Advertisement

Robotics in Minimally Invasive Procedures: History, Current Trends and Future Challenges

  • C. Vaida
  • N. Al Hajjar
  • V. Lazar
  • F. Graur
  • A. Burz
  • R. Elisei
  • E. Mois
  • D. PislaEmail author
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 71)

Abstract

Cancer is considered as the disease of the XXI century being still one of the deadliest afflictions even though continuous advancement is achieved in the treatment of different malignances. In parallel with the technological progress minimally invasive therapies like radiofrequency, ablation, and targeted drug delivery attempted to provide methods that minimize the side effects while maximizing the therapeutic impact. Taking into consideration the number of elderly people that is expected to increase over the years to come, cancer therapies must progress to ensure a real improvement of the quality of life. This paper is an overview of the evolution and challenges of robotic systems for minimally invasive procedures (MIP) that covers both surgical and non-surgical therapies for cancer diagnosis and treatment. A benefit of using robotic assisted MIP in cancer treatment is the high precision/low adjacent damage to neighboring tissues which supervised by different real-time monitoring solutions represent the cornerstone in the future advancement of cancer treatment technologies.

Keywords

Robotic assisted minimal invasive procedures Cancer diagnosis and treatment Needle guided procedures 

Notes

Acknowledgements

This work was supported by a grant of the Romanian Ministry of Research and Innovation, PCCCDI—UEFISCDI, project number PN-III-P1-1.2-PCCDI-2017-0221/59PCCDI/2018 (IMPROVE), within PNCDI III.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Shrivastava, S.R.B.L., Shrivastava, P.S., Ramasamy, J.: Health-care of elderly: determinants, needs and services. Int. J. Prevent. Med. 4(10), 1224–1225 (2013)Google Scholar
  2. 2.
  3. 3.
    Kelling, G.: Die Tamponade der Speiseroehre und des magens mit beigsamen instrumenten. Verdhandlungen der Gesellschaft Deutscher Naturtorscher und Aerzte. Vogel verlag (1901), Leipzig 73, pp. 117–119Google Scholar
  4. 4.
    Taylor, R.H., et al.: A telerobotic assistant for laparoscopic surgery. IEEE Eng. Med. Biol. 14, 279–287 (1995)CrossRefGoogle Scholar
  5. 5.
    Vaida, C., Gherman, B., Pisla, D., Plitea, N.: A spherical robotic arm for instruments positioning in minimally invasive medical applications. In: The 2nd IFToMM Asian Conference on Mechanism and Machine Science November 7–10, Tokyo, Japan (2012)Google Scholar
  6. 6.
  7. 7.
    Hpnonline.com: [online] Available at: https://www.hpnonline.com/ce/pdfs/1409cetest.pdf. Accessed Sep 2018 (2018)
  8. 8.
    Filson, P.C.: Improvement in clinical TNM staging documentation within a prostate cancer quality improvement collaborative. Urology 83 http://dx.doi.org/,  https://doi.org/10.1016/j.urology.2013.11.040 (2014)
  9. 9.
    Meerbeeck, J.P., Janssens, A.: The seventh tumour–node–metastasis staging system for lung cancer: sequel or prequel? Eur. J. Cancer Suppl. 11(2) (2013)Google Scholar
  10. 10.
    Verma, S., et al.: Overview of dynamic contrast—enhanced MRI in prostate cancer diagnosis and management. AJR Am. J. Roentgenol. 198(6).  https://doi.org/10.2214/ajr.12.8510 (2012)
  11. 11.
    Shah, C., et al.: The American brachytherapy society consensus statement for accelerated partial breast irradiation. Brachytherapy 12(4).  https://doi.org/10.1016/j.brachy (2013)
  12. 12.
    Kharofa, J., et al.: 3-T MRI-based adaptive brachytherapy for cervix cancer: treatment technique and initial clinical outcomes. Brachytherapy 13(4).  https://doi.org/10.1016/j.brachy (2014)
  13. 13.
    Van Tilborg, M., et al.: Long-term results of radiofrequency ablation for unresectable colorectal liver metastases: a potentially curative intervention. Brit. J. Radiol. 84(1002), http://dx.doi.org/10.1259/bjr/78268814 (2014)
  14. 14.
    Kennedy, T., et al.: Laparoscopic radiofrequency ablation for the management of colorectal liver metastases: 10-year experience. J. Surg. Oncol. 107(4).  https://doi.org/10.1002/jso.23268 (2013)
  15. 15.
    Birsen, O., et al.: A critical analysis of postoperative morbidity and mortality after laparoscopic radiofrequency ablation of liver tumors. Ann. Surg. Oncol. 21(6).  https://doi.org/10.1245/s10434-014-3526-8 (2014)
  16. 16.
    Vogl, T., et al.: Thermal ablation therapies in patients with breast cancer liver metastases: a review. Eur. Radiol. 23(3).  https://doi.org/10.1007/s00330-012-2662-4 (2013)
  17. 17.
    Lee, Y.N., et al.: Core biopsy needle versus standard aspiration needle for endoscopic ultrasound-guided sampling of solid pancreatic masses: a randomized parallel-group study. Endoscopy 46(12).  https://doi.org/10.1055/s-0034-1377558 (2014)
  18. 18.
    Neagos, H., Graur, F., et al.: The contribution of technology in cholangiocarcinoma treatment. IFMBE Proc. 36  https://doi.org/10.1007/978-3-642-22586-4_39 (2011)
  19. 19.
    Pisla, D., Tucan, P., Gherman, B., Crisan, N., Andras, I., Vaida, C., Plitea, N.: Development of a parallel robotic system for transperineal biopsy of the prostate. Mech. Sci. 8(1), 195–213 (2017)CrossRefGoogle Scholar
  20. 20.
    Sharma, D., Thulkar, S., Pandit, S., Rath, G., Bahl, A., Julka, P.: Computerized tomography-guided percutaneous high-dose-rate interstitial brachytherapy for malignant lung lesions. J. Cancer Res. Ther. 7(2), 174 (2011)CrossRefGoogle Scholar
  21. 21.
    South Florida Sugical Oncology: Liver Tumors & Liver Cancer. [online] Available at: https://southfloridasurgicaloncology.com/liver-tumors/. Accessed Oct 2018 (2018)
  22. 22.
    Pisla, D., et al.: PARAMIS parallel robot for laparoscopic surgery. Chirurgia 105, 677–683 (2010)Google Scholar
  23. 23.
    Pisla, D., et al.: PARASURG hybrid parallel robot for minimally invasive surgery. Chirurgia 106(5), 619–625 (2011)Google Scholar
  24. 24.
    Pisla, D., Cocorean, D., Vaida, C., Gherman, B., Pisla, A., Plitea, N.: Application oriented design and simulation of an innovative parallel robot for brachytherapy. V05BT08A012.  https://doi.org/10.1115/detc2014-35047 (2014)

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • C. Vaida
    • 1
  • N. Al Hajjar
    • 2
  • V. Lazar
    • 1
  • F. Graur
    • 2
  • A. Burz
    • 1
  • R. Elisei
    • 2
  • E. Mois
    • 3
  • D. Pisla
    • 1
    Email author
  1. 1.CESTER, Technical University of Cluj-NapocaCluj-NapocaRomania
  2. 2.University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj-NapocaCluj-NapocaRomania
  3. 3.Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”Cluj-NapocaRomania

Personalised recommendations