Metallic Nanoparticles in Otology

  • A. A. Maniu
  • M. Perde-Schrepler
  • E. Fischer-Fodor
  • A. Florea
  • George Sebastian ChisEmail author
  • A. I. Roman
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 71)


Introduction. Nanomedicine is the medical application of nanotechnology and concerns the use of precisely engineered materials at nano length scale, to early detection and prevention, improved diagnosis, proper treatment and follow-up of diseases. This new and exciting specialty finds more and more applications in all medical fields, the otology being part of them. This review considers current developments and future prospects for metallic nanomaterials used in otology. Materials and Methods. The online medical reference databases PubMed, Google Scholar, ISI Web of Science and Science Direct were searched with search terms “Nanotechnology, Nanomedicine, Metallic Nanoparticles” in combination with “Otology, ENT, middle ear, inner ear diseases” in turn. Furthermore, we are giving an overview of the work of the Department of Otorhinolaryngology, Head and Neck Surgery, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca and Tumor Biology Department, The Institute of Oncology “Prof. Dr. I. Chiricuta”, Cluj-Napoca Results. Metallic Nanoparticles proved to have strong anti-bacterial, anti-viral, and anti-fungal activities by the inhibition of biofilm formation, destruction of viruses and fungi and stimulation of the host’s immune response. These properties make metallic nanoparticles such as silver nanoparticles extremely attractive to be used to treat middle ear infectious diseases such as otitis media. For the inner ear diseases many studies have used metallic nanoparticles to deliver drugs, genes, and growth factors. The current limitations for the clinical application are related to their possible cytotoxic effect. Conclusions. The future treatment of otological diseases could be revolutionized by advances in nanomedicine. The current review suggest that further studies are required to be able to confirm the safety of metallic nanoparticle derived application to use in life.


Nanomedicine Metallic nanoparticle Middle ear diseases Inner ear diseases 


Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Taniguchi, N.: On the basic concept of nanotechnology. In: Proceedings of the International Conference Production Engineering, Tokyo, Part II, Japan Society of Precision Engineering, pp. 18–23 (1974)Google Scholar
  2. 2.
    Freitas, R.A. (1999). Nanomedicine: Basic Capabilities, 1. Landes Bioscience, Austin, TX. ISBN 978-1-57059-645-2Google Scholar
  3. 3.
    Farokhzad, O.C., Langer, R.: Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv. Drug Deliv. Rev. 58, 1456–1459 (2006)CrossRefGoogle Scholar
  4. 4.
    Chhikara, B.S.: Current trends in nanomedicine and nanobiotechnology research. Appl. Nanomed. 2(1), 1–6 (2017)Google Scholar
  5. 5.
    Curtis, A., Wilkinson, C.: Nantotechniques and approaches in biotechnology. Trends Biotechnol. 19, 97 (2001)CrossRefGoogle Scholar
  6. 6.
    Appenzeller, T.: The man who dared to think small. Science 254, 1300 (1991)Google Scholar
  7. 7.
    Verhoeff, M., van der Veen, E.L., Rovers, M.M., Sanders, E.A.M., Schilder, A.G.M.: Chronic suppurative otitis media: a review. Int. J. Pediatr. Otorhinolaryngol. 70, 1–12 (2006)CrossRefGoogle Scholar
  8. 8.
    Rosenblüt, A., Santolaya, M.E., González, P., Corbalán, V., Avendanõ, L.F., Martínez, M.A., Hormazabal, J.C.: Bacterial and viral etiology of acute otitis media in Chilean children. Pediatr. Infect Dis. J. 20(5), 501–507Google Scholar
  9. 9.
    Indudharan, R., Haq, J.A., Aiyar, S.: Antibiotics in chronic suppurative otitis media: a bacteriologic study. Ann. Otol. Rhinol. Laryngol. 108(5), 440–445 (1999)CrossRefGoogle Scholar
  10. 10.
    Verhoeff, M., van der Veen, E.L., Rovers, M.M., Elisabeth A.M. Sanders, Schilder, A.G.M.: Chronic suppurative otitis media: a review. Int. J. Pediatr. Otorhinolaryngol. 70, 1–12 (2006)Google Scholar
  11. 11.
    Post, J.C., Hiller, N.L., Nistico, L., Stoodley, P., Ehrlich, G.D.: The role of biofilms in otolaryngologic infections: update 2007. Curr. Opin. Otolaryngol. Head Neck Surg. 15, 347–351 (2007). Scholar
  12. 12.
    Bjarnsholt, T.: The role of bacterial biofilms in chronic infections, APMIS Suppl 136, 1–51 (2013)Google Scholar
  13. 13.
    Georgescu, M., Vranceanu, D., Radulescu, L., Martu, C., Tusaliu, M., Curutiu, C., Dhya, M., Budu, V.: Microbial biofilms and implantable hearing aids—Rom. Biotechnol. Lett. 22(4), 12681–12686 (2017) IF 0.381Google Scholar
  14. 14.
    Preciado, D., Caicedo, E., Jhanjee, R., Silver, R., Harris, G., Juhn, S.K., Choo, D.I., Ondrey, F.: Pseudomonas aeruginosa lipopolysaccharide induction of keratinocyte proliferation, NF-kappa B, and cyclin D1 is inhibited by indomethacin. J. Immunol. 174(5), 2964–2973 (2005)Google Scholar
  15. 15.
    Rwrew Walker, B., Barrett, S., Polasky, S., Galaz, V., Folke, C., Engström, G., Ackerman, F., Arrow, K., Carpenter, S., Chopra, K., Daily, G., Ehrlich, P., Hughes, T., Kautsky, N., Levin, S., Mäler, K.G., Shogren, J., Vincent, J., Xepapadeas, T., de Zeeuw, A.: Environment. Looming global-scale failures and missing institutions. Science 325, 1345–1346 (2009)CrossRefGoogle Scholar
  16. 16.
    Halawani, R.E.M.: Nanomedicine opened new horizons for metal nanoparticles to treat multi-drug resistant organisms. Int. J. Curr. Microbiol. Appl. Sci. 5(2), 397–414 (2016)Google Scholar
  17. 17.
    Rerwe Kaur, P., Thakur, R., Kumar, S., Dilbaghi, N.: Interaction of ZnO nanoparticles with food borne pathogens Escherichia coli DH5α and Staphylococcus aureus 5021 & their bactericidal efficacy. AIP Conf. Proc. 1393, 153–154 (2011)Google Scholar
  18. 18.
    Li, Q., Mahendra, S., Lyon, D.Y., Brunet, L., Liga, M.V., Li, D., Alvarez, P.J.: Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 42(18), 4591–4602 (2008)Google Scholar
  19. 19.
    Thill, A., Zeyons, O., Spalla, O., Chauvat, F., Rose, J., Auffan, M., Flank, A.M.: Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ. Sci. Technol. 40, 6151–6156Google Scholar
  20. 20.
    Iavicoli, I., Fontana, L., Leso, V., Bergamaschi, A.: The effects of nanomaterials as endocrine disruptors. Int. J. Mol. Sci. 14, 16732–16801 (2013)CrossRefGoogle Scholar
  21. 21.
    Salomonl, R., Léo, P., Montemor, A.F., Rinaldi, B.G., Rodrigues, M.F.A.: Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Science and Applications 10, 115–121 (2017)Google Scholar
  22. 22.
    Sinha, R., Karan, R., Sinha, A., Khare, S.K.: Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour. Technol. 102, 1516–1520 (2011)CrossRefGoogle Scholar
  23. 23.
    Midander, K., Cronholm, P., Karlsson, H.L., Elihn, K., Moller, L., Leygraf, C., Wallinder, I.O.: Surface characteristics, copper release, and toxicity of nano and micrometer-sized copper and copper (II) oxide particles: a cross-disciplinary study. Small 5, 389–399 (2009)CrossRefGoogle Scholar
  24. 24.
    Kaur, P., Chaudhury, A., Thakur, R.: Synthesis of chitosan-silver nanocomposites and their antibacterial activity. Int. J. Sci. Eng. Res. 4(4), 869 (2013)Google Scholar
  25. 25.
    Kaur, P., Thakur, R., Kumar, S., Dilbaghi, N.: Interaction of ZnO nanoparticles with food borne pathogens Escherichia coli DH5α and Staphylococcus aureus 5021 & their bactericidal efficacy. AIP Conf. Proc. 1393, 153–154 (2011)Google Scholar
  26. 26.
    Kasemets, K., Ivask, A., Dubourguier, H.C., Kahru, A.: Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol. in Vitro 23(6), 1116–1122 (2009)CrossRefGoogle Scholar
  27. 27.
    Hanagata, N., Zhuang, F., Connolly, S., Li, J., Ogawa, N., Xu, M.: Molecular responses of human lung epithelial cells to the toxicity of copper oxide nanoparticles inferred from whole genome expression analysis. ASC Nano 5(12), 9326–9338 (2011)CrossRefGoogle Scholar
  28. 28.
    Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N., Kim, J.O.: A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52(4), 662–668 (2000)CrossRefGoogle Scholar
  29. 29.
    Pal, S., Tak, Y.K., Song, J.M.: Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73(6), 1712–1720 (2007). Scholar
  30. 30.
    Lara, H.H., Ayala-Nunez, N.V., Turrent, L.D.I., Padilla, C.R.: Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microbiol. Biotechnol. 26(4), 615–621 (2010). Scholar
  31. 31.
    Li, W.R., Xie, X.B., Shi, Q.S., Duan, S.S., Ouyang, Y.S., Chen, Y.B.: Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24(1), 135–141 (2011). Scholar
  32. 32.
    Shahverdi, A.R., Fakhimi, A., Shahverdi, H.R., Minaian, S.: Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3(2), 168–171 (2007). Scholar
  33. 33.
    Wright, J.B., Lam, K., Hansen, D., Burrell, R.E.: Efficacy of topical silver against fungal burn wound pathogens. Am. J. Infect. Control 27(4), 344–350 (1999). Scholar
  34. 34.
    Butler, K.S., Peeler, D.J., Casey, B.J., Dair, B.J., Elespuru, R.K.: Silver nanoparticles: correlating nanoparticle size and cellular uptake with genotoxicity. Mutagenesis 30(4), 577–591 (2015)CrossRefGoogle Scholar
  35. 35.
    Dixit, A., Das, S., Jyoti, A., Kaushik, S.: Biogenic synthesis of silver nanoparticles and its potential application in prevention of acute ear infections. J. Pharm. Sci. Res. 9(1), 14–17 (2017)Google Scholar
  36. 36.
    Ray, M., Yadav, A., Gade, A.: Silver nanoparticles as new generation of antimicrobials. Biotechnol Adv 27:76–83 (2009)Google Scholar
  37. 37.
    Semenov, F.V., Fidarova, K.M.: The treatment of the patients presenting with chronic inflammation of the trepanation cavity with a preparation containing silver nanoparticles following sanitation surgery of the open type. Vestn. Otorinolaringol. 6, 117–119 (2012)Google Scholar
  38. 38.
    Ziąbka, M., Dziadek, M., Menaszek, E., Banasiuk, R., Królicka, A.: Middle ear prosthesis with bactericidal efficacy—in vitro investigation. Molecules 22, 1681 (2017).
  39. 39.
    Ziąbka, M., Menaszek, E., Tarasiuk, J., Wroński, S.: Biocompatible nanocomposite implant with silver nanoparticles for otology—in vivo evaluation. Nanomaterials 8, 764 (2018).
  40. 40.
    Cavaleriu, B.D., Martu, D.V., Hritcu, L., et al.: Idiopathic sudden hearing loss: oxidative status before and after corticoid treatment. Arch. Biol. Sci. 67(4), 1297–1302 (2015)Google Scholar
  41. 41.
    Juhn, S.K., Rybak, L.P., Fowlks, W.L.: Transport characteristics of the blood-Perilymph barrier. Am. J. Otolaryngol. Head Neck Med. Surg. 3(6), 392–396 (1982)Google Scholar
  42. 42.
    Sajjadi, H., Paparella, M.M.: Meniere’s disease. Lancet 372(9636), 406–414 (2008)CrossRefGoogle Scholar
  43. 43.
    McCall, A.A., Swan, E.E.L., Borenstein, J.T., Sewell, W.F., Kujawa, S.G., McKenna, M.J.: Drug delivery for treatment of inner ear disease: current state of knowledge. Ear Hear. 31(2), 156–165 (2010)CrossRefGoogle Scholar
  44. 44.
    Zou, J., Hannula, M., Misra, S., et al.: Micro CT visualization of silver nanoparticles in the middle and inner ear of rat and transportation pathway after transtympanic injection. J. Nanobiotechnol. 13(1) (Article no. 5) (2015)Google Scholar
  45. 45.
    Ge, X., Jackson, R.L., Liu, J., Harper, E.A., Hoffer, M.E., Wassel, R.A., Dormer, K.J., Kopke, R.D., Balough, B.J.: Distribution of PLGA nanoparticles in chinchilla cochleae. Otolaryngol. Head Neck Surg. 137, 619–623 (2007)CrossRefGoogle Scholar
  46. 46.
    Hsiao, J.K., Tsai, C.P., Chung, T.H., Hung, Y., Yao, M., Liu, H.M., Mou, C.Y., Yang, C.S., Chen, Y.C., Huang, D.M.: Mesoporous silica nanoparticles as a delivery system of gadolinium for effective human stem cell tracking. Small 4, 1445–1452 (2008)CrossRefGoogle Scholar
  47. 47.
    Shinkai, M., Ito, A.: Functional magnetic particles for medical application. Adv. Biochem. Eng. Biotechnol. 91, 191–220 (2004)Google Scholar
  48. 48.
    Kopke, R.D., Wassel, R.A., Mondalek, F., Grady, B., Chen, K., Liu, J., Gibson, D., Dormer, K.J.: Magnetic nanoparticles: inner ear targeted molecule delivery and middle ear implant. Audiol. Neurotol. 11, 123–133 (2006).
  49. 49.
    Dabdoub, A., Fritzsch, B., Popper, A.N., et al.: The Primary Auditory Neurons of the Mammalian Cochlea. Springer, New York (2016)CrossRefGoogle Scholar
  50. 50.
    Vohr, B.: Overview: infants and children with hearing loss-part I. Ment. Retard. Dev. Disabil. Res. Rev. 9, 62–64 (2003)CrossRefGoogle Scholar
  51. 51.
    Coronado, E.A., Encina, E.R., Stefani, F.D.: Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale. Nanoscale 3, 4042–4059 (2011)CrossRefGoogle Scholar
  52. 52.
    Bazard, P., Frisina, R.D., Walton, J.P., Bhethanabotla, V.R.: Nanoparticle-based plasmonic transduction for modulation of electrically excitable cells. Sci. Rep. 7, 7803.
  53. 53.
    Moreno-Garrido, I., Pérez, S., Blasco, J.: Toxicity of silver and gold nanoparticles on marine microalga. Mar. Environ. Res. 111, 60–73 (2015)CrossRefGoogle Scholar
  54. 54.
    Panyala, N.R., Pena-Mendez, E.M., Havel, J.: Silver or silver nanoparticles: a hazardous threat to the environment and human health? J. Appl. Biomed. 6, 117–129 (2008)CrossRefGoogle Scholar
  55. 55.
    Kahru, A., Savolainen, K.: Potential hazard of nanoparticles: from properties to biological and environmental effects. Toxicology 269(2–3), 89–91 (2010)CrossRefGoogle Scholar
  56. 56.
    Wijnhoven, S.W.P., Peijnenburg, W.J.G.M., Herberts, C.A., Hagens, W.I., Oomen, A.G., Heugens, E.H.W., Roszek, B., Bisschops, J., Gosens, I., van de Meent, D., Dekkers, S., de Jong, W.H., van Zijverden, M., Sips, A.J.A.M., Geertsma, R.E.: Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3(2), 109–138 (2009)CrossRefGoogle Scholar
  57. 57.
    Zapór, L.: Effects of silver nanoparticles of different sizes on cytotoxicity and oxygen metabolism disorders in both reproductive and respiratory system cells. Arch. Environ. Prot. 42(4), 32–47 (2016)CrossRefGoogle Scholar
  58. 58.
    Zou, J., Zhang, Y., Yin, S., Wu, H., Pyykko, I.: Mitochondrial dysfunction disrupts trafficking of Kir 4.1 in spiral ganglion satellite cells. J. Neurosci. Res. 87(1), 141–149 (2009)Google Scholar
  59. 59.
    Zou, J., Feng, H., Mannerström, M., Heinonen, T., Pyykkö, I.: Toxicity of silver nanoparticle in rat ear and BALB/c 3T3 cell line. J. Nanobiotechnol. 12, 52 (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • A. A. Maniu
    • 1
  • M. Perde-Schrepler
    • 2
  • E. Fischer-Fodor
    • 2
  • A. Florea
    • 3
  • George Sebastian Chis
    • 4
    Email author
  • A. I. Roman
    • 5
  1. 1.Department of OtolaryngologyUniversity of Medicine and Pharmacy “Iuliu Hatieganu”Cluj-NapocaRomania
  2. 2.Tumor Biology DepartmentThe Institute of Oncology “Prof. Dr. I. Chiricuta”Cluj-NapocaRomania
  3. 3.Department of Molecular BiologyUniversity of Medicine and Pharmacy “Iuliu Hatieganu”Cluj-NapocaRomania
  4. 4.Department of Economics Informatics, Faculty of Economics and Business AdministrationBabeș Bolyai UniversityCluj-NapocaRomania
  5. 5.Department of Regional Gastroenterology InstituteCluj-NapocaRomania

Personalised recommendations