, X., Sun, Y., et al. (2015). An oxygen cathode with stable full discharge–charge capability based on 2D conducting oxide. Energy & Environmental Science, 8, 1992–1997.CrossRefGoogle Scholar
  188. 188.
    Tong, S., Zheng, M., Lu, Y., et al. (2015). Mesoporous NiO with a single-crystalline structure utilized as a noble metal-free catalyst for non-aqueous Li–O2 batteries. Journal of Materials Chemistry A, 3, 16177–16182.CrossRefGoogle Scholar
  189. 189.
    Hu, X., Cheng, F., Han, X., et al. (2015). Oxygen bubble-templated hierarchical porous ε-MnO2 as a superior catalyst for rechargeable Li–O2 batteries. Small (Weinheim an der Bergstrasse, Germany), 11, 809–813.CrossRefGoogle Scholar
  190. 190.
    Wu, F., Zhang, X., Zhao, T., et al. (2015). Hierarchical mesoporous/macroporous Co3O4 ultrathin nanosheets as free-standing catalysts for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 3, 17620–17626.CrossRefGoogle Scholar
  191. 191.
    Zhang, Z., Zhou, G., Chen, W., et al. (2014). Facile synthesis of Fe2O3 nanoflakes and their electrochemical properties for Li-air batteries. ECS Electrochemistry Letters, 3, A8–A10.CrossRefGoogle Scholar
  192. 192.
    Mohamed, S. G., Tsai, Y.-Q., Chen, C.-J., et al. (2015). Ternary spinel MCo2O4 (M = Mn, Fe, Ni, and Zn) porous nanorods as bifunctional cathode materials for lithium–O2 batteries. ACS Applied Materials & Interfaces, 7, 12038–12046.CrossRefGoogle Scholar
  193. 193.
    Zhang, J., Zhao, Y., Zhao, X., et al. (2014). Porous perovskite LaNiO3 nanocubes as cathode catalysts for Li-O2 batteries with low charge potential. Scientific reports, 4, 6005.CrossRefGoogle Scholar
  194. 194.
    Liu, L., Wang, J., Hou, Y., et al. (2016). Self-assembled 3D foam-like NiCo2O4 as efficient catalyst for lithium oxygen batteries. Small (Weinheim an der Bergstrasse, Germany), 12, 602–611.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.University of MarylandCollege ParkUSA
  2. 2.Institute of Chemistry, Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations