Introduction to Noise and its Applications

  • Aydin AziziEmail author
  • Poorya Ghafoorpoor Yazdi
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


A random fluctuation also called “noise,” is a characteristic of all physical systems in nature. In most of the scientific fields, noise is considered as apparently irregular or periodic chaotic. This chapter aims to introduce different types of noise and their applications focusing on white and colored noise. 


  1. 1.
    A.M. Selvam, Noise or random fluctuations in physical systems: a review, in Self-organized Criticality and Predictability in Atmospheric Flows (Springer, 2017), pp. 41–74Google Scholar
  2. 2.
    M. Von Smoluchowski, Ann. Phys. 326, 756 (1906)CrossRefGoogle Scholar
  3. 3.
    A. Einstein, Investigations on the theory of the Brownian movement. Ann. der Physik (1905)Google Scholar
  4. 4.
    P. Dayan, L.F. Abbott, Theoretical Neuroscience (MIT Press, Cambridge, MA, 2001)zbMATHGoogle Scholar
  5. 5.
    D. Abbott, Overview: unsolved problems of noise and fluctuations. Chaos: Interdisc. J. Nonlinear Sci. 11(3), 526–538 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    W.H. Press, Flicker noises in astronomy and elsewhere. Comments Astrophys. 7, 103–119 (1978)Google Scholar
  7. 7.
    E.W. Montroll, M.F. Shlesinger, On the Wonderful World of Random Walks (1984)Google Scholar
  8. 8.
    H.E. Rowe, Signals and Noise in Communication Systems (1965)Google Scholar
  9. 9.
    J. Fields et al., Guidelines for reporting core information from community noise reaction surveys. J. Sound Vib. 206(5), 685–695 (1997)CrossRefGoogle Scholar
  10. 10.
    P.R. Saulson, Thermal noise in mechanical experiments. Phys. Rev. D 42(8), 2437 (1990)CrossRefGoogle Scholar
  11. 11.
    Y.M. Blanter, M. Büttiker, Shot noise in mesoscopic conductors. Phys. Rep. 336(1–2), 1–166 (2000)CrossRefGoogle Scholar
  12. 12.
    A. Szewczyk, J.S. Lentka, P. Babuchowska, F. Béguin, in Measurements of Flicker Noise in Supercapacitor Cells. International Conference on Noise Fluctuations, ICNF, 2017, vol. 2017, pp. 2–5Google Scholar
  13. 13.
    K. Ioka, Flicker Noise Detection Apparatus, Flicker Noise Detection Method, and Computer-Readable Storage Device Storing Flicker Noise Detection Program (ed: Google Patents, 2014)Google Scholar
  14. 14.
    M. Trippe, G. Bosman, A. Van Der Ziel, Transit-time effects in the noise of Schottky-barrier diodes. IEEE Trans. Microw. Theory Tech. 34(11), 1183–1192 (1986)CrossRefGoogle Scholar
  15. 15.
    B. Carter, R. Mancini, Op Amps for Everyone (Newnes, 2017)Google Scholar
  16. 16.
    Z.Y. Chong, W.M. Sansen, Low-Noise Wide-Band amplifiers in Bipolar and CMOS Technologies (Springer Science & Business Media, 2013)Google Scholar
  17. 17.
    A. Watt, E. Maxwell, Characteristics of atmospheric noise from 1 to 100 kc. Proc. IRE 45(6), 787–794 (1957)CrossRefGoogle Scholar
  18. 18.
    M. Lisi, C. Filizzola, N. Genzano, R. Paciello, N. Pergola, V. Tramutoli, Reducing atmospheric noise in RST analysis of TIR satellite radiances for earthquakes prone areas satellite monitoring. Phys. Chem. Earth, Parts A/B/C 85, 87–97 (2015)CrossRefGoogle Scholar
  19. 19.
    I. Catt, Crosstalk (noise) in digital systems. IEEE Trans. Electron. Comput. 6, 743–763 (1967)CrossRefGoogle Scholar
  20. 20.
    J.C. Reynolds, Syntactic control of interference, in Algol-like Languages (Springer, 1997), pp. 273–286Google Scholar
  21. 21.
    A.H. Dictionary, The American Heritage Science Dictionary (Houghton Mifflin Company, 2005)Google Scholar
  22. 22.
    K. Chang, Intermodulation noise and products due to frequency-dependent nonlinearities in CATV systems. IEEE Trans. Commun. 23(1), 142–155 (1975)CrossRefGoogle Scholar
  23. 23.
    K. Sarrigeorgidis, T. Tabet, S.A. Mujtaba, Intermodulation Cancellation of Third-Order Distortion in an FDD Receiver (ed: Google Patents, 2016)Google Scholar
  24. 24.
    G. Breed, Intermodulation distortion performance and measurement issues. High Freq. Electron. 2(05), 56–57 (2003)Google Scholar
  25. 25.
    E.N. Skomal, Man-Made Radio Noise (Van Nostrand Reinhold Co., New York, 1978), 347 p.Google Scholar
  26. 26.
    D. Middleton, Man-made noise in urban environments and transportation systems: models and measurements. IEEE Trans. Commun. 21(11), 1232–1241 (1973)CrossRefGoogle Scholar
  27. 27.
    A.N. Popper, A. Hawkins, The Effects of Noise on Aquatic Life II (Springer, 2016)Google Scholar
  28. 28.
    A.G. Smith, Extraterrestrial noise as a factor in space communications. Proc. IRE 48(4), 593–599 (1960)CrossRefGoogle Scholar
  29. 29.
    H. Ko, The distribution of cosmic radio background radiation. Proc. IRE 46(1), 208–215 (1958)CrossRefGoogle Scholar
  30. 30.
    E.O. Elgaroy, Solar Noise Storms: International Series in Natural Philosophy (Elsevier, 2016)Google Scholar
  31. 31.
    R. Payne-Scott, D. Yabsley, J. Bolton, Relative times of arrival of bursts of solar noise on different radio frequencies. Nature 160(4060), 256 (1947)CrossRefGoogle Scholar
  32. 32.
    W.T. Sullivan III, Cosmic Noise: A History of Early Radio Astronomy (2009)Google Scholar
  33. 33.
    M. Kundu, F. Haddock, A relation between solar radio emission and polar cap absorption of cosmic noise. Nature 186 (1960)CrossRefGoogle Scholar
  34. 34.
    H.K. Gummel, J.L. Blue, A small-signal theory of avalanche noise in IMPATT diodes. IEEE Trans. Electron. Devices 14(9), 569–580 (1967)CrossRefGoogle Scholar
  35. 35.
    R. Garnett, T. Huegerich, C. Chui, W. He, A universal noise removal algorithm with an impulse detector. IEEE Trans. Image Process. 14(11), 1747–1754 (2005)CrossRefGoogle Scholar
  36. 36.
    A. Raghib, B.A. El Majd, B. Aghezzaf, An Optimal deployment of readers for RFID network planning using NSGA-II, in Recent Developments in Metaheuristics (Springer, 2018), pp. 463–476Google Scholar
  37. 37.
    R.A. Ulichney, Dithering with blue noise. Proc. IEEE 76(1), 56–79 (1988)CrossRefGoogle Scholar
  38. 38.
    J. Castro, What Is Blue Noise? (2013)
  39. 39.
    P. Szendro, G. Vincze, A. Szasz, Pink-noise behaviour of biosystems. Eur. Biophys. J. 30(3), 227–231 (2001)CrossRefGoogle Scholar
  40. 40.
    G. Vasilescu, Electronic Noise and Interfering Signals: Principles and Applications (Springer Science & Business Media, 2006)Google Scholar
  41. 41.
    A. Azizi, Computer-based analysis of the stochastic stability of mechanical structures driven by white and colored noise. Sustainability 10(10), 3419 (2018)CrossRefGoogle Scholar
  42. 42.
    National-Instruments, An Introduction to Noise Signals.

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of EngineeringGerman University of Technology in OmanMuscatOman

Personalised recommendations