Advertisement

Functional Renormalization Group of Disordered Systems

  • Taiki HagaEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

We review the functional renormalization group treatment in disordered systems. In this theory, one follows the flow of the whole functional form of the renormalized disorder correlator. We explain that its nonanalytic behavior leads to the breakdown of the dimensional reduction. As well-known examples, we derive the one-loop functional renormalization group equations for the random manifold and random field O(N) models, and discuss the properties of their fixed points.

Keywords

Disordered systems Dimensional reduction Functional renormalization group Random manifold Random field O(N) model 

References

  1. 1.
    Wilson KG, Kogut J (1974) The renormalization group and the \(\epsilon \) expansion. Phys Rep 12:75ADSCrossRefGoogle Scholar
  2. 2.
    Mézard M, Parisi G, Virasoro MA (1987) Spin-glasses and beyond. World Scientific, SingaporezbMATHGoogle Scholar
  3. 3.
    Fisher DS (1985) Random fields, random anisotropies, nonlinear \(\sigma \) models, and dimensional reduction. Phys Rev B 31:7233ADSCrossRefGoogle Scholar
  4. 4.
    Fisher DS (1986) Interface fluctuations in disordered systems: \(5-\epsilon \) expansion and failure of dimensional reduction. Phys Rev Lett 56:1964ADSCrossRefGoogle Scholar
  5. 5.
    Feldman DE (2000) Quasi-long-range order in the random anisotropy Heisenberg model: functional renormalization group in \(4-\epsilon \) dimensions. Phys Rev B 61:382ADSCrossRefGoogle Scholar
  6. 6.
    Zinn-Justin J (1989) Quantum field theory and critical phenomena. Clarendon Press, OxfordzbMATHGoogle Scholar
  7. 7.
    Haga T (2017) Dimensional reduction and its breakdown in the driven random-field \(O(N)\) model. Phys Rev B 96:184202CrossRefGoogle Scholar
  8. 8.
    Feldman DE (2002) Critical exponents of the random-field \(O(N)\) model. Phys Rev Lett 88:177202ADSCrossRefGoogle Scholar
  9. 9.
    Nattermann T, Scheidl S (2000) Vortex-glass phases in type-II superconductors. Adv Phys 49:607ADSCrossRefGoogle Scholar
  10. 10.
    Giamarchi T, Le Doussal P (1994) Elastic theory of pinned flux lattices. Phys Rev Lett 72:1530ADSCrossRefGoogle Scholar
  11. 11.
    Giamarchi T, Le Doussal P (1995) Elastic theory of flux lattices in the presence of weak disorder. Phys Rev B 52:1242ADSCrossRefGoogle Scholar
  12. 12.
    Menon GI (2002) Phase behavior of type-II superconductors with quenched point pinning disorder. Phys Rev B 65:104527ADSCrossRefGoogle Scholar
  13. 13.
    Le Doussal P, Wiese KJ (2006) Random-field spin models beyond 1 loop. Phys Rev Lett 96:197202ADSCrossRefGoogle Scholar
  14. 14.
    Tissier M, Tarjus G (2006) Two-loop functional renormalization group of the random field and random anisotropy \(O(N)\) models. Phys Rev B 74:214419ADSCrossRefGoogle Scholar
  15. 15.
    Gingras MJP, Huse DA (1996) Topological defects in the random-field XY model and the pinned vortex lattice to vortex glass transition in type-II superconductors. Phys Rev B 53:15193ADSCrossRefGoogle Scholar
  16. 16.
    Fisher DS (1997) Stability of elastic glass phases in random field XY magnets and vortex lattices in type-II superconductors. Phys Rev Lett 78:1964ADSCrossRefGoogle Scholar
  17. 17.
    Tissier M, Tarjus G (2006) Unified picture of ferromagnetism, quasi-long-range order, and criticality in random-field models. Phys Rev Lett 96:087202ADSCrossRefGoogle Scholar
  18. 18.
    Kosterlitz JM, Thouless DJ (1973) Ordering, metastability and phase transitions in two-dimensional systems. J Phys C 6:1181ADSCrossRefGoogle Scholar
  19. 19.
    Jose JV, Kadanoff LP, Kirkpatrick S, Nelson DR (1977) Renormalization, vortices, and symmetry-breaking perturbation in the two-dimensional planar model. Phys Rev B 16:1217ADSCrossRefGoogle Scholar
  20. 20.
    Chitra R, Giamarchi T, Le Doussal P (1999) Disordered periodic systems at the upper critical dimension. Phys Rev B 59:4058ADSCrossRefGoogle Scholar
  21. 21.
    Feldman DE (2000) Quasi-long-range order in nematics confined in random porous media. Phys Rev Lett 84:4886ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of PhysicsKyoto UniversityKyotoJapan

Personalised recommendations