Advertisement

Nonperturbative Renormalization Group

  • Taiki HagaEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

We review the nonperturbative renormalization group theory. This approach is based on an exact flow equation of the effective action and it enables us to investigate critical phenomena which cannot be described by perturbative treatments. We first explain the general formulation of this theory and we next demonstrate how it is applied to the pure and random field O(N) models.

Keywords

Nonperturbative renormalization group O(N) model Disordered systems 

References

  1. 1.
    Berges J, Tetradis N, Wetterich C (2002) Non-perturbative renormalization flow in quantum field theory and statistical physics. Phys Rep 363:223ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Delamotte B, Mouhanna D, Tissier M (2004) Nonperturbative renormalization-group approach to frustrated magnets. Phys Rev B 69:134413Google Scholar
  3. 3.
    Dupuis N (2009) Infrared behavior and spectral function of a Bose superfluid at zero temperature. Phys Rev A 80:043627Google Scholar
  4. 4.
    Canet L, Chaté H, Delamotte B, Dornic I, Muñoz MA (2005) Nonperturbative fixed point in a nonequilibrium phase transition. Phys Rev Lett 95:100601Google Scholar
  5. 5.
    Canet L, Chaté H, Delamotte B, Wschebor N (2010) Nonperturbative renormalization group for the Kardar-Parisi-Zhang equation. Phys Rev Lett 104:150601Google Scholar
  6. 6.
    Zinn-Justin J (1989) Quantum field theory and critical phenomena. Clarendon Press, OxfordzbMATHGoogle Scholar
  7. 7.
    Canet L, Chaté H, Delamotte B (2011) General framework of the non-perturbative renormalization group for non-equilibrium steady states. J Phys A Math Gen 44:495001MathSciNetCrossRefGoogle Scholar
  8. 8.
    Tetradis N, Wetterich C (1994) Critical exponents from the effective average action. Nucl Phys B 422:541ADSCrossRefGoogle Scholar
  9. 9.
    Litim D (2000) Optimization of the exact renormalisation group. Phys Lett B 486:92ADSCrossRefGoogle Scholar
  10. 10.
    Litim D (2002) Critical exponents from optimised renormalisation group flows. Nucl Phys B 631:128ADSCrossRefGoogle Scholar
  11. 11.
    Ma S-K (1976) Modern theory of critical phenomena. W. A. Benjamin, IncGoogle Scholar
  12. 12.
    Pelissetto A, Vicari E (2002) Critical phenomena and renormalization-group theory. Phys Rep 368:549ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Kosterlitz JM, Thouless DJ (1973) Ordering, metastability and phase transitions in two-dimensional systems. J Phys C 6:1181ADSCrossRefGoogle Scholar
  14. 14.
    Jose JV, Kadanoff LP, Kirkpatrick S, Nelson DR (1977) Renormalization, vortices, and symmetry-breaking perturbation in the two-dimensional planar model. Phys Rev B 16:1217ADSCrossRefGoogle Scholar
  15. 15.
    Tarjus G, Tissier M (2008) Nonperturbative functional renormalization group for random field models and related disordered systems. I. Effective average action formalism. Phys Rev B 78:024203Google Scholar
  16. 16.
    Tissier M, Tarjus G (2008) Nonperturbative functional renormalization group for random field models and related disordered systems. II. Results for the random field O(N) model. Phys Rev B 78:024204Google Scholar
  17. 17.
    Fytas NG, Martin-Mayor V, Picco M, Sourlas N (2016) Phase transitions in disorder systems: the example of the random field Ising model in four dimensions. Phys Rev Lett 116:227201Google Scholar
  18. 18.
    Fytas NG, Martin-Mayor V (2016) Efficient numerical methods for the random field Ising model. Phys Rev E 93:063308Google Scholar
  19. 19.
    Fytas NG, Martin-Mayor V, Picco M, Sourlas N (2017) Restoration of dimensional reduction in the random field Ising model at five dimensions. Phys Rev E 95:042117Google Scholar
  20. 20.
    Tissier M, Tarjus G (2012) Nonperturbative functional renormalization group for random field models and related disordered systems. III. Superfield formalism and ground-state dominance. Phys Rev B 85:104202Google Scholar
  21. 21.
    Tissier M, Tarjus G (2012) Nonperturbative functional renormalization group for random field models and related disordered systems. IV. Supersymmetry and its spontaneous breaking. Phys Rev B 85:104202Google Scholar
  22. 22.
    Haga T (2018) Nonequilibrium Kosterlitz-Thouless transition in a three-dimensional driven disordered system. Phys Rev E 98:032122Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of PhysicsKyoto UniversityKyotoJapan

Personalised recommendations