Increase the IQE by Improving the Crystalline Quality for DUV LEDs

  • Zi-Hui ZhangEmail author
  • Chunshuang Chu
  • Kangkai Tian
  • Yonghui Zhang
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


The roadmap for AlGaN based DUV LEDs is similar to that for InGaN based visible LEDs, such that the success of achieving high crystalline-quality epilayers is the precondition for fabricating high-brightness DUV LEDs. This chapter will review the most adopted technologies for growing high-quality Al-rich AlGaN films, which is regarded as the milestone for making high-efficiency DUV LEDs.


  1. 1.
    Imura M, Nakano K, Narita G, Fujimoto N, Okada N, Balakrishnan K, Iwaya M, Kamiyama S, Amano H, Akasaki I, Noro T, Takagi T, Bandoh A (2007) Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers. J Cryst Growth 298:257–260. Scholar
  2. 2.
    Ambacher O (1998) Growth and applications of Group III-nitrides. J Phys D Appl Phys 31(20):2653CrossRefGoogle Scholar
  3. 3.
    Masataka I, Kiyotaka N, Naoki F, Narihito O, Krishnan B, Motoaki I, Satoshi K, Hiroshi A, Isamu A, Tadashi N, Takashi T, Akira B (2007) Dislocations in AlN epilayers grown on sapphire substrate by high-temperature metal-organic vapor phase epitaxy. Jpn J Appl Phys 46(4A):1458–1462. Scholar
  4. 4.
    Khan A, Balakrishnan K, Katona T (2008) Ultraviolet light-emitting diodes based on group three nitrides. Nat Photonics 2(2):77–84. Scholar
  5. 5.
    Shatalov M, Sun W, Lunev A, Hu X, Dobrinsky A, Bilenko Y, Yang J, Shur M, Gaska R, Moe C, Garrett G, Wraback M (2012) AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl Phys Express 5(8):082101. Scholar
  6. 6.
    Kneissl M, Kolbe T, Chua C, Kueller V, Lobo N, Stellmach J, Knauer A, Rodriguez H, Einfeldt S, Yang Z, Johnson NM, Weyers M (2011) Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond Sci Technol 26(1):014036. Scholar
  7. 7.
    Hirayama H, Norimatsu J, Noguchi N, Fujikawa S, Takano T, Tsubaki K, Kamata N (2009) Milliwatt power 270 nm-band AlGaN deep-UV LEDs fabricated on ELO-AlN templates. Phys Status Solidi C 6:S474–S477. Scholar
  8. 8.
    Vinod A, Qhalid F, Monirul I, Thomas K, Balakrishnan K, Asif K (2007) Robust 290 nm emission light emitting diodes over pulsed laterally overgrown AlN. Jpn J Appl Phys 46(36–40):L877–L879. Scholar
  9. 9.
    Kim M, Fujita T, Fukahori S, Inazu T, Pernot C, Nagasawa Y, Hirano A, Ippommatsu M, Iwaya M, Takeuchi T, Kamiyama S, Yamaguchi M, Honda Y, Amano H, Akasaki I (2011) AlGaN-based deep ultraviolet light-emitting diodes fabricated on patterned sapphire substrates. Appl Phys Express 4(9):092102. Scholar
  10. 10.
    Dong P, Yan J, Wang J, Zhang Y, Geng C, Wei T, Cong P, Zhang Y, Zeng J, Tian Y, Sun L, Yan Q, Li J, Fan S, Qin Z (2013) 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates. Appl Phys Lett 102(24):241113. Scholar
  11. 11.
    Dong P, Yan J, Zhang Y, Wang J, Zeng J, Geng C, Cong P, Sun L, Wei T, Zhao L, Yan Q, He C, Qin Z, Li J (2014) AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significant improvement in internal quantum efficiency. J Cryst Growth 395:9–13. Scholar
  12. 12.
    Zhang L, Xu F, Wang J, He C, Guo W, Wang M, Sheng B, Lu L, Qin Z, Wang X, Shen B (2016) High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography. Sci Rep 6:35934. Scholar
  13. 13.
  14. 14.
    Hartmann C, Wollweber J, Dittmar A, Irmscher K, Kwasniewski A, Langhans F, Neugut T, Bickermann M (2013) Preparation of bulk AlN seeds by spontaneous nucleation of freestanding crystals. Jpn J Appl Phys 52(8):UNSP 08JA06. Scholar
  15. 15.
    Herro ZG, Zhuang D, Schlesser R, Sitar Z (2010) Growth of AlN single crystalline boules. J Cryst Growth 312(18):2519–2521. Scholar
  16. 16.
    Dalmau R, Moody B, Xie J, Collazo R, Sitar Z (2011) Characterization of dislocation arrays in AlN single crystals grown by PVT. Phys Status Solidi a Appl Mater Sci 208(7):1545–1547. Scholar
  17. 17.
    Sumathi RR (2013) Bulk AlN single crystal growth on foreign substrate and preparation of free-standing native seeds. CrystEngComm 15(12):2232–2240. Scholar
  18. 18.
    Mokhov E, Izmaylova I, Kazarova O, Wolfson A, Nagalyuk S, Litvin D, Vasiliev A, Helava H, Makarov Y (2013) Specific features of sublimation growth of bulk AlN crystals on SiC wafers. Phys Status Solidi C 10(3):445–448. Scholar
  19. 19.
    Bondokov RT, Mueller SG, Morgan KE, Slack GA, Schujman S, Wood MC, Smart JA, Schowalter LJ (2008) Large-area AlN substrates for electronic applications: an industrial perspective. J Cryst Growth 310(17):4020–4026. Scholar
  20. 20.
    Li DB, Jiang K, Sun XJ, Guo CL (2018) AlGaN photonics: recent advances in materials and ultraviolet devices. Adv Opt Photonics 10(1):43–110. Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Zi-Hui Zhang
    • 1
    Email author
  • Chunshuang Chu
    • 1
  • Kangkai Tian
    • 1
  • Yonghui Zhang
    • 1
  1. 1.School of Electronics and Information Engineering, Institute of Micro-Nano Photoelectron and Electromagnetic Technology InnovationHebei University of TechnologyTianjinChina

Personalised recommendations