Charge Transfer and Storage of an Electrochemical Cell and Its Nano Effects

  • Sen Xin
  • Hongcai Gao
  • Yu-Guo GuoEmail author


Efficient charger transfer and storage forms the precondition for stable operation of an electrochemical energy storage device. Nanomaterials, due to their admirable structure properties such as reduced particle dimensions and high surface to volume ratio, have shown promises in facilitating storage kinetics and enabling novel storage chemistry of electrode materials. In this chapter, we will introduce the fundamentals about the charge transfer and storage processes in various types electrochemical cells (e.g., zinc-based primary cells, lead-acid cells, nickel-metal hydride cells, rechargeable Li cells), and discuss the effects of using nanostructured electrode materials on the thermodynamic and kinetic properties of the charge storage/transfer process in an electrochemical cell. With the discussions, we aim to provide insights into design principles for “kinetically stable” nanostructured electrode materials towards their practical applications in future electrochemical cells.



Electrochemical energy storage


Li-ion battery


Valve-regulated lead-acid




Nickel-metal hydride


Metal hydride


Rechargeable lithium cell






Normal hydrogen electrode


Solid electrolyte interphase


Valence band


Conduction band


Solid-state electrolyte


Solid crystalline electrolyte


Lithium bis(oxalato)borate


Vinylene carbonate




Lithium bis(trifluoromethane)sulfonimide


Lithium bis(fluorosulfonyl) imide




Propylene carbonate




Dimethyl carbonate


Ethylene carbonate


Diethyl carbonate






  1. 1.
    Zhang, Q., Uchaker, E., Candelaria, S. L., et al. (2013). Nanomaterials for energy conversion and storage. Chemical Society Reviews, 42, 3127–3171.CrossRefGoogle Scholar
  2. 2.
    Liu, Y., Zhou, G., Liu, K., et al. (2017). Design of complex nanomaterials for energy storage: Past success and future opportunity. Accounts of Chemical Research, 50, 2895–2905.CrossRefGoogle Scholar
  3. 3.
    Xin, S., Guo, Y.-G., & Wan, L.-J. (2012). Nanocarbon networks for advanced rechargeable lithium batteries. Accounts of Chemical Research, 45, 1759–1769.CrossRefGoogle Scholar
  4. 4.
    Pan, Y.-X., Cong, H.-P., Men, Y.-L., et al. (2015). Peptide self-assembled biofilm with unique electron transfer flexibility for highly efficient visible-light-driven photocatalysis. ACS Nano, 9, 11258–11265.CrossRefGoogle Scholar
  5. 5.
    Pan, Y.-X., Peng, J.-B., Xin, S., et al. (2017). Enhanced visible-light-driven photocatalytic H2 evolution from water on noble-metal-free CdS-nanoparticle-dispersed Mo2C@C nanospheres. ACS Sustainable Chemistry & Engineering, 5, 5449–5456.CrossRefGoogle Scholar
  6. 6.
    Guo, Y.-G., Hu, J.-S., & Wan, L.-J. (2008). Nanostructured materials for electrochemical energy conversion and storage devices. Advanced Materials, 20, 2878–2887.CrossRefGoogle Scholar
  7. 7.
    Xue, D.-J., Wang, J.-J., Wang, Y.-Q., et al. (2011). Facile synthesis of germanium nanocrystals and their application in organic-inorganic hybrid photodetectors. Advanced Materials, 23, 3704–3707.CrossRefGoogle Scholar
  8. 8.
    Bruce, P. G., Scrosati, B., & Tarascon, J.-M. (2008). Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition, 47, 2930–2946.CrossRefGoogle Scholar
  9. 9.
    Men, Y.-L., You, Y., Pan, Y.-X., et al. (2018). Selective CO evolution from photoreduction of CO2 on a metal-carbide-based composite catalyst. Journal of the American Chemical Society, 140, 13071–13077.CrossRefGoogle Scholar
  10. 10.
    Pan, Y.-X., You, Y., Xin, S., et al. (2017). Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts. Journal of the American Chemical Society, 139, 4123–4129.CrossRefGoogle Scholar
  11. 11.
    Pan, Y.-X., Sun, Z.-Q., Cong, H.-P., et al. (2016). Photocatalytic CO2 reduction highly enhanced by oxygen vacancies on Pt-nanoparticle-dispersed gallium oxide. Nano Research, 9, 1689–1700.CrossRefGoogle Scholar
  12. 12.
    Sun, Y., Liu, N., & Cui, Y. (2016). Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nature Energy, 1, 16071.CrossRefGoogle Scholar
  13. 13.
    Yin, Y.-X., Xin, S., & Guo, Y.-G. (2013). Nanoparticles engineering for lithium-ion batteries. Particle & Particle Systems Characterization, 30, 737–753.CrossRefGoogle Scholar
  14. 14.
    Li, N.-W., Yin, Y.-X., Xin, S., et al. (2017). Methods for the stabilization of nanostructured electrode materials for advanced rechargeable batteries. Small Methods, 1, 1700094.CrossRefGoogle Scholar
  15. 15.
    Li, X., Zhang, C., Xin, S., et al. (2016). Facile synthesis of MoS2/reduced graphene Oxide@Polyaniline for high-performance supercapacitors. ACS Applied Materials & Interfaces, 8, 21373–21380.CrossRefGoogle Scholar
  16. 16.
    Gao, H., Xin, S., & Goodenough, J. B. (2017). The origin of superior performance of Co(OH)2 in hybrid supercapacitors. Chem, 3, 26–28.CrossRefGoogle Scholar
  17. 17.
    Song, L., Xin, S., Xu, D.-W., et al. (2016). Graphene-wrapped graphitic carbon hollow spheres: Bioinspired synthesis and applications in batteries and supercapacitors. ChemNanoMat, 2, 540–546.CrossRefGoogle Scholar
  18. 18.
    Guo, W., Xin, S., Ji, M., et al. (2011). Supercapacitor-battery hybrid energy storage devices from an aqueous nitroxide radical active material. Chinese Science Bulletin, 56, 2433–2436.CrossRefGoogle Scholar
  19. 19.
    Jiang, C., Hosono, E., & Zhou, H. (2006). Nanomaterials for lithium ion batteries. Nano Today, 1, 28–33.CrossRefGoogle Scholar
  20. 20.
    Linden, D., & Reddy, T. B. (2010). An introduction to primary batteries. In T. B. Reddy (Ed.), Linden’s handbook of batteries (pp. 8.1–8.18). McGraw-Hill Education.Google Scholar
  21. 21.
    Linden, D. (2001). Primary batteries—Introduction. In D. Linden & T. B. Reddy (Eds.), Handbook of batteries (pp. 7.1–7.21). McGraw-Hill Education.Google Scholar
  22. 22.
    Brooke Schumm, J. (2010). Zinc-carbon batteries—Leclanché and zinc chloride cell systems. In T. B. Reddy (Ed.), Linden’s handbook of batteries (pp. 9.1–9.41). McGraw-Hill Education.Google Scholar
  23. 23.
    Sayilgan, E., Kukrer, T., Civelekoglu, G., et al. (2009). A review of technologies for the recovery of metals from spent alkaline and zinc–carbon batteries. Hydrometallurgy, 97, 158–166.CrossRefGoogle Scholar
  24. 24.
    Nardi, J. C., & Brodd, R. J. (2010). Alkaline-manganese dioxide batteries. In T. B. Reddy (Ed.), Linden’s handbook of batteries (pp. 11.11–11.17). McGraw-Hill Education.Google Scholar
  25. 25.
    Scarr, R. F., Hunter, J. C., & Slezak, P. J. (2001). Alkaline-manganese dioxide batteries. In D. Linden & T. B. Reddy (Eds.), Handbook of batteries (pp. 10.11–10.32). McGraw-Hill Education.Google Scholar
  26. 26.
    Kozawa, A., & Powers, R. A. (1972). Electrochemical reactions in batteries. Emphasizing the MnO2 cathode of dry cells. Journal of Chemical Education, 49, 587.Google Scholar
  27. 27.
    Almeida, M. F., Xará, S. M., Delgado, J., et al. (2006). Characterization of spent AA household alkaline batteries. Waste Management, 26, 466–476.CrossRefGoogle Scholar
  28. 28.
    Reddy, T. B. (2010). Lithium primary batteries. In T. B. Reddy (Ed.), Linden’s handbook of batteries (pp. 14.11–14.90). McGraw-Hill Education.Google Scholar
  29. 29.
    Reddy, T. B. (2010). An introduction to secondary batteries. In T. B. Reddy (Ed.), Linden’s handbook of batteries (pp. 15.11–15.20). McGraw-Hill Education.Google Scholar
  30. 30.
    Parker, C. D., & Garche, J. (2004). Battery energy-storage systems for power-supply networks. In D. A. J. Rand, J. Garche, P. T. Moseley, et al. (Eds.), Valve-regulated lead-acid batteries (pp. 295–326). Amsterdam: Elsevier.CrossRefGoogle Scholar
  31. 31.
    Salkind, A., & Zguris, G. (2010). Lead-acid batteries. In T. B. Reddy (Ed.), Linden’s handbook of batteries (pp. 16.11–16.87). McGraw-Hill Education.Google Scholar
  32. 32.
    Ruetschi, P. (1977). Review on the lead-acid battery science and technology. Journal of Power Sources, 2, 3–120.CrossRefGoogle Scholar
  33. 33.
    Bullock, K. R., & Salkind, A. J. (2010). Valve regulated lead-acid batteries. In T. B. Reddy (Ed.), Linden’s handbook of batteries (pp. 17.11–17.39). McGraw-Hill Education.Google Scholar
  34. 34.
    May, G. J., Davidson, A., & Monahov, B. (2018). Lead batteries for utility energy storage: A review. Journal of Energy Storage, 15, 145–157.CrossRefGoogle Scholar
  35. 35.
    Cooper, A., Furakawa, J., Lam, L., et al. (2009). The ultrabattery—A new battery design for a new beginning in hybrid electric vehicle energy storage. Journal of Power Sources, 188, 642–649.CrossRefGoogle Scholar
  36. 36.
    Mantell, C. L. (1983). Batteries and energy systems (2nd ed.). New York: McGraw-Hill.Google Scholar
  37. 37.
    Carcone, J. A. (2010). Portable sealed nickel-cadmium batteries. In T. B. Reddy (Ed.), Linden’s handbook of batteries (pp. 21.21–21.33). McGraw-Hill Education.Google Scholar
  38. 38.
    Erbacher, J. K. (2010). Industrial and aerospace nickel-cadmium batteries. In T. B. Reddy (Ed.), Linden’s handbook of batteries (pp. 19.11–19.23). McGraw-Hill Education.Google Scholar
  39. 39.
    Lucero, R. D. (2010). Vented sintered-plate nickel-cadmium batteries. In T. B. Reddy (Ed.), Linden’s handbook of batteries (pp. 20.21–20.28). McGraw-Hill Education.Google Scholar
  40. 40.
    Shukla, A. K., Venugopalan, S., & Hariprakash, B. (2001). Nickel-based rechargeable batteries. Journal of Power Sources, 100, 125–148.CrossRefGoogle Scholar
  41. 41.
    Halpert, G. (1984). Past developments and the future of nickel electrode cell technology. Journal of Power Sources, 12, 177–192.CrossRefGoogle Scholar
  42. 42.
    Chen, H., Cong, T. N., Yang, W., et al. (2009). Progress in electrical energy storage system: A critical review. Progress in Natural Science, 19, 291–312.CrossRefGoogle Scholar
  43. 43.
    Fleischer, A. (1948). Sintered plates for nickel-cadmium batteries. Journal of the Electrochemical Society, 94, 289–299.CrossRefGoogle Scholar
  44. 44.
    Sato, Y., Ito, K., Arakawa, T., et al. (1996). Possible cause of the memory effect observed in nickel-cadmium secondary batteries. Journal of the Electrochemical Society, 143, L225–L228.CrossRefGoogle Scholar
  45. 45.
    Fetcenko, M., & Koch, J. (2010). Nickel-metal hydride batteries. In T. B. Reddy (Ed.), Linden’s handbook of batteries (pp. 22.21–22.51). McGraw-Hill Education.Google Scholar
  46. 46.
    Goo, N. H., Woo, J. H., & Lee, K. S. (1999). Mechanism of rapid degradation of nanostructured Mg2Ni hydrogen storage alloy electrode synthesized by mechanical alloying and the effect of mechanically coating with nickel. Journal of Alloys and Compounds, 288, 286–293.CrossRefGoogle Scholar
  47. 47.
    Zhang, Q. A., Lei, Y. Q., Wang, C. S., et al. (1998). Structure of the secondary phase and its effects on hydrogen-storage properties in a Ti0.7Zr0.2V0.1Ni alloy. Journal of Power Sources, 75, 288–291.CrossRefGoogle Scholar
  48. 48.
    Züttel, A., Meli, F., & Schlapbach, L. (1994). Electrochemical and surface properties of Zr(VxNi1-x)2 alloys as hydrogen-absorbing electrodes in alkaline electrolyte. Journal of Alloys and Compounds, 203, 235–241.CrossRefGoogle Scholar
  49. 49.
    Liao, B., Lei, Y. Q., Chen, L. X., et al. (2004). A study on the structure and electrochemical properties of La2Mg(Ni0.95M0.05)9 (M = Co, Mn, Fe, Al, Cu, Sn) hydrogen storage electrode alloys. Journal of Alloys and Compounds, 376, 186–195.CrossRefGoogle Scholar
  50. 50.
    Yasuoka, S., Magari, Y., Murata, T., et al. (2006). Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys. Journal of Power Sources, 156, 662–666.CrossRefGoogle Scholar
  51. 51.
    Zhao, Y., Zhang, L., Ding, Y., et al. (2017). Comparative study on the capacity degradation behavior of Pr5Co19-type single-phase Pr4MgNi19 and La4MgNi19 alloys. Journal of Alloys and Compounds, 694, 1089–1097.CrossRefGoogle Scholar
  52. 52.
    Willems, J. J. G., & Buschow, K. H. J. (1987). From permanent magnets to rechargeable hydride electrodes. Journal of the Less Common Metals, 129, 13–30.CrossRefGoogle Scholar
  53. 53.
    Young, K., Nei, J., Wong, D. F., et al. (2014). Structural, hydrogen storage, and electrochemical properties of Laves phase-related body-centered-cubic solid solution metal hydride alloys. International Journal of Hydrogen Energy, 39, 21489–21499.CrossRefGoogle Scholar
  54. 54.
    Goodenough, J. B. (2018). How we made the Li-ion rechargeable battery. Nature Electronics, 1, 204.CrossRefGoogle Scholar
  55. 55.
    Whittingham, M. S. (1976). Electrical energy storage and intercalation chemistry. Science, 192, 1126–1127.CrossRefGoogle Scholar
  56. 56.
    Zanini, M., Basu, S., & Fischer, J. E. (1978). Alternate synthesis and reflectivity spectrum of stage 1 lithium—graphite intercalation compound. Carbon, 16, 211–212.CrossRefGoogle Scholar
  57. 57.
    Basu, S., Zeller, C., Flanders, P. J., et al. (1979). Synthesis and properties of lithium-graphite intercalation compounds. Materials Science and Engineering, 38, 275–283.CrossRefGoogle Scholar
  58. 58.
    Mizushima, K., Jones, P. C., Wiseman, P. J., et al. (1980). LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 15, 783–789.CrossRefGoogle Scholar
  59. 59.
    Liu, J., Bao, Z., Cui, Y., et al. (2019). Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy, 4, 180–186.CrossRefGoogle Scholar
  60. 60.
    Goodenough, J. B., & Park, K.-S. (2013). The Li-ion rechargeable battery: A perspective. Journal of the American Chemical Society, 135, 1167–1176.CrossRefGoogle Scholar
  61. 61.
    Myung, S.-T., Maglia, F., Park, K.-J., et al. (2017). Nickel-rich layered cathode materials for automotive lithium-ion batteries: Achievements and perspectives. ACS Energy Letters, 2, 196–223.CrossRefGoogle Scholar
  62. 62.
    Yang, Z., Zhang, J., Kintner-Meyer, M. C. W., et al. (2011). Electrochemical energy storage for green grid. Chemical Reviews, 111, 3577–3613.CrossRefGoogle Scholar
  63. 63.
    Dunn, B., Kamath, H., & Tarascon, J.-M. (2011). Electrical energy storage for the grid: A battery of choices. Science, 334, 928–935.CrossRefGoogle Scholar
  64. 64.
    Goodenough, J. B. (2013). Evolution of strategies for modern rechargeable batteries. Accounts of Chemical Research, 46, 1053–1061.CrossRefGoogle Scholar
  65. 65.
    Goodenough, J. B., & Kim, Y. (2010). Challenges for rechargeable Li batteries. Chemistry of Materials, 22, 587–603.CrossRefGoogle Scholar
  66. 66.
    Dahn, J., & Ehrlich, G. M. (2010). Lithium-ion batteries. In T. B. Reddy (Ed.), Linden’s Handbook of Batteries (pp. 26.21–26.79). McGraw-Hill Education.Google Scholar
  67. 67.
    Villa, C., Kim, S., Lu, Y., et al. (2019). Cu-substituted NiF2 as a cathode material for Li-Ion batteries. ACS Applied Materials & Interfaces, 11, 647–654.CrossRefGoogle Scholar
  68. 68.
    Li, T., Li, L., Cao, Y. L., et al. (2010). Reversible three-electron redox behaviors of FeF3 nanocrystals as high-capacity cathode-active materials for Li-ion batteries. The Journal of Physical Chemistry C, 114, 3190–3195.CrossRefGoogle Scholar
  69. 69.
    Fan, X., Hu, E., Ji, X., et al. (2018). High energy-density and reversibility of iron fluoride cathode enabled via an intercalation-extrusion reaction. Nature Communications, 9, 2324.CrossRefGoogle Scholar
  70. 70.
    Jung, S.-K., Kim, H., Cho, M. G., et al. (2017). Lithium-free transition metal monoxides for positive electrodes in lithium-ion batteries. Nature Energy, 2, 16208.CrossRefGoogle Scholar
  71. 71.
    Xu, J., Ma, J., Fan, Q., et al. (2017). Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X = O2, S, Se, Te, I2, Br2) batteries. Advanced Materials, 29, 1606454.CrossRefGoogle Scholar
  72. 72.
    Yin, Y.-X., Xin, S., Guo, Y.-G., et al. (2013). Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angewandte Chemie International Edition, 52, 13186–13200.CrossRefGoogle Scholar
  73. 73.
    Xin, S., Gu, L., Zhao, N.-H., et al. (2012). Smaller sulfur molecules promise better lithium-sulfur batteries. Journal of the American Chemical Society, 134, 18510–18513.CrossRefGoogle Scholar
  74. 74.
    Yang, C.-P., Xin, S., Yin, Y.-X., et al. (2013). An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries. Angewandte Chemie International Edition, 52, 8363–8367.CrossRefGoogle Scholar
  75. 75.
    Jin, S., Xin, S., Wang, L., et al. (2016). Covalently connected carbon nanostructures for current collectors in both the cathode and anode of Li–S batteries. Advanced Materials, 28, 9094–9102.CrossRefGoogle Scholar
  76. 76.
    Xin, S., Yin, Y.-X., Wan, L.-J., et al. (2013). Encapsulation of sulfur in a hollow porous carbon substrate for superior Li-S batteries with long lifespan. Particle & Particle Systems Characterization, 30, 321–325.CrossRefGoogle Scholar
  77. 77.
    Xin, S., Yu, L., You, Y., et al. (2016). The electrochemistry with lithium versus sodium of selenium confined to slit micropores in carbon. Nano Letters, 16, 4560–4568.CrossRefGoogle Scholar
  78. 78.
    Xin, S., Guo, Y.-G., Chang, Z., et al. (2016). Progress of rechargeable lithium metal batteries based on conversion reactions. National Science Review, 4, 54–70.Google Scholar
  79. 79.
    Wang, Z., You, Y., Yuan, J., et al. (2016). Nickel-doped La0.8Sr0.2Mn1–xNixO3 nanoparticles containing abundant oxygen vacancies as an optimized bifunctional catalyst for oxygen cathode in rechargeable lithium-air batteries. ACS Applied Materials & Interfaces, 8, 6520–6528.CrossRefGoogle Scholar
  80. 80.
    Du, X.-L., You, Y., Yan, Y., et al. (2016). Conductive carbon network inside a sulfur-impregnated carbon sponge: A bioinspired high-performance cathode for Li–S battery. ACS Applied Materials & Interfaces, 8, 22261–22269.CrossRefGoogle Scholar
  81. 81.
    Xin, S., You, Y., Li, H.-Q., et al. (2016). Graphene sandwiched by sulfur-confined mesoporous carbon nanosheets: A kinetically stable cathode for Li–S batteries. ACS Applied Materials & Interfaces, 8, 33704–33711.CrossRefGoogle Scholar
  82. 82.
    Xu, D.-W., Xin, S., You, Y., et al. (2016). Built-in carbon nanotube network inside a biomass-derived hierarchically porous carbon to enhance the performance of the sulfur cathode in a Li-S battery. ChemNanoMat, 2, 712–718.CrossRefGoogle Scholar
  83. 83.
    Chen, Z.-H., Du, X.-L., He, J.-B., et al. (2017). Porous coconut shell carbon offering high retention and deep lithiation of sulfur for lithium-sulfur batteries. ACS Applied Materials & Interfaces, 9, 33855–33862.CrossRefGoogle Scholar
  84. 84.
    Xu, J., Xin, S., Liu, J.-W., et al. (2016). Elastic carbon nanotube aerogel meets tellurium nanowires: A Binder- and collector-free electrode for Li-Te batteries. Advanced Functional Materials, 26, 3580–3588.CrossRefGoogle Scholar
  85. 85.
    Du, Z., Guo, C., Wang, L., et al. (2017). Atom-thick interlayer made of CVD-grown graphene film on separator for advanced lithium-sulfur batteries. ACS Applied Materials & Interfaces, 9, 43696–43703.CrossRefGoogle Scholar
  86. 86.
    Zhang, S.-F., Wang, W.-P., Xin, S., et al. (2017). Graphitic nanocarbon-selenium cathode with favorable rate capability for Li–Se batteries. ACS Applied Materials & Interfaces, 9, 8759–8765.CrossRefGoogle Scholar
  87. 87.
    Zhang, J., Zhang, C., Li, W., et al. (2018). Nitrogen-doped perovskite as a bifunctional cathode catalyst for rechargeable lithium-oxygen batteries. ACS Applied Materials & Interfaces, 10, 5543–5550.CrossRefGoogle Scholar
  88. 88.
    Wu, Y., Wang, T., Zhang, Y., et al. (2016). Electrocatalytic performances of g-C3N4-LaNiO3 composite as bi-functional catalysts for lithium-oxygen batteries. Scientific Reports, 6, 24314.CrossRefGoogle Scholar
  89. 89.
    Yang, C.-P., Yin, Y.-X., Guo, Y.-G., et al. (2015). Electrochemical (De)lithiation of 1D sulfur chains in Li–S batteries: A model system study. Journal of the American Chemical Society, 137, 2215–2218.CrossRefGoogle Scholar
  90. 90.
    Yang, C.-P., Yin, Y.-X., & Guo, Y.-G. (2015). Elemental selenium for electrochemical energy storage. The Journal of Physical Chemistry Letters, 6, 256–266.CrossRefGoogle Scholar
  91. 91.
    Cao, F.-F., Deng, J.-W., Xin, S., et al. (2011). Cu-Si nanocable arrays as high-rate anode materials for lithium-ion batteries. Advanced Materials, 23, 4415–4420.CrossRefGoogle Scholar
  92. 92.
    Zhang, Y.-C., You, Y., Xin, S., et al. (2016). Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy, 25, 120–127.CrossRefGoogle Scholar
  93. 93.
    Yin, Y.-X., Xin, S., Wan, L.-J., et al. (2011). Electrospray synthesis of silicon/carbon nanoporous microspheres as improved anode materials for lithium-ion batteries. The Journal of Physical Chemistry C, 115, 14148–14154.CrossRefGoogle Scholar
  94. 94.
    Yan, Y., Yin, Y.-X., Xin, S., et al. (2013). High-safety lithium-sulfur battery with prelithiated Si/C anode and ionic liquid electrolyte. Electrochimica Acta, 91, 58–61.CrossRefGoogle Scholar
  95. 95.
    Cong, H.-P., Xin, S., & Yu, S.-H. (2015). Flexible nitrogen-doped graphene/SnO2 foams promise kinetically stable lithium storage. Nano Energy, 13, 482–490.CrossRefGoogle Scholar
  96. 96.
    Yin, Y., Xin, S., Wan, L., et al. (2012). SnO2 hollow spheres: Polymer bead-templated hydrothermal synthesis and their electrochemical properties for lithium storage. Science China Chemistry, 55, 1314–1318.CrossRefGoogle Scholar
  97. 97.
    Yin, Y.-X., Xin, S., Wan, L.-J., et al. (2012). Synthesis of nanostructured SnO2/C microfibers with improved performances as anode material for Li-ion batteries. Journal of Nanoscience and Nanotechnology, 12, 2581–2585.CrossRefGoogle Scholar
  98. 98.
    Zhang, W.-M., Hu, J.-S., Guo, Y.-G., et al. (2008). Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Advanced Materials, 20, 1160–1165.CrossRefGoogle Scholar
  99. 99.
    Wu, N., Yao, H.-R., Yin, Y.-X., et al. (2015). Improving the electrochemical properties of the red P anode in Na-ion batteries via the space confinement of carbon nanopores. Journal of Materials Chemistry A, 3, 24221–24225.CrossRefGoogle Scholar
  100. 100.
    Li, S., Niu, J., Zhao, Y. C., et al. (2015). High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity. Nature Communications, 6, 7872.CrossRefGoogle Scholar
  101. 101.
    Yang, C.-P., Yin, Y.-X., Zhang, S.-F., et al. (2015). Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nature Communications, 6, 8058.CrossRefGoogle Scholar
  102. 102.
    Li, N.-W., Yin, Y.-X., Yang, C.-P., et al. (2016). An artificial solid electrolyte interphase layer for stable lithium metal anodes. Advanced Materials, 28, 1853–1858.CrossRefGoogle Scholar
  103. 103.
    Zhang, R., Li, N.-W., Cheng, X.-B., et al. (2017). Advanced micro/nanostructures for lithium metal anodes. Advanced Science, 4, 1600445.CrossRefGoogle Scholar
  104. 104.
    Zeng, X.-X., Yin, Y.-X., Li, N.-W., et al. (2016). Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries. Journal of the American Chemical Society, 138, 15825–15828.CrossRefGoogle Scholar
  105. 105.
    Zuo, T.-T., Wu, X.-W., Yang, C.-P., et al. (2017). Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Advanced Materials, 29, 1700389.CrossRefGoogle Scholar
  106. 106.
    Zuo, T.-T., Yin, Y.-X., Wang, S.-H., et al. (2018). Trapping lithium into hollow silica microspheres with a carbon nanotube core for dendrite-free lithium metal anodes. Nano Letters, 18, 297–301.CrossRefGoogle Scholar
  107. 107.
    Xu, Q., Sun, J.-K., Yu, Z.-L., et al. (2018). SiOx encapsulated in graphene bubble film: An ultrastable Li-ion battery anode. Advanced Materials, 30, 1707430.CrossRefGoogle Scholar
  108. 108.
    Xue, D.-J., Xin, S., Yan, Y., et al. (2012). Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks. Journal of the American Chemical Society, 134, 2512–2515.CrossRefGoogle Scholar
  109. 109.
    Xin, S., You, Y., Wang, S., et al. (2017). Solid-state lithium metal batteries promoted by nanotechnology: Progress and prospects. ACS Energy Letters, 2, 1385–1394.CrossRefGoogle Scholar
  110. 110.
    Ye, H., Xin, S., Yin, Y.-X., et al. (2017). Advanced porous carbon materials for high-efficient lithium metal anodes. Advanced Energy Materials, 7, 1700530.CrossRefGoogle Scholar
  111. 111.
    Shan, T.-T., Xin, S., You, Y., et al. (2016). Combining nitrogen-doped graphene sheets and MoS2: A unique film–foam–film structure for enhanced lithium storage. Angewandte Chemie International Edition, 55, 12783–12788.CrossRefGoogle Scholar
  112. 112.
    Zhou, F., Xin, S., Liang, H.-W., et al. (2014). Carbon nanofibers decorated with molybdenum disulfide nanosheets: Synergistic lithium storage and enhanced electrochemical performance. Angewandte Chemie International Edition, 53, 11552–11556.CrossRefGoogle Scholar
  113. 113.
    Zhang, B.-L., Xin, S., Qin, H., et al. (2018). Stable lithium storage in nitrogen-doped carbon-coated ferric oxide yolk-shell nanospindles with preserved hollow space. ChemPlusChem, 83, 99–107.CrossRefGoogle Scholar
  114. 114.
    Wu, X.-L., Chen, L.-L., Xin, S., et al. (2010). Preparation and Li storage properties of hierarchical porous carbon fibers derived from alginic acid. Chemsuschem, 3, 703–707.CrossRefGoogle Scholar
  115. 115.
    Li, W., Yin, Y.-X., Xin, S., et al. (2012). Low-cost and large-scale synthesis of alkaline earth metal germanate nanowires as a new class of lithium ion battery anode material. Energy & Environmental Science, 5, 8007–8013.CrossRefGoogle Scholar
  116. 116.
    Chen, Z., Yan, Y., Xin, S., et al. (2013). Copper germanate nanowire/reduced graphene oxide anode materials for high energy lithium-ion batteries. Journal of Materials Chemistry A, 1, 11404–11409.CrossRefGoogle Scholar
  117. 117.
    Yu, Z.-L., Xin, S., You, Y., et al. (2016). Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage. Journal of the American Chemical Society, 138, 14915–14922.CrossRefGoogle Scholar
  118. 118.
    Zhou, W., Wang, S., Li, Y., et al. (2016). Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. Journal of the American Chemical Society, 138, 9385–9388.CrossRefGoogle Scholar
  119. 119.
    Xu, R., Wang, G., Zhou, T., et al. (2017). Rational design of Si@carbon with robust hierarchically porous custard-apple-like structure to boost lithium storage. Nano Energy, 39, 253–261.CrossRefGoogle Scholar
  120. 120.
    Cheng, X.-B., Zhang, R., Zhao, C.-Z., et al. (2016). A review of solid electrolyte interphases on lithium metal anode. Advanced Science, 3, 1500213.CrossRefGoogle Scholar
  121. 121.
    Li, J.-Y., Xu, Q., Li, G., et al. (2017). Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries. Materials Chemistry Frontiers, 1, 1691–1708.CrossRefGoogle Scholar
  122. 122.
    Hassan, F. M., Chabot, V., Elsayed, A. R., et al. (2014). Engineered Si electrode nanoarchitecture: A scalable postfabrication treatment for the production of next-generation li-ion batteries. Nano Letters, 14, 277–283.CrossRefGoogle Scholar
  123. 123.
    Cao, Y., Li, M., Lu, J., et al. (2019). Bridging the academic and industrial metrics for next-generation practical batteries. Nature Nanotechnology, 14, 200–207.CrossRefGoogle Scholar
  124. 124.
    Ko, M., Chae, S., Ma, J., et al. (2016). Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nature Energy, 1, 16113.CrossRefGoogle Scholar
  125. 125.
    Bruce, P. G., Freunberger, S. A., Hardwick, L. J., et al. (2011). Li–O2 and Li–S batteries with high energy storage. Nature Materials, 11, 19–29.CrossRefGoogle Scholar
  126. 126.
    Pan, H., Hu, Y.-S., & Chen, L. (2013). Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy & Environmental Science, 6, 2338–2360.CrossRefGoogle Scholar
  127. 127.
    You, Y., & Manthiram, A. (2018). Progress in high-voltage cathode materials for rechargeable sodium-ion batteries. Advanced Energy Materials, 8, 1701785.CrossRefGoogle Scholar
  128. 128.
    Zhao, H., Xu, J., Yin, D., et al. (2018). Electrolytes for batteries with earth-abundant metal anodes. Chemistry—A European Journal, 24, 18220–18234.CrossRefGoogle Scholar
  129. 129.
    Xu, Q., Sun, J.-K., Yue, F.-S., et al. (2018). Stable sodium storage of red phosphorus anode enabled by a dual-protection strategy. ACS Applied Materials & Interfaces, 10, 30479–30486.CrossRefGoogle Scholar
  130. 130.
    Zhou, W., Li, Y., Xin, S., et al. (2017). Rechargeable sodium all-solid-state battery. ACS Central Science, 3, 52–57.CrossRefGoogle Scholar
  131. 131.
    Xin, S., Yin, Y.-X., Guo, Y.-G., et al. (2014). A high-energy room-temperature sodium-sulfur battery. Advanced Materials, 26, 1261–1265.CrossRefGoogle Scholar
  132. 132.
    You, Y., Yao, H.-R., Xin, S., et al. (2016). Subzero-temperature cathode for a sodium-ion battery. Advanced Materials, 28, 7243–7248.CrossRefGoogle Scholar
  133. 133.
    Gao, H., Xue, L., Xin, S., et al. (2017). A plastic-crystal electrolyte interphase for all-solid-state sodium batteries. Angewandte Chemie International Edition, 56, 5541–5545.CrossRefGoogle Scholar
  134. 134.
    Wang, P.-F., You, Y., Yin, Y.-X., et al. (2016). Suppressing the P2–O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries. Angewandte Chemie International Edition, 55, 7445–7449.CrossRefGoogle Scholar
  135. 135.
    Gao, H., Xin, S., Xue, L., et al. (2018). Stabilizing a high-energy-density rechargeable sodium battery with a solid electrolyte. Chem, 4, 833–844.CrossRefGoogle Scholar
  136. 136.
    You, Y., Xin, S., Asl, H. Y., et al. (2018). Insights into the improved high-voltage performance of Li-incorporated layered oxide cathodes for sodium-ion batteries. Chem, 4, 2124–2139.CrossRefGoogle Scholar
  137. 137.
    You, Y., Dolocan, A., Li, W., et al. (2019). Understanding the air-exposure degradation chemistry at a nanoscale of layered oxide cathodes for sodium-ion batteries. Nano Letters, 19, 182–188.CrossRefGoogle Scholar
  138. 138.
    Wang, P.-F., Yao, H.-R., You, Y., et al. (2018). Understanding the structural evolution and Na+ kinetics in honeycomb-ordered O′3-Na3Ni2SbO6 cathodes. Nano Research, 11, 3258–3271.CrossRefGoogle Scholar
  139. 139.
    You, Y., Yu, X., Yin, Y., et al. (2015). Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Research, 8, 117–128.CrossRefGoogle Scholar
  140. 140.
    Gao, H., Seymour, I. D., Xin, S., et al. (2018). Na3MnZr(PO4)3: A high-voltage cathode for sodium batteries. Journal of the American Chemical Society, 140, 18192–18199.CrossRefGoogle Scholar
  141. 141.
    Xue, L., Li, Y., Gao, H., et al. (2017). Low-cost high-energy potassium cathode. Journal of the American Chemical Society, 139, 2164–2167.CrossRefGoogle Scholar
  142. 142.
    Xue, L., Gao, H., Zhou, W., et al. (2016). Liquid K-Na alloy anode enables dendrite-free potassium batteries. Advanced Materials, 28, 9608–9612.CrossRefGoogle Scholar
  143. 143.
    Gao, H., Xue, L., Xin, S., et al. (2018). A high-energy-density potassium battery with a polymer-gel electrolyte and a polyaniline cathode. Angewandte Chemie International Edition, 57, 5449–5453.Google Scholar
  144. 144.
    Xue, L., Zhou, W., Xin, S., et al. (2018). Room-temperature liquid Na–K anode membranes. Angewandte Chemie International Edition, 57, 14184–14187.CrossRefGoogle Scholar
  145. 145.
    Wu, N., Yang, Z.-Z., Yao, H.-R., et al. (2015). Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnesium battery by lithium-magnesium Co-intercalation. Angewandte Chemie International Edition, 54, 5757–5761.CrossRefGoogle Scholar
  146. 146.
    Wu, N., Yin, Y.-X., & Guo, Y.-G. (2014). Size-dependent electrochemical magnesium storage performance of spinel lithium titanate. Chemistry—An Asian Journal, 9, 2099–2102.Google Scholar
  147. 147.
    Shterenberg, I., Salama, M., Gofer, Y., et al. (2014). The challenge of developing rechargeable magnesium batteries. MRS Bulletin, 39, 453–460.CrossRefGoogle Scholar
  148. 148.
    Wu, N., Lyu, Y.-C., Xiao, R.-J., et al. (2014). A highly reversible, low-strain Mg-ion insertion anode material for rechargeable Mg-ion batteries. NPG Asia Materials, 6, e120.CrossRefGoogle Scholar
  149. 149.
    Yu, X., Boyer, M. J., Hwang, G. S., et al. (2019). Toward a reversible calcium-sulfur battery with a lithium-ion mediation approach. Advanced Energy Materials, 9, 1803794.CrossRefGoogle Scholar
  150. 150.
    Reinsberg, P., Bondue, C. J., & Baltruschat, H. (2016). Calcium-oxygen batteries as a promising alternative to sodium-oxygen batteries. The Journal of Physical Chemistry C, 120, 22179–22185.CrossRefGoogle Scholar
  151. 151.
    Ouchi, T., Kim, H., Spatocco, B. L., et al. (2016). Calcium-based multi-element chemistry for grid-scale electrochemical energy storage. Nature Communications, 7, 10999.CrossRefGoogle Scholar
  152. 152.
    Muldoon, J., Bucur, C. B., & Gregory, T. (2014). Quest for nonaqueous multivalent secondary batteries: Magnesium and beyond. Chemical Reviews, 114, 11683–11720.CrossRefGoogle Scholar
  153. 153.
    Gao, T., Li, X., Wang, X., et al. (2016). A rechargeable Al/S battery with an ionic-liquid electrolyte. Angewandte Chemie International Edition, 55, 9898–9901.CrossRefGoogle Scholar
  154. 154.
    Yu, X., Boyer, M. J., Hwang, G. S., et al. (2018). Room-temperature aluminum-sulfur batteries with a lithium-ion-mediated ionic liquid electrolyte. Chem, 4, 586–598.CrossRefGoogle Scholar
  155. 155.
    Tang, Y., Zhang, Y., Li, W., et al. (2015). Rational material design for ultrafast rechargeable lithium-ion batteries. Chemical Society Reviews, 44, 5926–5940.CrossRefGoogle Scholar
  156. 156.
    Galwey, A. K., & Brown, M. E. (2002). Application of the Arrhenius equation to solid state kinetics: can this be justified? Thermochimica Acta, 386, 91–98.CrossRefGoogle Scholar
  157. 157.
    Zhu, C., Usiskin, R. E., Yu, Y., et al. (2017). The nanoscale circuitry of battery electrodes. Science, 358, eaao2808.CrossRefGoogle Scholar
  158. 158.
    Sun, C., Liu, J., Gong, Y., et al. (2017). Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy, 33, 363–386.CrossRefGoogle Scholar
  159. 159.
    Buqa, H., Goers, D., Holzapfel, M., et al. (2005). High rate capability of graphite negative electrodes for lithium-ion batteries. Journal of the Electrochemical Society, 152, A474–A481.CrossRefGoogle Scholar
  160. 160.
    Peled, E., & Menkin, S. (2017). Review—SEI: Past, present and future. Journal of the Electrochemical Society, 164, A1703–A1719.CrossRefGoogle Scholar
  161. 161.
    Hayamizu, K. (2017). Direct relations between ion diffusion constants and ionic conductivity for lithium electrolyte solutions. Electrochimica Acta, 254, 101–111.CrossRefGoogle Scholar
  162. 162.
    Orädd, G., Edman, L., & Ferry, A. (2002). Diffusion: A comparison between liquid and solid polymer LiTFSI electrolytes. Solid State Ionics, 152–153, 131–136.CrossRefGoogle Scholar
  163. 163.
    Wohde, F., Balabajew, M., & Roling, B. (2016). Li+ transference numbers in liquid electrolytes obtained by very-low-frequency impedance spectroscopy at variable electrode distances. Journal of the Electrochemical Society, 163, A714–A721.CrossRefGoogle Scholar
  164. 164.
    Koksbang, R., Olsen, I. I., & Shackle, D. (1994). Review of hybrid polymer electrolytes and rechargeable lithium batteries. Solid State Ionics, 69, 320–335.CrossRefGoogle Scholar
  165. 165.
    Bachman, J. C., Muy, S., Grimaud, A., et al. (2016). Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction. Chemical Reviews, 116, 140–162.CrossRefGoogle Scholar
  166. 166.
    Li, W., Wu, G., Araújo, C. M., et al. (2010). Li+ ion conductivity and diffusion mechanism in α-Li3N and β-Li3N. Energy & Environmental Science, 3, 1524–1530.CrossRefGoogle Scholar
  167. 167.
    Gao, Z., Sun, H., Fu, L., et al. (2018). Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Advanced Materials, 30, 1705702.CrossRefGoogle Scholar
  168. 168.
    Saha, P., Datta, M. K., Velikokhatnyi, O. I., et al. (2014). Rechargeable magnesium battery: Current status and key challenges for the future. Progress in Materials Science, 66, 1–86.CrossRefGoogle Scholar
  169. 169.
    Zeier, W. G., Zhou, S., Lopez-Bermudez, B., et al. (2014). Dependence of the Li-ion conductivity and activation energies on the crystal structure and ionic radii in Li6MLa2Ta2O12. ACS Applied Materials & Interfaces, 6, 10900–10907.CrossRefGoogle Scholar
  170. 170.
    Tatsumisago, M., Nagao, M., & Hayashi, A. (2013). Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries. Journal of Asian Ceramic Societies, 1, 17–25.CrossRefGoogle Scholar
  171. 171.
    Kanehori, K., Matsumoto, K., Miyauchi, K., et al. (1983). Thin film solid electrolyte and its application to secondary lithium cell. Solid State Ionics, 9–10, 1445–1448.CrossRefGoogle Scholar
  172. 172.
    Bates, J. B., Dudney, N. J., Neudecker, B., et al. (2000). Thin-film lithium and lithium-ion batteries. Solid State Ionics, 135, 33–45.CrossRefGoogle Scholar
  173. 173.
    Cao, C., Li, Z.-B., Wang, X.-L., et al. (2014). Recent advances in inorganic solid electrolytes for lithium batteries. Frontiers in Energy Research, 2.Google Scholar
  174. 174.
    Druger, S. D. (1994). Ionic transport in polymer electrolytes based on renewing environments. The Journal of Chemical Physics, 100, 3979–3984.CrossRefGoogle Scholar
  175. 175.
    Leo, C. J., Subba Rao, G. V., & Chowdari, B. V. R. (2002). Studies on plasticized PEO–lithium triflate–ceramic filler composite electrolyte system. Solid State Ionics, 148, 159–171.CrossRefGoogle Scholar
  176. 176.
    Scrosati, B., Croce, F., & Persi, L. (2000). Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes. Journal of the Electrochemical Society, 147, 1718–1721.CrossRefGoogle Scholar
  177. 177.
    Jiang, J., & Dahn, J. R. (2003). Comparison of the thermal stability of lithiated graphite in LiBOB EC/DEC and in LiPF6 EC/DEC. Electrochemical and Solid-State Letters, 6, A180–A182.CrossRefGoogle Scholar
  178. 178.
    Li, W., Xiao, A., Lucht, B. L., et al. (2008). Surface analysis of electrodes from cells containing electrolytes with stabilizing additives exposed to high temperature. Journal of the Electrochemical Society, 155, A648–A657.CrossRefGoogle Scholar
  179. 179.
    Smart, M. C., Lucht, B. L., & Ratnakumar, B. V. (2008). Electrochemical characteristics of MCMB and LiNixCo1-xO2 electrodes in electrolytes with stabilizing additives. Journal of the Electrochemical Society, 155, A557–A568.CrossRefGoogle Scholar
  180. 180.
    Jiang, J., & Dahn, J. R. (2004). ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes. Electrochemistry Communications, 6, 39–43.CrossRefGoogle Scholar
  181. 181.
    Cho, I. H., Kim, S.-S., Shin, S. C., et al. (2010). Effect of SEI on capacity losses of spinel lithium manganese oxide/graphite batteries stored at 60 °C. Electrochemical and Solid-State Letters, 13, A168–A172.CrossRefGoogle Scholar
  182. 182.
    Li, W., & Lucht, B. L. (2007). Inhibition of solid electrolyte interface formation on cathode particles for lithium-ion batteries. Journal of Power Sources, 168, 258–264.CrossRefGoogle Scholar
  183. 183.
    Chang, C.-C., Chen, T.-K., Her, L.-J., et al. (2009). Tris(pentafluorophenyl)borane as an electrolyte additive to improve the high temperature cycling performance of LiFePO4 cathode. Journal of the Electrochemical Society, 156, A828–A832.CrossRefGoogle Scholar
  184. 184.
    Ping, P., Wang, Q., Sun, J., et al. (2010). Thermal stabilities of some lithium salts and their electrolyte solutions with and without contact to a LiFePO4 electrode. Journal of the Electrochemical Society, 157, A1170–A1176.CrossRefGoogle Scholar
  185. 185.
    Cheng, X.-B., Zhang, R., Zhao, C.-Z., et al. (2017). Toward safe lithium metal anode in rechargeable batteries: A review. Chemical Reviews, 117, 10403–10473.CrossRefGoogle Scholar
  186. 186.
    Bron, P., Roling, B., & Dehnen, S. (2017). Impedance characterization reveals mixed conducting interphases between sulfidic superionic conductors and lithium metal electrodes. Journal of Power Sources, 352, 127–134.CrossRefGoogle Scholar
  187. 187.
    Xie, D., Chen, S., Zhang, Z., et al. (2018). High ion conductive Sb2O5-doped β-Li3PS4 with excellent stability against Li for all-solid-state lithium batteries. Journal of Power Sources, 389, 140–147.CrossRefGoogle Scholar
  188. 188.
    Wu, B., Wang, S., Lochala, J., et al. (2018). The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy & Environmental Science, 11, 1803–1810.CrossRefGoogle Scholar
  189. 189.
    Chung, H., & Kang, B. (2017). Mechanical and thermal failure induced by contact between a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte and Li metal in an all solid-state Li cell. Chemistry of Materials, 29, 8611–8619.CrossRefGoogle Scholar
  190. 190.
    Haruyama, J., Sodeyama, K., Han, L., et al. (2014). Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chemistry of Materials, 26, 4248–4255.CrossRefGoogle Scholar
  191. 191.
    Aricò, A. S., Bruce, P., Scrosati, B., et al. (2005). Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 4, 366–377.CrossRefGoogle Scholar
  192. 192.
    Jiao, F., & Bruce, P. G. (2007). Mesoporous crystalline β-MnO2—A reversible positive electrode for rechargeable lithium batteries. Advanced Materials, 19, 657–660.CrossRefGoogle Scholar
  193. 193.
    Balaya, P., Bhattacharyya, A. J., Jamnik, J., et al. (2006). Nano-ionics in the context of lithium batteries. Journal of Power Sources, 159, 171–178.CrossRefGoogle Scholar
  194. 194.
    Maier, J. (2005). Nanoionics: ion transport and electrochemical storage in confined systems. Nature Materials, 4, 805–815.CrossRefGoogle Scholar
  195. 195.
    Jamnik, J., & Maier, J. (2003). Nanocrystallinity effects in lithium battery materials Aspects of nano-ionics. Part IV. Physical Chemistry Chemical Physics, 5, 5215–5220.CrossRefGoogle Scholar
  196. 196.
    Amatucci, G. G., Badway, F., Du Pasquier, A., et al. (2001). An asymmetric hybrid nonaqueous energy storage cell. Journal of the Electrochemical Society, 148, A930–A939.CrossRefGoogle Scholar
  197. 197.
    Wang, Q., Li, H., Chen, L., et al. (2001). Monodispersed hard carbon spherules with uniform nanopores. Carbon, 39, 2211–2214.CrossRefGoogle Scholar
  198. 198.
    Meethong, N., Huang, H.-Y. S., Carter, W. C., et al. (2007). Size-dependent lithium miscibility gap in nanoscale Li1-xFePO4. Electrochemical and Solid-State Letters, 10, A134–A138.CrossRefGoogle Scholar
  199. 199.
    Choi, J. W., & Aurbach, D. (2016). Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials, 1, 16013.CrossRefGoogle Scholar
  200. 200.
    Huggins, R. A., & Nix, W. D. (2000). Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics, 6, 57–63.CrossRefGoogle Scholar
  201. 201.
    Fang, W. Q., Gong, X.-Q., & Yang, H. G. (2011). On the unusual properties of anatase TiO2 exposed by highly reactive facets. The Journal of Physical Chemistry Letters, 2, 725–734.CrossRefGoogle Scholar
  202. 202.
    Ding, S., Chen, J. S., Wang, Z., et al. (2011). TiO2 hollow spheres with large amount of exposed (001) facets for fast reversible lithium storage. Journal of Materials Chemistry, 21, 1677–1680.CrossRefGoogle Scholar
  203. 203.
    Chen, J. S., Tan, Y. L., Li, C. M., et al. (2010). Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. Journal of the American Chemical Society, 132, 6124–6130.CrossRefGoogle Scholar
  204. 204.
    Cao, F.-F., Wu, X.-L., Xin, S., et al. (2010). Facile synthesis of mesoporous TiO2−C nanosphere as an improved anode material for superior high rate 1.5 V rechargeable Li ion batteries containing LiFePO4−C cathode. The Journal of Physical Chemistry C, 114, 10308–10313.CrossRefGoogle Scholar
  205. 205.
    Jiang, K.-C., Xin, S., Lee, J.-S., et al. (2012). Improved kinetics of LiNi1/3Mn1/3Co1/3O2 cathode material through reduced graphene oxide networks. Physical Chemistry Chemical Physics, 14, 2934–2939.CrossRefGoogle Scholar
  206. 206.
    Peled, E. (1979). The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—The solid electrolyte interphase model. Journal of the Electrochemical Society, 126, 2047–2051.CrossRefGoogle Scholar
  207. 207.
    Beaulieu, L. Y., Eberman, K. W., Turner, R. L., et al. (2001). Colossal reversible volume changes in lithium alloys. Electrochemical and Solid-State Letters, 4, A137–A140.CrossRefGoogle Scholar
  208. 208.
    Wu, H., Chan, G., Choi, J. W., et al. (2012). Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nature Nanotechnology, 7, 310–315.CrossRefGoogle Scholar
  209. 209.
    Liu, N., Lu, Z., Zhao, J., et al. (2014). A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nature Nanotechnology, 9, 187–192.CrossRefGoogle Scholar
  210. 210.
    Zhang, H., Zhou, L., Noonan, O., et al. (2014). Tailoring the void size of iron Oxide@Carbon yolk-shell structure for optimized lithium storage. Advanced Functional Materials, 24, 4337–4342.CrossRefGoogle Scholar
  211. 211.
    Odziemkowski, M., & Irish, D. E. (1992). An electrochemical study of the reactivity at the lithium electrolyte/bare lithium metal interface: I. Purified electrolytes. Journal of the Electrochemical Society, 139, 3063–3074.CrossRefGoogle Scholar
  212. 212.
    Peled, E., & Straze, H. (1977). The kinetics of the magnesium electrode in thionyl chloride solutions. Journal of the Electrochemical Society, 124, 1030–1035.CrossRefGoogle Scholar
  213. 213.
    Kanamura, K., Shiraishi, S., & Takehara, Z. I. (1996). Electrochemical deposition of very smooth lithium using nonaqueous electrolytes containing HF. Journal of the Electrochemical Society, 143, 2187–2197.Google Scholar
  214. 214.
    Kanamura, K., Tamura, H., Shiraishi, S., et al. (1995). XPS analysis of lithium surfaces following immersion in various solvents containing LiBF4. Journal of the Electrochemical Society, 142, 340–347.CrossRefGoogle Scholar
  215. 215.
    Ein-Eli, Y. (1999). A new perspective on the formation and structure of the solid electrolyte interface at the graphite anode of Li-ion cells. Electrochemical and Solid-State Letters, 2, 212–214.CrossRefGoogle Scholar
  216. 216.
    Ein-Eli, Y., McDevitt, S. F., & Laura, R. (1998). The superiority of asymmetric alkyl methyl carbonates. Journal of the Electrochemical Society, 145, L1–L3.CrossRefGoogle Scholar
  217. 217.
    Garreau, M. (1987). Cyclability of the lithium electrode. Journal of Power Sources, 20, 9–17.CrossRefGoogle Scholar
  218. 218.
    Thevenin, J. G., & Muller, R. H. (1987). Impedance of lithium electrodes in a propylene carbonate electrolyte. Journal of the Electrochemical Society, 134, 273–280.CrossRefGoogle Scholar
  219. 219.
    Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews, 104, 4303–4418.CrossRefGoogle Scholar
  220. 220.
    Hu, J. J., Long, G. K., Liu, S., et al. (2014). A LiFSI–LiTFSI binary-salt electrolyte to achieve high capacity and cycle stability for a Li–S battery. Chemical Communications, 50, 14647–14650.CrossRefGoogle Scholar
  221. 221.
    Shkrob, I. A., Marin, T. W., Zhu, Y., et al. (2014). Why bis(fluorosulfonyl)imide is a “magic anion” for electrochemistry. The Journal of Physical Chemistry C, 118, 19661–19671.CrossRefGoogle Scholar
  222. 222.
    Wu, F., Zhu, Q., Chen, R., et al. (2015). Ionic liquid-based electrolyte with binary lithium salts for high performance lithium–sulfur batteries. Journal of Power Sources, 296, 10–17.CrossRefGoogle Scholar
  223. 223.
    Heine, J., Hilbig, P., Qi, X., et al. (2015). Fluoroethylene carbonate as electrolyte additive in tetraethylene glycol dimethyl ether based electrolytes for application in lithium ion and lithium metal batteries. Journal of the Electrochemical Society, 162, A1094–A1101.CrossRefGoogle Scholar
  224. 224.
    Lu, Y., Tu, Z., Shu, J., et al. (2015). Stable lithium electrodeposition in salt-reinforced electrolytes. Journal of Power Sources, 279, 413–418.CrossRefGoogle Scholar
  225. 225.
    Miao, R., Yang, J., Feng, X., et al. (2014). Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. Journal of Power Sources, 271, 291–297.CrossRefGoogle Scholar
  226. 226.
    Lu, Y., Tu, Z., & Archer, L. A. (2014). Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nature Materials, 13, 961–969.CrossRefGoogle Scholar
  227. 227.
    Togasaki, N., Momma, T., & Osaka, T. (2014). Enhancement effect of trace H2O on the charge–discharge cycling performance of a Li metal anode. Journal of Power Sources, 261, 23–27.CrossRefGoogle Scholar
  228. 228.
    Qian, J., Xu, W., Bhattacharya, P., et al. (2015). Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive. Nano Energy, 15, 135–144.CrossRefGoogle Scholar
  229. 229.
    Aurbach, D., Pollak, E., Elazari, R., et al. (2009). On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. Journal of the Electrochemical Society, 156, A694–A702.CrossRefGoogle Scholar
  230. 230.
    Choi, J.-W., Cheruvally, G., Kim, D.-S., et al. (2008). Rechargeable lithium/sulfur battery with liquid electrolytes containing toluene as additive. Journal of Power Sources, 183, 441–445.CrossRefGoogle Scholar
  231. 231.
    Gordin, M. L., Dai, F., Chen, S., et al. (2014). Bis(2,2,2-trifluoroethyl) ether as an electrolyte Co-solvent for mitigating self-discharge in lithium-sulfur batteries. ACS Applied Materials & Interfaces, 6, 8006–8010.CrossRefGoogle Scholar
  232. 232.
    Ding, F., Xu, W., Graff, G. L., et al. (2013). Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. Journal of the American Chemical Society, 135, 4450–4456.CrossRefGoogle Scholar
  233. 233.
    Wang, S.-H., Yin, Y.-X., Zuo, T.-T., et al. (2017). Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels. Advanced Materials, 29, 1703729.CrossRefGoogle Scholar
  234. 234.
    Ye, H., Xin, S., Yin, Y.-X., et al. (2017). Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons. Journal of the American Chemical Society, 139, 5916–5922.CrossRefGoogle Scholar
  235. 235.
    Yan, K., Lee, H.-W., Gao, T., et al. (2014). Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Letters, 14, 6016–6022.CrossRefGoogle Scholar
  236. 236.
    Zheng, G., Lee, S. W., Liang, Z., et al. (2014). Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nature Nanotechnology, 9, 618–623.CrossRefGoogle Scholar
  237. 237.
    Han, F., Zhu, Y., He, X., et al. (2016). Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Advanced Energy Materials, 6, 1501590.CrossRefGoogle Scholar
  238. 238.
    Li, Y., Xu, B., Xu, H., et al. (2017). Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angewandte Chemie International Edition, 56, 753–756.CrossRefGoogle Scholar
  239. 239.
    Li, Y., Zhou, W., Xin, S., et al. (2016). Fluorine-doped antiperovskite electrolyte for all-solid-state lithium-ion batteries. Angewandte Chemie International Edition, 55, 9965–9968.CrossRefGoogle Scholar
  240. 240.
    Hartmann, P., Leichtweiss, T., Busche, M. R., et al. (2013). Degradation of NASICON-type materials in contact with lithium metal: Formation of mixed conducting interphases (MCI) on solid electrolytes. The Journal of Physical Chemistry C, 117, 21064–21074.CrossRefGoogle Scholar
  241. 241.
    Luo, W., Gong, Y., Zhu, Y., et al. (2016). Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. Journal of the American Chemical Society, 138, 12258–12262.CrossRefGoogle Scholar
  242. 242.
    Wang, C., Gong, Y., Liu, B., et al. (2017). Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Letters, 17, 565–571.CrossRefGoogle Scholar
  243. 243.
    Han, X., Gong, Y., Fu, K., et al. (2016). Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nature Materials, 16, 572–579.CrossRefGoogle Scholar
  244. 244.
    Mogensen, R., Brandell, D., & Younesi, R. (2016). Solubility of the solid electrolyte interphase (SEI) in sodium ion batteries. ACS Energy Letters, 1, 1173–1178.CrossRefGoogle Scholar
  245. 245.
    Sun, B., Li, P., Zhang, J., et al. (2018). Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries. Advanced Materials, 30, 1801334.CrossRefGoogle Scholar
  246. 246.
    Meitav, A., & Peled, E. (1982). Solid electrolyte interphase (SEI) electrode: Part III. Deposition-dissolution process of lithium in thionyl-chloride solution. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 134, 49–63.CrossRefGoogle Scholar
  247. 247.
    Derrien, G., Hassoun, J., Panero, S., et al. (2007). Nanostructured Sn–C composite as an advanced anode material in high-performance lithium-ion batteries. Advanced Materials, 19, 2336–2340.CrossRefGoogle Scholar
  248. 248.
    Guo, Y.-G., Hu, Y.-S., Sigle, W., et al. (2007). Superior electrode performance of nanostructured mesoporous TiO2 (Anatase) through efficient hierarchical mixed conducting networks. Advanced Materials, 19, 2087–2091.CrossRefGoogle Scholar
  249. 249.
    Park, K.-S., Schougaard, S. B., & Goodenough, J. B. (2007). Conducting-polymer/iron-redox-couple composite cathodes for lithium secondary batteries. Advanced Materials, 19, 848–851.CrossRefGoogle Scholar
  250. 250.
    Cao, A.-M., Hu, J.-S., Liang, H.-P., et al. (2005). Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angewandte Chemie International Edition, 44, 4391–4395.CrossRefGoogle Scholar
  251. 251.
    You, Y., Celio, H., Li, J., et al. (2018). Modified high-nickel cathodes with stable surface chemistry against ambient air for lithium-ion batteries. Angewandte Chemie International Edition, 57, 6480–6485.CrossRefGoogle Scholar
  252. 252.
    Cao, F.-F., Xin, S., Guo, Y.-G., et al. (2011). Wet chemical synthesis of Cu/TiO2 nanocomposites with integrated nano-current-collectors as high-rate anode materials in lithium-ion batteries. Physical Chemistry Chemical Physics, 13, 2014–2020.CrossRefGoogle Scholar
  253. 253.
    Hu, Y.-S., Guo, Y.-G., Dominko, R., et al. (2007). Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect. Advanced Materials, 19, 1963–1966.CrossRefGoogle Scholar
  254. 254.
    Wu, X.-L., Jiang, L.-Y., Cao, F.-F., et al. (2009). LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: Superior cathode material for electrochemical energy-storage devices. Advanced Materials, 21, 2710–2714.CrossRefGoogle Scholar
  255. 255.
    Li, X., Jin, H., Liu, S., et al. (2015). Carambola-shaped LiFePO4/C nanocomposites: directing synthesis and enhanced Li storage properties. Journal of Materials Chemistry A, 3, 116–120.CrossRefGoogle Scholar
  256. 256.
    Kang, H., Liu, H., Li, C., et al. (2018). Polyanthraquinone-triazine—A promising anode material for high-energy lithium-ion batteries. ACS Applied Materials & Interfaces, 10, 37023–37030.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.University of Texas at AustinAustinUSA
  2. 2.Institute of Chemistry, Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations