Advertisement

Robot-Assisted Retinal Surgery: Overcoming Human Limitations

  • K. Xue
  • T. L. Edwards
  • H. C. M. Meenink
  • M. J. Beelen
  • G. J. L. Naus
  • M. P. Simunovic
  • M. D. de Smet
  • R. E. MacLarenEmail author
Chapter

Abstract

Robotics offer the potential to improve the precision and safety of retinal surgery. The starting point of advanced mechanical assistance in vitreoretinal surgery may be traced back to the invention of the motorized vitreous cutter by Machemer in the 1970s [1]. This revolutionized vitreoretinal surgical techniques and made it possible to treat complex retinal detachments, vitreous haemorrhage, epiretinal membranes and macular holes. Over the last decade, the use of vital dyes to stain retinal membranes has further improved the safety of some of the most intricate surgical steps such as peeling internal limiting membrane (ILM), stripping epiretinal membrane (ERM) and removing proliferative vitreoretinopathy (PVR), but minor retinal trauma remains inevitable even in experienced hands. Further improvements in the precision of retinal surgery are limited by human physiology, not only in terms of hand tremor and stability but also the resolving power of human vision even with the aid of the operating microscope. Modern laser-based in vivo imaging techniques such as intraoperative OCT can provide histological levels of detail, yet the limitations of human depth perception and hand-eye coordination mean that it remains a challenge for a surgeon to translate detailed imaging information into enhanced surgical performance. Various types of robotic assistance could help propel intraocular surgery beyond these human physiological limitations.

References

  1. 1.
    Machemer R, Parel J-M, Buettner H. A new concept for vitreous surgery: 1. Instrumentation. Am J Ophthalmol. 1972;73(1):1–7.CrossRefGoogle Scholar
  2. 2.
    Taylor R, Jensen P, Whitcomb L, et al. A steady-hand robotic system for microsurgical augmentation. Int J Robot Res. 1999;18(12):1201–10.CrossRefGoogle Scholar
  3. 3.
    Gonenc B, Handa J, Gehlbach P, Taylor RH, Iordachita I. Design of 3-DOF force sensing micro-forceps for robot assisted vitreoretinal surgery. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:5686–9.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Gijbels A, Smits J, Schoevaerdts L, Willekens K, Vander Poorten EB, Stalmans P, Reynaerts D. In-human robot-assisted retinal vein cannulation, a world first. Ann Biomed Eng. 2018.  https://doi.org/10.1007/s10439-018-2053-3.
  5. 5.
    Himpens J, Leman G, Cadiere GB. Telesurgical laparoscopic cholecystectomy. Surg Endosc. 1998;12(8):1091.CrossRefGoogle Scholar
  6. 6.
    Roizenblatt M, Edwards TL, Gehlbach PL. Robot-assisted vitreoretinal surgery: current perspectives. Robot Surg (Auckland). 2018;5:1–11.  https://doi.org/10.2147/RSRR.S122301.CrossRefGoogle Scholar
  7. 7.
    Edwards TL, Xue K, Meenink TC, Beelen MJ, Naus G, Simunovic MP, Latasiewicz M, Farmery AD, de Smet MD, MacLaren RE. First-in-human study of the safety and viability of intraocular robotic surgery. Nat Biomed Eng. 2018.  https://doi.org/10.1038/s41551-018-0248-4.
  8. 8.
    de Smet MD, Meenink HCM, Beelen M, Naus GJL, Popma SH. Comparison of robotic assisted ab externo sub-retinal bleb formation to manually performed surgery. 2014. Conference abstract at Jules Gonin Meeting, Zurich, Switzerland.Google Scholar
  9. 9.
    de Smet MD, Meenink TC, Janssens T, et al. Robotic assisted cannulation of occluded retinal veins. PLoS One. 2016;11(9):e0162037.CrossRefGoogle Scholar
  10. 10.
    Cheon GW, Huang Y, Cha J, Gehlbach PL, Kang JU. Accurate real-time depth control for CP-SSOCT distal sensor based handheld microsurgery tools. Biomed Opt Express. 2015;6(5):1942–53.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • K. Xue
    • 1
  • T. L. Edwards
    • 1
  • H. C. M. Meenink
    • 2
  • M. J. Beelen
    • 2
  • G. J. L. Naus
    • 2
  • M. P. Simunovic
    • 1
  • M. D. de Smet
    • 2
  • R. E. MacLaren
    • 1
    Email author
  1. 1.NIHR Oxford Biomedical Research CentreUniversity of OxfordOxfordUK
  2. 2.Preceyes BVEindhovenThe Netherlands

Personalised recommendations