Basic Principles in 23-, 25-, and 27-Gauge Pars Plana Vitrectomy

  • Andreas Ebneter
  • Weng Onn Chan
  • Jagjit Singh Gilhotra


Although sutureless techniques for 20-gauge vitrectomy had previously been described, it was not until the advent of 25-gauge vitrectomy that transconjunctival sutureless vitrectomy became popular. The development of less invasive methods had been motivated by the desire to avoid typical complications of 20-gauge pars plana vitrectomy, spare the conjunctiva from scarring, and shorten procedural time. During the early stages of small gauge vitrectomy, the lack of stiffness and the limited range of the instruments provoked skepticism among retina specialists and dampened initial enthusiasm. However, ingenious design, improved materials and adaptation of operating techniques lately led to rapid progress and much improved performance of small gauge vitrectomy systems. In fact, some surgeons now use 27-gauge systems almost exclusively for nearly the entire spectrum of vitreoretinal pathology. This chapter discusses performance characteristics and limitations of some popular small gauge vitrectomy platforms. Handling techniques and tricks to avoid common complications specific to minimally invasive pars plana vitrectomy are explained.





mm of mercury


Pars plana vitrectomy


Posterior vitreous detachment



Nonclinical illustrations are courtesy of Alcon, Bausch + Lomb, and Dutch Ophthalmic Research Center.


  1. 1.
    Fujii GY, De Juan E Jr, Humayun MS, Pieramici DJ, Chang TS, Awh C, Ng E, Barnes A, Wu SL, Sommerville DN. A new 25-gauge instrument system for transconjunctival sutureless vitrectomy surgery. Ophthalmology. 2002;109(10):1807–12.CrossRefGoogle Scholar
  2. 2.
    Eckardt C. Transconjunctival sutureless 23-gauge vitrectomy. Retina. 2005;25(2):208–11.CrossRefGoogle Scholar
  3. 3.
    Oshima Y, Wakabayashi T, Sato T, Ohji M, Tano Y. A 27-gauge instrument system for transconjunctival sutureless microincision vitrectomy surgery. Ophthalmology. 2010;117(1):93–102.CrossRefGoogle Scholar
  4. 4.
    PAT Survey. Membership survey preferences and trends. Chicago, IL: American Society of Retina Specialists; 2017.Google Scholar
  5. 5.
    Toygar O, Mi CW, Miller DM, Riemann CD. Outcomes of transconjunctival sutureless 27-gauge vitrectomy with silicone oil infusion. Graefes Arch Clin Exp Ophthalmol. 2016;254(11):2111–8.CrossRefGoogle Scholar
  6. 6.
    Khan MA, Samara WA, Hsu J, Garg S. Short-term outcomes of hybrid 23-, 25-, and 27-gauge vitrectomy for complex diabetic tractional retinal detachment repair. Retin Cases Brief Rep. 2017.
  7. 7.
    Ribeiro RM, Teixeira AG, Diniz B, Fernandes RB, Zhong Y, Kerns R, Humayun MS. Performance analysis of ultrahigh-speed vitreous cutter system. Retina. 2013;33(5):928–32.CrossRefGoogle Scholar
  8. 8.
    Zehetner C, Moelgg M, Bechrakis E, Linhart C, Bechrakis NE. In vitro flow analysis of novel double-cutting, open-port, ultrahigh-speed vitrectomy systems. Retina. 2018;38(12):2309–16.Google Scholar
  9. 9.
    Dugel PU, Zhou J, Abulon DJ, Buboltz DC. Tissue attraction associated with 20-gauge, 23-gauge, and enhanced 25-gauge dual-pneumatic vitrectomy probes. Retina. 2012;32(9):1761–6.CrossRefGoogle Scholar
  10. 10.
    Oellers P, Stinnett S, Mruthyunjaya P, Hahn P. Small-gauge valved versus nonvalved cannula pars plana vitrectomy for retinal detachment repair. Retina. 2016;36(4):744–9.CrossRefGoogle Scholar
  11. 11.
    Acar N, Kapran Z, Unver YB, Altan T, Ozdogan S. Early postoperative hypotony after 25-gauge sutureless vitrectomy with straight incisions. Retina. 2008;28(4):545–52.CrossRefGoogle Scholar
  12. 12.
    Govetto A, Virgili G, Menchini F, Lanzetta P, Menchini U. A systematic review of endophthalmitis after microincisional versus 20-gauge vitrectomy. Ophthalmology. 2013;120(11):2286–91.CrossRefGoogle Scholar
  13. 13.
    Oshima Y, Kadonosono K, Yamaji H, Inoue M, Yoshida M, Kimura H, Ohji M, Shiraga F, Hamasaki T. Multicenter survey with a systematic overview of acute-onset endophthalmitis after transconjunctival microincision vitrectomy surgery. Am J Ophthalmol. 2010;150(5):716–25.CrossRefGoogle Scholar
  14. 14.
    Shinoda H, Nakajima T, Shinoda K, Suzuki K, Ishida S, Inoue M. Jamming of 25-gauge instruments in the cannula during vitrectomy for vitreous haemorrhage. Acta Ophthalmol. 2008;86(2):160–4.CrossRefGoogle Scholar
  15. 15.
    Oshima Y, Ohji M, Tano Y. Surgical outcomes of 25-gauge transconjunctival vitrectomy combined with cataract surgery for vitreoretinal diseases. Ann Acad Med Singap. 2006;35(3):175–80.PubMedGoogle Scholar
  16. 16.
    Khan MA, Durrani AK, Hsu J, Regillo CD. 27-Gauge vitrectomy wound integrity: a randomized pilot study comparing angled versus straight entry in fluid-filled vitrectomized eyes. Retina. 2018;38(4):678–83.Google Scholar
  17. 17.
    Inoue M, Abulon DJ, Hirakata A. Comparison of the effects of 23-gauge and 25-gauge microincision vitrectomy blade designs on incision architecture. Clin Ophthalmol. 2014;8:2307–18.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Andreas Ebneter
    • 1
  • Weng Onn Chan
    • 2
  • Jagjit Singh Gilhotra
    • 3
  1. 1.Department of OphthalmologyBern University HospitalInselspitalSwitzerland
  2. 2.Moorfields Eye HospitalLondonUK
  3. 3.Department of OphthalmologyRoyal Adelaide HospitalAdelaideAustralia

Personalised recommendations